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Abstract

About 2000 completely sequenced mitochondrial genomes are available from the

NCBI RefSeq data base together with manually curated annotations of their

protein-coding genes, rRNAs, and tRNAs. This annotation information, which

has accumulated over two decades, has been obtained with a diverse set of com-

putational tools and annotation strategies. Despite all efforts of manual curation

it is still plagued by misassignments of reading directions, erroneous gene names,

and missing as well as false positive annotations in particular for the RNA genes.

Taken together, this causes substantial problems for fully automatic pipelines

that aim to use these data comprehensively for studies of animal phylogenetics
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and the molecular evolution of mitogenomes. The MITOS pipeline is designed

to compute a consistent de novo annotation of the mitogenomic sequences. We

show that the results of MITOS match RefSeq and MitoZoa in terms of anno-

tation coverage and quality. At the same time we avoid biases, inconsistencies

of nomenclature, and typos originating from manual curation strategies. The

MITOS pipeline is accessible online at http://mitos.bioinf.uni-leipzig.de.
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1. Introduction

A reliable and standardised genome annotation is an indispensable prereq-

uisite for a systematic comparative analysis of genomic sequence data. This is

true in particular for phylogenetic reconstruction, studies of the mechanisms of

genome rearrangements, and the investigation of the effects of sequence vari-

ation. The need for accurate and unbiased annotations becomes even more

pressing when automatised pipelines are employed to process the increasingly

large amounts of data that are becoming available in the wake of new sequencing

technologies.

At present, complete sequences of mitochondrial genomes are available for

more than 2000 metazoan species from a wide variety of taxonomic groups.

Metazoan mitogenomes are (with few exceptions) circular molecules with an

average length of approximately 16 500nt with extreme length values such as

11 423nt (Paraspadella gotoi NC 006083) and 43 079nt (Trichoplax adhaerens

NC 008151). Mitochondrial genomes have a well preserved gene content usually

comprising 13 protein coding genes, 22 tRNAs, two rRNAs, and one non-coding

region containing most of the regulatory elements (Wolstenholme, 1992). This

simple structure makes animal mitogenomes an attractive target for large-scale

comparative studies.

Mitochondrial genes usually consist of a single continuous exon, although in

some clades exceptions have been reported in protein coding genes as well as in

rRNAs (Beagley et al., 1996; Dellaporta et al., 2006; Wang and Lavrov, 2008)
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and conserved frameshifts exist in some sauropsid groups (Mindell et al., 1998).

In several cases there is also evidence for some duplication and deletion events

(e.g. San Mauro et al., 2006; Fujita et al., 2007). A peculiarity of mitogenomes

is their use of deviant genetic codes and the presence of overlapping genes and

incomplete stop codons (Wolstenholme, 1992; Jühling et al., 2011), see Bernt

et al. (2012b) (in this special issue) for a more detailed overview. Taken together,

all these issues complicate the task of genome annotation and made extensive

manual “expert curation” indispensable. In this process a multitude of different

tools have been used by different curators. As discussed e.g. by Boore (2006),

this entails a number of problems: a) tools used in older annotation may be

outdated, i.e. improved methods are already available, b) sequences used as

basis for homology annotation can be either wrong or incomplete, and c) no

generally accepted guidelines exist for the annotation.

The most comprehensive and up-to-date resource for mitochondrial genomes

and their annotation is NCBI RefSeq (Pruitt et al., 2007). Despite substantial

efforts by the curators of RefSeq to improve the quality of the data several in-

consistencies and errors in the annotations have remained that cause problems

for automatised analysis pipelines. This includes missing or incorrect informa-

tion of the reading direction (strand), erroneous gene designations, missing gene

annotations, mistaken identity of trnL1/trnL2 and trnS1/trnS2 tRNAs, and

inconsistencies in gene names (see Supplement 1 for selected examples).

Boore (2006) suggested a number of possible solutions to overcome these

problems: Systematic error screening, standardisation of gene names, anticodon

labelling of tRNAs, standards for gene and gene boundaries designation, and

standards for accepting the reality of a gene assignment. Several data bases, re-

viewed in more detail in Bernt et al. (2012a) (in this special issue), aim at provid-

ing improved annotations for RefSeq mitogenomes along these lines. METAMiGA

(Feijao et al., 2006) and OGRe (Jameson et al., 2003) incorporate manual im-

provements of the data based on expert knowledge. Systematic semi-automatic

error screening using a list of rules based on tRNAscan-SE (Lowe and Eddy,

1997), ARWEN (Laslett and Canback, 2008), and BLAST (Altschul et al., 1990)
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searches as well as expert knowledge is used for MitoZoa (Lupi et al., 2010), a

recently released new data base.

De novo annotation with a consistent set or pipeline of methods is a promis-

ing alternative to evaluating and improving existing annotations. DOGMA (Wyman

et al., 2004) is a semi-automated pipeline of methods dealing with both mito-

chondrial and chloroplast genomes. It uses BLAST to identify coding and non-

coding genes. COVE (Eddy and Durbin, 1994) is employed by DOGMA to identify

tRNAs candidates based on secondary structure. MOSAS (Sheffield et al., 2010) is

a set of methods that has its focus on the organisation of sequence data and an-

notation and was originally intended for insect mitogenomes. It employs ARWEN

and tRNAscan-SE for tRNA prediction. BLAST is used by MOSAS to search for

open reading frames and rRNAs based on a local data base of query sequences

(currently from insects only). The need for user-defined cutoff values and man-

ual improvements of the predictions makes this approach difficult to apply to

large data sets and limits the comparability of the predictions.

The MITOchondrial genome annotation Server (MITOS) provides access to a

fully automated pipeline for the de novo annotation of metazoan mitochon-

drial genomes. It uses a novel strategy based on aggregating BLAST searches

with previously annotated protein sequences to identify protein coding genes

(Section 2.1), thereby avoiding the need for a built-in data base of specifically

curated protein models. Both tRNAs and rRNAs are annotated using specific

covariance models for each of the structured RNAs (Section 2.2). In this con-

tribution we apply MITOS for the de novo annotation of all animal mitogenomes

contained in RefSeq 39, focusing on a careful evaluation of the quality of the

results (Section 3).

2. Materials and Methods

MITOS requires only a sequence file in FASTA format and the corresponding

genetic code as input. The pipeline proceeds in two stages, first identifying

candidate sequences for each gene, then reconciling these to derive a final an-
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notation. In the following we provide a detailed description of the individual

components of MITOS.

2.1. Protein Homology Search

The annotation of each protein coding gene starts with a BLASTX-based sim-

ilarity search using as queries the amino acid sequences of previously anno-

tated orthologs. These are taken from a data base which we assume to contain

some inconsistencies, misannotations, incomplete sequences, or other errors. We

therefore consider aggregations of matches at the same locations of the input

mitogenome. This is motivated by the assumption that aggregates generated by

correctly annotated genes will dominate those generated by a moderate number

of erroneous queries. The aggregation process thus serves as an automatic filter

of the query data base and relieves us of the necessity to first manually curate

the queries. In the following we describe the technical details of this strategy.

2.1.1. Extraction of reference amino acid sequences

The basis for the annotation is the collection of all amino acid sequences of

all proteins annotated in a complete metazoan mitochondrial genome. These

sequences were extracted directly from the CDS feature of the GenBank files

available for all RefSeq 39 mitogenomes. We implemented specialised parser for

mitogenome annotations based on biopython (Cock et al., 2009) for this task.

Protein sequences are compiled separately for each query gene.

2.1.2. Similarity Search and Aggregation

For a concise description of the pipeline we need to introduce a bit of nota-

tion. A BLASTX hit is characterised by its start and end position in the query

(sq, eq) and target sequence (st, et) and its quality measured as − log10(E-value).

For E-values of 0 we set the quality to 100. For a given hit, the relative query

position pq of a position pt in the target sequence is the corresponding position

in the query sequence, i.e. a position with
pq−sq

eq−pq
= pt−st

et−pt
(see Figure 1). For a

given position p and a set of BLAST hits, we define the quality of position p as

the sum of the quality values of all hits that include p. Analogously, the relative
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Figure 1: Left: A BLAST hit, given by the start and end of the hit in query

(sq, eq) and target (st, et) sequence and the relative query position pq and its

corresponding position in the target pt; right: generation of initial predictions:

lines on the bottom depict the BLAST hits (the region in the target sequence),

the shaded area shows the sum of BLAST hits per position; parts removed due

to the cutoff are shown in light gray.

query position at target position p is defined as the relative query positions of

p averaged over all hits that cover p.

Hits are treated separately for each of the six possible reading frames with

respect to the target sequence. We reject BLASTX hits with a quality less than

2.0 to keep the number of spurious hits at bay. For each query gene and reading

frame, the hits are aggregated separately to obtain predictions as consecutive

stretches of positions that have a quality value of at least 50% of the maximum

value over all positions for the currently considered reading frame. Each pre-

diction is represented by its start and end in target and query (i.e. the first and

last positions of the prediction in the target sequence and the corresponding

average relative query positions) and its quality given by the sum of the quality

values at the included positions.

2.1.3. Overlapping predictions

Since the predictions are obtained separately for each gene and reading frame

we have to expect conflicts. We employ a greedy strategy for conflict resolution,

processing the predictions in the order of decreasing quality values. If one of

the predictions overlaps more than 20% with a prediction that has already

been processed then they are either clipped, if they are predictions of the same
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Figure 2: Illustration of the decision criterion used for determining if two pre-

dictions p1 and p2 are copies or parts of the same transcript; the shaded area is

the common part of the query covered by both prediction; left: p1 and p2 are

duplicates; right: p1 and p2 constitute fragments of the same transcript.

gene whose quality values differ by a factor of less than 10, or otherwise it is

discarded entirely. The amount of overlap is measured as the fraction of the

shorter sequence that is covered by the longer one. Overlapping predictions

of the same gene are clipped by simultaneously modifying the start and end

position in 1 nt steps, i.e. the start (end) position of the right (left) prediction

is increased (decreased) as long as the quality values of the respective positions

are better than those of the left (right) prediction.

2.1.4. Discrimination of duplicates and gene fragments

The resulting set of predictions for each gene is then checked for duplicates

and the presence of multiple parts belonging to the same transcript. The latter

occurs for instance in the case of frameshifts or splicing. MITOS assumes that

two predictions are parts of the same transcript if their respective query ranges

(i.e. the ranges given by the relative query positions of start and stop) overlap

by at most 20% and their quality differs by less than a factor of 10; otherwise

they are treated as parts of different transcripts, i.e. as paralogous copies (see

Figure 2). Again, a greedy strategy is used to iteratively add additional parts

to split transcripts in the order of decreasing quality values. Finally, fragments

within a split transcript are arranged according to the order of start positions

in the query.
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2.1.5. Improvement of start and end position

The local BLAST alignments are often inaccurate at their ends. MITOS thus

scans the vicinity of each prediction for the presence of in-frame start and stop

codons. MITOS investigates up to six amino acids upstream and downstream.

Extensive testing showed that this yields very good results. If a stop codon is

found to be within the region examined for a start codon, then the search for a

start codon is limited to the region downstream of this stop codon.

2.2. Non-coding RNA annotation

Both tRNAs and rRNAs are highly structured, with large parts of the

molecules exhibiting strong conservation in their base pairing patterns. Their

primary sequence, however, shows high levels of variability. Therefore MITOS

employs covariance models capturing the similarity of primary sequence as well

as secondary structure for the identification of tRNA and rRNA coding genes.

For a plausible structural annotation we use Infernal 1.0.2 (Nawrocki et al.,

2009) in “glocal” search mode (i.e. global with respect to the model and lo-

cal for the target sequence) and calibrated covariance models so that E- and

p-values are computed. The generation of the covariance models for mitochon-

drial tRNAs and rRNAs and specific details of the search procedure is described

in the following.

2.2.1. tRNA annotation

For the annotation of the tRNAs we use the strategy presented in Jühling

et al. (2011). In brief, structure annotated covariance models were created for

each mitochondrial tRNA gene in an iterative process improving the prediction

rates of the models with every step.

2.2.2. rRNA annotation

The covariance models of the two rRNAs were constructed by a strategy

similar to the one applied to the tRNAs. Initial covariance models based on

manually curated and structurally annotated alignments of well-known meta-

zoan rRNA sequences from the European Ribosomal RNA data base (Wuyts
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et al., 2004) were created for each of the two rRNA genes. To include more

sequence variation, the models were enhanced by adding all rRNA sequences

annotated in the metazoan mitogenomes included in RefSeq 39 to the initial

alignments. The resulting alignments were extensively manually curated. This

was necessary in particular because the ends of most of the rRNA genes (al-

most 80%) in RefSeq mitogenomes are determined by the flanking genes. After

realigning the cleaned sequences with Infernal, we selected a seed alignment

from which very similar sequences were omitted to avoid overfitting. To this

end, an auxiliary graph representing each of the sequences as a node is used.

Nodes are connect by an edge if their corresponding sequences differ by less than

5%, i.e. 47 nt and 81 nt for the rrnS and rrnL, respectively. From this graph

we iteratively delete the neighbours of the vertex with the largest degree, until

no edges are left. From the resulting seed alignments the final rrnS and rrnL

rRNA covariance models were built.

MITOS falls back to searching rRNAs with Infernal’s local search mode if a

“glocal” search remains unsuccessful.

2.3. Final annotation procedure

After candidates for protein, tRNA, and rRNA encoding genes have been

determined according to the methods described above possible conflicts between

these sets of predictions need to be resolved in order to obtain the final anno-

tation. Therefore from each pair of genes of different type (protein, tRNA, or

rRNA) that overlap by more than 35 nt one is removed. Because tRNAs often

are adjacent to an rRNA, and rRNAs were observed in some cases to be anno-

tated too long, we allow tRNAs to be overlapped to a larger extent by rRNAs

as long as the tRNA is not included in the rRNA.

In a first round the best candidate is chosen from each gene, prioritising

proteins, tRNAs (with E-value ≤ 10−3), and finally rRNAs. This is motivated

by the fact that metazoan mitochondrial genomes usually have a single copy

of each gene. In case no “glocal” rRNA hit is found that is compatible with

the other predictions local rRNA hits are annotated. Thus, the method is able
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to annotate also the rare cases of fragmented rRNAs and rRNAs with highly

diverged secondary structure not covered by the complete model.

In a second round potential gene copies are determined. Therefore, the

remaining candidate genes are added to the final annotation if they fulfil the

overlap constraints. The order of the addition prioritises candidates with a large

quotient of the quality and the quality of the best representative per gene (for

non-coding RNAs the reciprocal of the E-value is used instead of the quality).

In a final step, local rRNA hits, if any, are merged if their respective position

is in agreement with the location of the hits in the query covariance models.

2.4. Nomenclature

For the assignment of gene names we follow the guideline suggested by Boore

(2006) (Supplemental Table 2). The tRNA-encoding genes are named in lower

case with the one letter code for the corresponding amino acid and the anticodon

appended in parentheses, e.g. trnF (gaa) for phenylalanine tRNA with anticodon

gaa. Likewise, protein-coding genes and ribosomal RNAs are named in lower

case with the ribosomal subunit indicated by a single upper case letter, i.e. rrnS

and rrnL for small and large subunit ribosomal RNA, respectively. The Serine

and Leucine tRNAs are distinguished by the recognised codon: trnS1 for agn

or agy, trnS2 for ucn, trnL1 for cun, and trnL2 for uur (Boore, 2001). The

protein-coding genes are named in lower case but otherwise according to the

human gene nomenclature (Wain et al., 2002). In case of gene copies, the gene

name is followed by a hyphen and an Arabic numerical, starting from 0 (e.g.

cox1 -0 for the first copy and cox1 -1 for the second copy of a duplicated cox1

gene). Gene parts are indicated by the addition of an underscore and a lower

case Latin letter, starting from “a” for the most 5’ part of the gene (e.g. cox1 c

for the 3rd part of the cox1 transcript).

2.5. Data sets

For an evaluation, the MITOS predictions have been determined for all 1878

mitogenome sequences contained in RefSeq 39 and all 203 mitogenome se-
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quences of RefSeq 44, which were added to the RefSeq collection since re-

lease 39. The MITOS predictions have been compared to: (i) the annotations of

the 1878 metazoan mitogenomes in RefSeq 39, (ii) the annotations of 203 mi-

togenomes, which were newly added in RefSeq 44, and (iii) the annotations for

the mitogenome sequences of RefSeq 39 given in MitoZoa 9.1 (which excludes

the four Placozoa and Hemidactylus frenatus (NC 012902)).

In order to develop means to quantify the quality of the prediction, in par-

ticular the quality values of the proteins, the predictions including all conflicting

ones have been determined for (i) the 203 sequences of the mitogenomes newly

added to RefSeq 44 and (ii) permutations of these genomic sequences (ten din-

ucleotide and ten trinucleotide frequency preserving shufflings).

3. Results and Discussion

In order to assess the quality of the MITOS predictions we employed our

pipeline for a de novo annotation of RefSeq 39. By showing that the default

parameters chosen in MITOS are suitable for the entire metazoan data set, we

hope to relieve the user of the tedious empirical work of choosing appropriate

cutoff values and parameters.

In the following we will refer to RefSeq or MITOS annotations as “genes”.

3.1. Overlapping predictions

Since neighbouring genes can overlap in mitochondrial genomes allowing

overlaps is a necessity for mitochondrial genome annotation. Furthermore, de-

termining exact gene boundaries is often difficult, e.g. because of incomplete

stop codons. On the other hand, we do not expect large overlaps between ad-

jacent genes. The overlap of gene predictions thus has been evaluated in detail

(see also Supplemental Table 3 and Supplemental Figure 4). Out of the 69 917

neighbouring pairs of MITOS predictions 17 152 (≈ 25%) overlap. The situation is

qualitatively similar in RefSeq 39: 8540 out of 68 874 annotations overlap. The

additional overlaps among the MITOS predictions are typically small (average
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length 7.23nt). The average overlap involving tRNAs (1.68 nt for tRNA-tRNA

overlaps) is smaller than the overlaps found for proteins or rRNAs. The maxi-

mum overlap in the data set is 68 nt found for a tRNA and rRNA. Most likely,

the rrnL prediction is too long in this case.

3.2. Fragmented predictions

The protein search implemented in MITOS allows the identification of gene

copies and fragmented genes including frameshifts and cases where the coding

sequence is not contiguous. Split genes are for instance caused by the insertion

of self-splicing introns, which are not infrequent in certain metazoan lineages,

see Beagley et al. (1996); Dellaporta et al. (2006); Wang and Lavrov (2008);

Bernt et al. (2012b). MITOS predicts 220 protein coding genes in fragments,

most frequently nad3 (109), nad5 (38), and cox1 (20). These three cases are

discussed in more detail, see also Supplemental Tables 5, 6, and 7.

Most of the fragmented nad3 genes are found in mitogenomes of Aves (81)

and Testudines (25), i.e. taxa where frameshifts have been reported frequently

for nad3 (Mindell et al., 1998). Compared with the nad3 frameshifts reported in

RefSeq 39 for birds and turtles MITOS predicts all but one (NC 003712) and adds

three previously unannotated ones (NC 001947, NC 009509, and NC 011516).

Most of the cases of fragmented nad5 predictions coincide with known cases

where these genes are separated on multiple exons, e.g. in Placozoa and Cnidaria

(Bernt et al., 2012b, in this special issue). In 31 of the 38 cases where nad5

was predicted in fragments compatible annotations are found in RefSeq 39, i.e.

same fragments are reported although there may be differences in the precise

start and stop locations. Only one of these cases was reported as frameshift in

RefSeq and all other cases correspond to known cases of fragmented genes in

Cnidaria (27 cases) and Placozoa (3 cases).

All but two of the 20 mitogenomes where MITOS predicts cox1 in multiple

parts are also annotated as multiple fragments in RefSeq 39, but in a few cases

usually very short fragments are missed or additional fragments are predicted

by MITOS. Again, most of these cases affect Cnidaria (8) and Placozoa (4). The
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case of Hexamermis agrotis (NC 008828) is particularly interesting, since MITOS

predicts three fragmented copies of cox1. All but two of these fragments are pre-

dicted within unannotated regions and the quality values (> 105) suggest that

they might be pseudogenes (see also Supplementary Figure 8). Interestingly,

also duplicates of other genes are annotated in RefSeq 39 or predicted by MITOS

in this mitogenome (see also Yatawara et al., 2010).

MITOS predicts a similar number of fragmented genes as are annotated in

RefSeq 39 also for other proteins (see Supplementary Table 5). This demon-

strates that MITOS is able to annotate even complicated cases including frameshifts

and genes with fragmented coding sequences.

MITOS also predicts several fragmented rRNAs. The local search mode, em-

ployed in cases where the “glocal” mode fails, leads to 161 and 22 fragmented

predictions for rrnL and rrnS, respectively. This can be caused by known frag-

mented genes in Metazoa (e.g. Dellaporta et al., 2006) as well as highly variable,

inserted or deleted domains that are overlooked because no homologous sequence

is contained in the seed alignment.

3.3. MITOS vs. RefSeq 39

For each of the genes predicted by MITOSwe define the corresponding RefSeq 39

annotation as the gene that shares the most positions with the MITOS prediction

provided the MITOS prediction shares at least 75% of its position with the cor-

responding RefSeq annotation. Pairs of MITOS predictions and corresponding

RefSeq annotations identified by this definition are differentiated in the follow-

ing classes: they are equal if both annotate the same gene and are located on

the same strand. If they only annotate the same gene but are found on the

opposite strand, the gene is marked as having a strand difference. Correspond-

ing pairs annotating different genes are marked as different. We consider MITOS

predictions without corresponding RefSeq annotation to be false positives (FP)

and RefSeq annotations without corresponding MITOS prediction to be false

negatives (FN).
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Table 1: Comparison of the MITOS predictions with the annotations found in

RefSeq 39, RefSeq 44 without RefSeq 39, and MitoZoa 9.1; given are the num-

ber of cases and fraction in parentheses where MITOS predicts: the same gene

on the same strand (equal), the same gene on the opposite strand (∆±), a false

positive (FP), a false negative (FN), a gene with different name (different); see

text for details; a gene wise overview is given in Supplemental Tables 14, 18,

and 21.

equal ∆± FN FP different

RefSeq 39

Protein 24 533 (0.97) 0 (0.00) 107 (0.00) 493 (0.02) 226 (0.01)

rRNA 4087 (0.96) 24 (0.01) 57 (0.01) 84 (0.02) 14 (0.00)

tRNA 39 000 (0.95) 355 (0.01) 698 (0.02) 367 (0.01) 709 (0.02)

RefSeq 44

without

RefSeq 39

Protein 2632 (0.96) 2 (0.00) 2 (0.00) 69 (0.03) 27 (0.01)

rRNA 430 (0.97) 1 (0.00) 11 (0.02) 1 (0.00) 1 (0.00)

tRNA 4188 (0.93) 20 (0.00) 71 (0.02) 66 (0.01) 163 (0.04)

MitoZoa 9.1

Protein 24 515 (0.97) 1 (0.00) 40 (0.00) 429 (0.02) 243 (0.01)

rRNA 4114 (0.97) 3 (0.00) 38 (0.01) 63 (0.01) 6 (0.00)

tRNA 39 674 (0.97) 5 (0.00) 557 (0.01) 283 (0.01) 352 (0.01)
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Table 1 shows that the results obtained from MITOS are in excellent agree-

ment with the annotations found in RefSeq 39. Nevertheless a number of dis-

crepancies are obvious.

Strand differences to RefSeq annotations are found for 355 tRNAs and 24

rRNAs, but none were found for protein coding genes. In nearly all of these

cases (330 of 379) MITOS predicts the respective gene on the “minus” strand,

whereas the RefSeq annotation is located on the “plus” strand. Since RefSeq

entries are per default on the “plus” strand and genes on the “minus” strand

need to be marked with a “complement” statement, this discrepancy can be

explained simply by annotation errors in RefSeq resulting from forgetting the

“complement” statement.

A large fraction of the MITOS predictions that are classified as different refer

to Serine or Leucine tRNAs for which either the distinction between the two an-

ticodon types is not annotated (166 cases) or interchanged (trnL1/trnL2 in 78

cases and trnS1/trnS2 in 142 cases). Despite the fact that there is no standard

nomenclature for the Leucine and Serine tRNAs, the naming scheme given in

Boore (2001) seems to be generally accepted. That is, these cases are inconsis-

tencies of RefSeq. We emphasise that a consistent naming is indispensable for

many studies and gene arrangement analysis in particular.

A closer inspection shows that quite a few of our “false positive” and “false

negative” predictions are in fact false negatives and false positives in the RefSeq

annotation. This is discussed in the following.

Many of the MITOS predictions that are classified as false positives (resp.

different gene) are very well supported (quality > 106 or E-value < 10−4).

There is little doubt that these MITOS-predictions, comprising 64 (resp. 58)

protein coding genes, 23 (resp. 10) rRNA, and 193 (resp. 211) tRNA, are correct.

This list excludes the trnL and trnS cases discussed above. See Supplementary

Tables 16 and 17 for details. The most prevalent source of false positives is

MITOS’ strategy to accept very low scoring predictions as long as they are not

conflicting with high scoring predictions. This leads to predictions in the large

control region in 246 cases, but in most cases these predictions can be rejected
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based on their score, i.e. only 48 of these have a noteworthy quality (> 104) or

E-value < 10−4.

A substantial fraction of “false negative” MITOS-predictions is explained by

genes for which RefSeq annotates a much too long region. This accounts for

147 false negatives and 150 annotations classified as different as well as 4 false

positives. An additional set of false negatives is due to an overlap smaller than

the 75% threshold. The false negative predictions have been analysed manually

for the protein and rRNA coding genes (see Supplementary Table 15). We have

identified 66 protein coding and 17 rRNA MITOS predictions that are actually

correct. For the remaining false negatives of the protein coding genes (17 protein

and 24 rRNA fragments <100nt) no support could be found via BLAST. For the

remaining false negative rRNA genes corresponding predictions are made by

Infernal but could not be placed due to conflicts caused by overlap with other

predictions.

Since the predictive power of the mt-tRNA covariance models (Jühling et al.,

2011) employed by MITOS outperforms tRNAscan-SE, which is the standard tool

for tRNA detection in mitogenomes, it is likely that MITOS tRNA results are an

improvement of the RefSeq annotations. Therefore, the ∼700 tRNA annota-

tions that have not been confirmed by MITOS and 330 previously unannotated

tRNAs which are identified by our method have not been checked manually.

To conclude the comparison with RefSeq 39 we show that most predictions

are much more accurate than the threshold of 75% might suggests (see also

Supplemental Tables 9, 10 and Supplemental Figures 11 and 13). The average

fraction of positions of MITOS predictions that are shared with RefSeq 39 anno-

tations exceeds 99% for each type of gene. Conversely, the average percentage

of the RefSeq 39 annotations that are shared by the MITOS predictions is larger

than 99% for tRNAs, larger than 95% for protein coding genes and rrnS. The

mean value is only 77% for rrnL. One reason for this are rrnL genes predicted

with the local search mode.

MITOS also predicts start and stop positions quite well in comparison to

the RefSeq 39 annotations. For more than 64% of the predictions start and
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stop position of the prediction are identical and for nearly 80% the difference

is less than 5 nt. Note that differences of 1 nt may occur in cases where the

boundary designation in RefSeq annotations does not follow the formal GenBank

guidelines, i.e. start and stop are included and counting starts at 1. For the start

and stop position MITOS also achieves better results for the tRNAs than for the

proteins and rRNAs. The smaller coverage of RefSeq annotations as well as

the inferior precision of the boundaries for the rRNA genes might be based on

the fragmented prediction when the local search mode is applied. Furthermore,

the start and stop positions of the RefSeq annotations are often chosen so that

they touch the adjacent genes (Boore et al., 2005). Contrary to that MITOS

adopts a more conservative strategy. This presents an additional reason for

the lower coverage of RefSeq rrnL annotations by MITOS predictions. Large

positional differences may also occur due to typing errors in RefSeq. More than

two dozen putative cases where permutations of more than two digits explain

the differences are given in Supplemental Table 12.

3.4. MITOS’ results on new genomes

We have validated the predictive power of MITOS on all 203 genomes found

in RefSeq 44 that were not included in RefSeq 39 (see Table 1). The large

number of genes with a different type is again in most cases (116) caused by the

Serine and Leucine tRNAs. The RefSeq annotation of 31 Leucine and 5 Serine

tRNAs is interchanged when compared to the MITOS prediction and in 80 cases

the sub-classification of these tRNAs is missing in RefSeq.

Two proteins were found to be located on a different strand, i.e. nad3 and

atp8 of Platevindex mortoni (NC 013934). A closer inspection indicated that

both are correctly annotated by MITOS (see Supplemental Figure 19). While

nad3 has been corrected in later RefSeq versions, atp8 is still annotated on the

wrong strand. We remark that RefSeq also annotates the rrnS of P. mortoni

on the opposite strand.

Overall, the results show that MITOS also yields very high quality annotations

of mitogenome sequences which have not contributed to the data used for the
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annotation procedure or for the development of the covariance models.

3.5. MITOS vs. MitoZoa

MitoZoa aims to provide annotations of higher quality than RefSeq (Lupi

et al., 2010). The results of the comparison of the MITOS predictions with the an-

notations provided in MitoZoa 9.1 for the RefSeq 39 data are shown in Table 1.

Given that the modified annotations provided by MitoZoa are improvements

the results clearly support the predictive power of MITOS. Strand differences are

almost completely removed. The numbers of false negatives, false positives, and

predictions with different names (except for protein coding genes) are clearly

reduced.

3.6. Duplicated genes

MITOS treats putative duplicates of a gene differently than the best scoring

copy, see Section 2.3. By adding putative paralogs greedily in the remaining

gaps, MITOS is able to also annotate duplicated genes quite reliably. In the

mitogenomes of Porifera and Placozoa several tRNAs, in particular trnI, trnM,

and trnR, are reported as duplicates. With the exception of one copy of trnA

in Axinella corrugata (NC 006894) all tRNAs that are reported as duplicates

in RefSeq 39 are matched by a tRNA prediction of MITOS. In most cases the

MITOS prediction is of the same type as the RefSeq annotation, but there are

noteworthy exceptions. Most notably, the prediction of trnM instead of an an-

notated trnI (see Supplementary Material 22). For these cases the anticodon cau

(trnM ) is post-transcriptionally modified to gau (trnI ) as reported in (Lavrov

et al., 2005) for Porifera.

3.7. Limitations

The current implementation of MITOS does not explicitly account for a vari-

ety of lineage-specific deviations. Most importantly, no annotation is provided

for additional genes as observed in Placozoa (Dellaporta et al., 2006) or the

FORFs in Unionida (Breton et al., 2010). In some cases, protein coding genes
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feature additional extensions, such as the 3’ extension of cox2 in male unionid

mussels (Breton et al., 2010). Unless the extensions are well represented in the

set of input proteins, they will not be included in the aggregation procedure, so

that the ends of these genes will not be annotated correctly. The organisation

of the MITOS pipeline can be adapted to such cases; this will require additional

filtering rules for conflict resolution and has been left for future releases.

A potential problem may arise from the strategy employed by MITOS and

all other currently available tRNA annotation tools to determine the identity of

the genes based on their anticodon sequence. This strategy is reasonable but it

might fail or be misleading in a few cases. One example is a post-transcriptional

modification of the anticodon, e.g. the case reported in Section 3.6. Furthermore,

gene recruitment might be misleading, i.e. when tRNAs change their identity

by point mutations of the anticodon (Saks et al., 1998). This has been reported

for metazoan mitogenomes (Rawlings et al., 2003) and in particular for Porifera

(Lavrov and Lang, 2005;Wang and Lavrov, 2011), where gene recruitment seems

to be more frequent than in other metazoan groups. Since for the Porifera all

reported cases are annotated by their anticodon in RefSeq 39 as well as in

MitoZoa no discrepancy to the MITOS annotation is found. In order to resolve

this issue, we plan for future versions of MITOS that the name indicates the

evolutionary origin, i.e. homology, while the current function of the tRNA will

be indicated by the anticodon.

3.8. MITOS on randomised validation data sets and interpretation of protein

quality values

MITOS’ results on the permuted validation data sets show that scores of cor-

rect annotations are clearly distinguishable from random hits, except for atp8

(see Supplementary data), which is the shortest protein coding gene found in mi-

togenomes (average length 161nt in the 201 atp8 genes in the positive validation

set and 172nt in RefSeq 39). The randomised data still yields 126 (dinucleotide

shuffling) and 133 (trinucleotide shuffling) atp8 genes with an average size of

122nt and 118 nt, respectively. The low number of false positive hits for other
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genes (for instance, MITOS never predicts cox1 or cox2 from shuffled sequences)

in combination with the annotation strategy of MITOS, reduces the possibility

of high scoring random hits in the usually densely packed mitogenomes.

Quality values differ strongly not only between the different genes but some-

times even within the same gene. Therefore, we do not apply a general cutoff

value, in order to enable the detection of degenerated duplication fragments.

This, in turn, could increase the possibility of false positive hits. We provide

quality value distributions for a) the initial hits found for the 13 protein coding

genes in the mitogenomes of RefSeq 39 and b) the di- and trinucleotide fre-

quency preserving permutations of the complete mitogenome sequences. These

plots enable the user to assess the protein annotations by MITOS, see Supple-

mentary Figures 23 and 24.

3.9. MITOS web server

We have set up a web server that implements the presented pipeline and

allows the de novo annotation of whole metazoan mitochondrial genomes. A

major focus in the development of MITOS is to minimise the necessary amount

of manual interaction by the user – but an advanced mode is provided where

parameters can be modified. After uploading a mitogenome sequence in FASTA

format, the user simply has to select the appropriate genomic translation code.

If all computing resources are already in use, the job will be put in a queue.

Queued jobs can be cancelled. Once the genome is being processed the user will

be redirected to a web page where the final results can be found and a notifica-

tion including a link to the final results will be sent to the users email-address,

if provided. The results page gives a tabular overview of the predictions, a vi-

sual representation, that is also available for download, and links to a variety

of commonly used file formats containing the annotation: BED, GFF, FASTA, and

Sequin format. Furthermore all raw data of BLAST and Infernal, a graphi-

cal representation of the structure of the ncRNAs predicted by the covariance

models, and a file containing the gene order are available (lacking the anticodon

information for tRNA-encoding genes). The MITOS web server features a help
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page and a tutorial that guides the user through the annotation of an example

sequence.

With the current soft- and hardware infrastructure (Intel R© XeonTM CPU

3.20GHz) the annotation of a single mitogenome needs about 1.5 h. Note that

most of the time is spent on searching rRNAs with Infernal. To keep waiting

times short the MITOS web server can process several requests in parallel. For

the newly added genomes in RefSeq 44 the average time required to annotate

one mitogenome was 1.3 h using an AMD OpteronTM Processor (2.6GHz) and

2GB of main memory.

4. Conclusion

MITOS is an automated pipeline that tackles the problem of reliable meta-

zoan mitochondrial genome annotation, using state of the art methods. Protein

coding genes are annotated by means of a sophisticated aggregation procedure

based on BLAST searches, which allows for the detection of frameshifts, duplica-

tion events, and split genes. Structural conservation is utilised for non-coding

RNA annotation by employing novel covariance models. MITOS allows for a

systematic error screening, the standardisation of gene name and gene bound-

ary designation, anticodon labelling of tRNAs, and provides the means for the

assessment of the validity of a gene assignment. Using MITOS for de novo an-

notation yields high-quality data for a variety of subsequent analyses, such as

genome rearrangement studies and phylogenetic analyses.
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thèse CT-08-10); doctoral fellowship of the German Academic Exchange Ser-

vice (DAAD D/10/43622); bridge scholarship of the Collège Doctoral Européen
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