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Abstract. We study the voter model, under node and link update, and the related

invasion process on a single strongly connected component of a directed network. We

implement an analytical treatment in the thermodynamic limit using the heterogeneous

mean field assumption. From the dynamical rules at the microscopic level, we

find the equations for the evolution of the relative densities of nodes in a given

state on heterogeneous networks with arbitrary degree distribution and degree-degree

correlations. We prove that conserved quantities as weighted linear superpositions of

spin states exist for all three processes and, for uncorrelated directed networks, we

derive their specific expressions. We also discuss the time evolution of the relative

densities that decay exponentially to a homogeneous stationary value given by the

conserved quantity. The conservation laws obtained in the thermodynamic limit for

a system that does not order in that limit determine the probabilities of reaching

the absorbing state for a finite system. The contribution of each degree class to the

conserved quantity is determined by a local property. Depending on the dynamics,

the highest contribution is associated to influential nodes reaching a large number

of outgoing neighbors, not too influenceable ones with a low number of incoming

connections, or both at the same time.
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1. Introduction

Conservation laws are intimately related to symmetries in the systems they hold

for. They play an important role in the characterization and classification of

different nonequilibrium processes of ordering dynamics. For example, in Kinetic Ising

models one distinguishes between Glauber (spin flip) and Kawasaki (spin exchange)

dynamics. Kawasaki dynamics fulfils a microscopic conservation law, such that the total

magnetization is conserved in each individual dynamical step of a stochastic realization.

This conservation law does not hold for Glauber As a consequence, the Glauber and

Kawasaki dynamics give rise to different scaling laws for domain growth in coarsening

processes [1], and they define different nonequilibrium universality classes.

In other types of nonequilibrium lattice models non-microscopic conservation laws

are known to hold. They are statistical conservation laws in which the conserved

quantity is an ensemble average defined over different realizations of the stochastic

dynamics for the same distribution of initial conditions. Examples of such conservation

laws occur for the voter model [2, 3] or the invasion process [4]. In particular, the role

of the conservation law of the magnetization and of the Z2 symmetry (1 states) in the

voter dynamics universality class has been studied in detail in the critical dimension d =

2 of regular lattices [5]. The voter model is a paradigmatic model of consensus dynamics

in the social context [6, 7] or, in the biological context, of competition of plant species

in ecological communities [8]. In general, any Markov chain with at least two absorbing

states reachable from all other configurations has a conserved quantity when averaged

over the ensemble. Such a quantity determines the probability to eventually reach a

particular absorbing configuration in a finite system. In some cases, this conservation

law is of rather trivial nature as in the zero temperature Ising Glauber dynamics where

the magnetization sign is conserved. The voter model, the zero temperature Ising

Glauber dynamics, and other related models of language evolution [9] or population

dynamics [10], belong to the class of models with two absorbing states while epidemic

spreading dynamics, like the contact process [11] or the Susceptible-Infected-Susceptible

model [12], usually have a single absorbing state with no conservation law.

While some of these questions have been studied for spin lattice models for a long

time, conservation laws for dynamical processes on complex networks [13, 14, 15, 16]

still remain a challenge. This issue has been considered for the voter model [2, 3]

or the invasion process [4] on undirected uncorrelated networks [17, 18, 19, 20, 21].

The link-update dynamics for the voter model has been found to conserve the global

magnetization [22], while the node update dynamics [22] and the invasion process [20]

preserve a weighted global magnetization where the contribution of each spin is

calibrated by some function of the degree of the corresponding node in the undirected

network. Such ensemble average conservation laws characterize processes with two

absorbing states accessible to the dynamics, that compete to maintain an active state

in the thermodynamic limit. In finite networks, the conserved quantities give the

probabilities of reaching the uniform states and so act as a bridge that enables some
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probabilistic predictive power of the final dynamical state based on information about

the initial conditions. In addition, different finite size dynamical scaling properties can

be related to different conservation laws [22].

Much less has been done exploring dynamical processes on directed networks,

with the exception of the Ising model [23] and Boolean dynamics mainly applied

to biological problems [24]. However, interactions between pairs of elements are

asymmetric in different systems including some social networks [25], where social ties are

perceived or implemented differently by the two individuals forming the connected pairs.

Directed network representations rather than undirected ones become more informative

and adjusted to reality. In general, directed networks present characteristic large-

scale connectivity structures, the so-called bow-tie architecture formed by a strongly

connected component as a core structure and peripheral in- and out-components [26].

This organization, coupled to the initial condition of the dynamics running on top, have

an impact both on the evolution of the processes and the final possible states of the

systems [27, 28, 29]. In the voter model, leaf nodes in the in-component never change

their state thus sending an invariable signal that can potentially propagate to the rest of

the components of the system. This is closely related to phenomena such as the presence

of zealots [30, 31] in undirected networks. Both input or output directional large-scale

components and zealotry imply at the end an external forcing on the dynamical processes

that prevents reaching one of the absorbing states even for a finite network. This is

clearly illustrated by the evolution of dynamical processes running on networks at the

transition from a pure strongly connected component to a complete bow-tie structure.

In an isolated and strongly connected component, the voter dynamics keeps an active

dynamical state in the thermodynamic limit, but it leads to a consensus (absorbing

state) in a finite network as it happens on undirected networks. Thus, the appearance

of an input component in the large-scale structure of the network prevents the system

from reaching an absorbing state for random initial conditions [28].

In this paper, we focus on dynamics of coupled two-state spin variables and

consider conserved quantities that are weighted sums of the spin values. Specifically,

we investigate the form of the conservation law for the voter model — under node

and link update — and the invasion process in directed networks with arbitrary degree

distribution and degree-degree correlations, and otherwise maximally random. The

directionality of the interactions is therefore encoded in the topology. We restrict to

a single strongly connected component so that the absorbing state can be reached in

a finite system, what seems realistic for a number of densely connected real networks

like the world trade web [32]. In Sec. II, we present a detailed study of the node

update version of the voter model and implement an analytical treatment using the

heterogeneous mean field assumption in the thermodynamic limit. From the dynamical

rules at the microscopic level, we find the equations for the evolution of the relative

densities of nodes in one of the two possible states on heterogeneous networks with

arbitrary degree distribution and degree-degree correlations. In this case, we prove

that a conserved quantity as a weighted linear superposition of spin states exists. In
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Sec. III, we discuss the node-update voter model in uncorrelated directed networks to

derive analytical expression for the conservation law and we also discuss the exponential

decay of the relative densities to their homogeneous stationary value, which is basically

a function of the conserved quantity. We show how the conserved quantity determines

the probability of reaching one of the two states in a finite network. In Sec. IV and V,

we present the results of applying the same methodology to the voter model with link

update and the invasion process, respectively. We conclude in Sec. VI with a summary

of results and open questions for future research.

2. The voter model on strongly connected components

In the voter model under node update (VM), each node of a network can exist in one of

two possible states, 1 or 0 ‡. In a single dynamical event, a randomly selected node copies

the state of one of its neighbors, also selected at random. The link update dynamics

of the Voter model selects instead a link [22]. Time is increased by 1/N , so that the

physical time is incremented by 1 after N of such events. On undirected networks, the

node-update voter model conserves the ensemble average of a weighted magnetization,

where the contribution of each spin is multiplied by the degree of the corresponding

node.

As defined above, the interactions in the voter dynamics are instantaneously

asymmetric since the updates always go in the same direction once the original node is

chosen independently of the undirectionality of the substrate. Hence, the discussion of

the voter model on directed networks comes out as a natural one, where the directionality

of the interaction is decoupled from the dynamics and encoded in the structure of the

substrate. The straightforward generalization of the voter model on directed networks

under node update consists of selecting a node at random, and then assigning to it

the state of one of its incoming neighbors, also chosen at random. We will discuss this

dynamics next in this section and Sec. III, and the voter model with link update will

be discussed later in Sec. IV.

2.1. Directed networks

The topological structure of directed networks is more complex than the one of

undirected graphs. In purely directed networks, without bidirectional links, the edges

are differentiated into incoming and outgoing, so that each vertex has two coexisting

degrees kin and kout, with total degree k = kin + kout. Hence, the degree distribution

for a directed network is a joint degree distribution P (kin, kout) ≡ P (k) of in- and out-

degrees that in general may be correlated. We consider degree correlations Pin(k′|k)

and Pout(k
′|k), which respectively measure the probability to reach a vertex of degree

‡ We us this values s = 1, 0 in order to simplify computations instead of the usual spin notation σ = ±1.

There is a direct mapping between both schemes σ = 2s−1, and therefore for all the properties defined

as a function of the states. For instance, the total magnetization m in the {±1} scheme is related to

the total magnetization m′ in the {0, 1} scheme through m = 2m′ − 1.
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k′ leaving from a vertex of degree k using an incoming or outgoing edge of the source

vertex, and are related through the following degree detailed balance condition [33]

koutP (k)Pout(k
′|k) = k′

inP (k′)Pin(k|k′). (1)

This ensures that the network is closed and
〈

kin
〉

= 〈kout〉. Apart from the prescribed

degrees and two point correlations, networks are maximally random.

At the macroscopic scale, the giant weakly connected component, i.e., the set of

nodes that can communicate to each other when considering the links as undirected

[34, 35, 36, 37, 38], becomes internally structured in three giant connected components,

as well as other secondary structures such as tubes or tendrils, forming a bow-tie

architecture [26]. The main component is the strongly connected component (SCC), a

central core formed by the set of vertices that can be reached from each other following

a directed path. The other two main components are peripheral components, the in

component (IN) formed by all vertices from which the SCC is reachable by a directed

path but that cannot be reached from there, and the out component (OUT) formed by

all vertices that are reachable from the SCC by a directed path but cannot reach the

SCC themselves. Percolation theory for purely directed networks was first developed for

uncorrelated networks [37, 38, 39, 40, 41], and directed random networks with arbitrary

two point degree correlations and bidirectional edges [33].

We restrict to networks forming a strongly connected component without peripheral

components that would act on the SCC as sources of external forcing. We will see

that within the strongly connected component, conservation laws preserve weighted

magnetizations, where the weights are dictated by the directed degrees.

2.2. From microscopic dynamics to the drift equation under the heterogeneous mean

field assumption

In this section, we first describe the voter model as a stochastic process on the

microscopic level of single nodes. Then we derive a macroscopic description by coupled

Langevin equations capturing the stochasticity in the drift terms. Each equation is for

the expected state averaged over the subset of nodes having the same in- and out-degrees.

This so-called heterogeneous mean field approach allows us to deal with dynamical

processes on complex networks. It is based on two assumptions: i) all nodes in the same

degree class are statistically equivalent, that is, nodes with different degrees have to be

treated as intrinsically different (the “heterogeneous” part of the assumption); ii) and

any stochastic variable associated to the dynamics of a node belonging to a certain degree

class is described by the average over the class (the “mean field” part of the assumption).

Notice that the “heterogeneous” approximation may not be completely true for single

network realizations as two nodes with the same degree can have different environments.

However, when random network ensembles are considered instead of single realizations,

the averaging over network realizations ensures that all nodes within the same degree

class are statistically equivalent. To our knowledge, the heterogeneous mean field was
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first presented in Refs. [42, 43] and recently used to study the contact process [11].

In [21, 44], a homogeneous mean field pair approximation was instead developed.

We focus on the microscopic state of nodes at some time t. Let su(t), u = 1, ..., N ,

be a stochastic binary variable defined for each of the N nodes in the network which

describes its state, 0 or 1. The vector s(t) ≡ {su(t)}, u = 1, . . . , N , completely defines

the dynamical state of the system at time t. Two more independent binary stochastic

variables µu(dt) and ξu are defined in order to model the transitions between states of

single nodes in an iteration. After a time interval dt, the variable µu(dt) for a given node

u takes the value 1 or 0 if u was chosen or not, respectively. In case node u was selected,

then ξu assumes the value 1 [0] if u copies a neighbor with state 1 [0]. We assume that

the occurrence of events in the voter dynamics follows an independent Poisson process

for each node, with constant rate λ for all of them, which corresponds to a Montecarlo

step. In the remainder we be set to λ = 1 without loss of generality. Thus, µu(dt) and

ξu have probability distributions

P (µu(dt)) = dtδµu(dt),1 + (1 − dt)δµu(dt),0, (2)

P (ξu) = Φu/ku,inδξu,1 + (1 − Φu/ku,in)δξu,0, (3)

where k
u,in is the incoming degree of node u, and we have defined Φu(t) =

∑

v avusv(t).

The adjacency matrix {avu} encodes the topological properties of the directed network.

Element avu has value one if there is a directed link from v to u and zero otherwise,

so that Φu(t) stands for the number of state-one incoming neighbors of node u at time

t. The matrix {avu} is symmetric for undirected networks but for directed ones it is in

general asymmetric.

In terms of the above variables, the dynamical state su(t) of node u after an

increment of time dt is

su(t + dt) = µu(dt)ξu + (1 − µu(dt))su(t). (4)

This equation, together with Eqs. (2) and (3), gives the complete description of the

evolution of the system, making the formalism general and applicable to any network

structure.

Although exact, this microscopic description is unmanageable. In order to reduce

the degrees of freedom, we apply a heterogeneous mean field approach [12] so that nodes

with the same degree k are assumed to be statistically independent and equivalent and

can be aggregated in the same degree class Υ(k) ≡ Υ(kin, kout). At this point, we have

restricted to directed networks organized at the large scale into a SCC without IN and

OUT. Properties are then defined for each degree class, that will be characterized by

the relative density mk(t), the ratio between the number of state-one nodes within class

Υ(k) and its number of nodes Nk,

mk(t) =

∑

uǫΥ(k) su(t)

Nk

. (5)

In the thermodynamic limit, the relative densities mk(t) can be considered as continuous

variables. Their time evolution can be described by a Langevin equation [45] with drift
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and diffusion coefficients that are respectively given by the first and second infinitesimal

moments of the stochastic variables mk(t). Those moments can be derived from the

microscopic equation Eq. (4) along with the definition in Eq. (5). In the thermodynamic

limit, it is possible to prove that the diffusion term has a dependence 1/
√

Nk on the

system size as for undirected networks [21], so that the drift term Ak will dominate. It

is given by the average value over all possible configurations of mk(t + dt) conditioned

to the state of the system at time t,

〈mk(t + dt)〉mk(t) = mk(t) + Ak(t)dt. (6)

From the microscopic dynamics

〈su(t + dt)〉
s(t) = su(t) − dt

[

su(t) − Φu(t)/ku,in

]

, (7)

and summing this equation for all nodes in the degree class k and dividing by the number

of nodes Nk, we arrive at

〈mk(t + dt)〉mk(t) = mk(t) − dt



mk(t) −
1

Nk

1

kin

∑

uǫΥ(k)

Φu(t)



 , (8)

and from here to

Ak(t) = −mk(t) +
1

Nk

1

kin

∑

uǫΥ(k)

Φu(t). (9)

The adjacency matrix contained in Φu(t) can be coarse-grained as well, so that a

differential equation for the relative densities can eventually be written. This coarse-

graining restricts the validity of the equations to random complex networks (and

not lattices), since we assume all nodes in the same degree class to be statistically

independent and equivalent. With these assumptions,
∑

uǫΥ(k)

Φu(t) =
∑

k′

∑

vǫΥ(k′)

∑

uǫΥ(k)

avusv(t)

=
∑

k′

Ek′kmk′(t), (10)

where Ek′k is the number of connections from the class of vertices of degree k′ to

the class of vertices of degree k. The generally asymmetric matrix E is the coarse-

grained adjancency matrix, giving weighted connections between degree classes rather

than between single nodes. With the detailed balance condition of Eq. (1), we obtain

Ek′k = k′

outPout(k|k′)Nk′ = kinPin(k′|k)Nk . (11)

Inserting these results into Eq. (9), we arrive at the equation for the evolution

of the relative density in the degree class k of a purely directed correlated network

(disregarding diffusion terms),

dmk(t)

dt
= −mk(t) +

∑

k′

Pin(k′|k)mk′(t). (12)

Let us recall that this result is valid for the ensemble of networks defined by the degree

distribution P (k) and the degree correlations Pin(k′|k) and Pout(k
′|k), but otherwise
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maximally random. Notice that big enough networks present good statistical quality

at the level of degree classes and are also well described by this equation. Finally,

in the thermodynamic limit, the Langevin equation loses its noise term because of

the dependence on the system size and reduces to Eq. (12), so that mk(t) becomes a

deterministic variable. Nevertheless, since the process is linear, Eq. (12) is always valid

even for finite systems understanding that in this case the variables are averages over

realizations of the process with the same distribution of initial conditions.

2.3. Conserved quantity on directed networks with degree-degree correlations

For correlated networks, mk(t) =
∑

k′ Pin(k′|k)mk′(t) in the stationary state. This

equation corresponds indeed to an eigenvector problem, since {mk(t)} can be thought

as the eigenvector of the matrix {Pin(k′|k)} with eigenvalue one. By normalization of

the conditional probability, a solution is the uniform vector mk(t) = m ∀k.

We prove next that, within the heterogeneous mean field approach and for the

correlated directed networks we are considering, there is a conserved quantity given as a

linear superposition of the form ω =
∑

k
ϕkmk(t). From Eq. (12), its evolution is given

by

dω

dt
= −ω +

∑

k

∑

k′

ϕkPin(k′|k)mk′(t), (13)

and imposing that dω/dt = 0, we obtain
∑

k

ϕkmk(t) =
∑

k

∑

k′

Pin(k|k′)ϕk′mk(t). (14)

For each density

ϕk =
∑

k′

Pin(k|k′)ϕk′. (15)

This is an eigenvector equation that has a solution if the matrix {Pin(k|k′)} has an

eigenvalue equal to one with {ϕk} the corresponding eigenvector. One can prove that

this eigenvector with eigenvalue one exists by summing both sides of the previous

equation over k. Using the normalization of the conditional probability
∑

k
Pin(k|k′) =

1, one eventually arrives to a trivial identity. The fact that the coefficients ϕk that

modulate the contributions of the different mk to the conserved weighted magnetization

correspond to the entries of the eigenvector of a certain characteristic matrix with

eigenvalue one also applies to other similar dynamical processes, such as the link

dynamics and the invasion process, as we will show.

This proves that a conserved quantity of the form of a linear functional exists but,

in general, it is not possible to derive its value without further specifying the form of

the degree-degree correlations in the network.

In fact, a conserved quantity as a linear functional ω =
∑

u cusu exists for any

directed network. To see this, we note that the stationarity of ω is equivalent to

0 =
∑

u

cuṡu =
∑

u

cu

∑

v

avu(sv − su) (16)
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where the expression for the time derivative of the states ṡu is obtained from Eq. (4).

For the quantity ω to be stationary under all choices of state vectors, the vector (cu)

must be a left eigenvector for eigenvalue zero of the Laplacian matrix L defined by

Luv = δvuku,in − avu . (17)

Since each row of L sums to zero, the columns of L are linearly dependent and zero is

an eigenvalue of L. Thus a non-trivial coefficient vector (cu) for the conserved quantity

ω can be found for any network by solving the eigenvector problem for L.

In general, each entry of an eigenvector depends on the whole matrix, i.e. on all

details of the network structure. Thus the coefficients (cu) cannot be computed from

local information only. The restriction to uncorrelated networks in the following sections

enables us to identify the major contribution resulting from local structure and express

the coefficients in terms of node degrees.

3. Voter model on uncorrelated SCCs

When two-point correlations are absent, the transition probabilities become independent

of the degree of the source vertex. In this situation,

Pout(k
′|k) =

k′

inP (k′)

〈kin〉
, Pin(k′|k) =

k′

outP (k′)

〈kin〉
, (18)

and using these expressions, Eq. (12) becomes

dmk(t)

dt
= −mk(t) + ωout, (19)

where we have defined

ωout =
1

〈

kin
〉

∑

k

koutP (k)mk(t). (20)

Therefore, in the stationary state mk = ωout ∀k. Indeed, as mentioned above, in the

stationary state of correlated networks mk = m ∀k and then mk = ωout = m ∀k also

holds in the presence of correlations.

Also from Eq. (19), it is easy to see that ωout is a conserved quantity in uncorrelated

networks. However, in general it is not preserved when degree-degree correlations are

present. This is in contrast to undirected networks, where the conserved quantity

ω = (
∑

k kP (k)mk(t)) /〈k〉 is preserved even in the correlated case and indeed for any

structure [22]. Going back to the uncorrelated case, notice that the out-degree is the

quantity that weights the contribution of the nodes to the conserved quantity. From a

local perspective, what seems therefore important in the VM is to be able to influence

a large number of partners

In uncorrelated networks, the convergence of the state-one relative densities to their

stationary value can be easily computed. From Eq. (19), taking into account that ωout
is a conserved quantity and for a given initial condition mk(0), it is straightforward to

arrive to the solution

mk(t) = ωout + (mk(0) − ωout) e−t, (21)
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where we have substituted
〈

kin
〉

by 〈kout〉. Thus, all the densities decay exponentially

fast to the stationary value mst
k

= ωout and the relaxation time is for all of them equal

and independent of the degrees.

In the thermodynamic limit, the partially ordered stationary state is stable, while

finite-size fluctuations eventually bring the system to one of the two possible unanimity

states. The probability P1 that the system ends up with all nodes in state one

(mk = 1, ∀k) is given by the initial condition, that fixes the value of the conserved

quantity at the beginning of the process. To see this, one takes into account that ωout
is an ensemble average conserved quantity of the form in Eq. (20), from which

P1 = ωout . (22)

This is in agreement with the fact that, in general, the Markov property of a stochastic

process, if present, trivially ensures that the exit probability is a conserved quantity

corresponding to a time-translation invariance. If the process has one absorbing state,

the exit probability has a constant value one but, if the process has two or more absorbing

barriers, the probability of reaching one of those is not trivial any more.

It is also interesting to investigate what happens to the quantity υi(t) =
(
∑

k
kinP (k)mk(t)

)

/〈kin〉, which involves in-degree instead of out-degree. In the

uncorrelated case, and disregarding fluctuations, υi(t) = (υi(0)− ωout)e
−t + ωout, that

is, in general υi decays exponentially fast to ωout. The quantity υi(0) depends on the

initial condition. If this is homogeneous over degree classes, then υi(0) = ωout and υi(t)

remains constant.

In order to check the convergence of the sate one relative densities to the conserved

quantity, we have run numerical simulations of the voter model dynamics on a random

uncorrelated network of size N = 105, scale-free in-degree distribution with exponent 2.5

and exponential out-degree distribution. To obtain an initial state that is inhomogeneous

in the densities mk, we have chosen an initial configuration in which half of the nodes

with the lowest out-degree have state zero, and the other half have state one. In this

way, initial densities mk(0) in classes with kout lower than 4 were small or zero, while

densities in classes with kout larger than 4 were one.

In Fig. 1, we plot the average of the conserved quantity ωout and the densities

for classes k = (kin, kout) = (2, 1), (4, 3) and (3, 9) vs time, over 100 independent

realizations starting from the same initial condition as mentioned above. As predicted

by the theory, we observe that 〈ωout〉 stays constant over time, whereas the three

densities converge to the average of the stationary value mst
k
, in a time of order 10. We

note that, apart from finite size fluctuations, the convergence of the densities to mst
k

happens for every realization. This can be seen in Fig. 2, where we show the evolution

of m(2,1) and m(3,9) vs ωout in a single run. After a short transient, the densities and the

conserved quantity start to evolve in a coupled manner (except from small deviations

around the mk = ωout line), they fluctuate from 0 to 1 until they reach the homogeneous

zero-state. We also observe that fluctuations in m(3,9) are larger than in m(2,1), given

that degree distribution make the number of nodes in class (2, 1) larger than in class
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Figure 1. Time evolution of the conserved quantity ωout (circles) and the densities

of state-one nodes mk in degree classes k = (kin, kout) = (2, 1) (squares), (4, 3)

(diamonds) and (3, 9) (triangles), for the voter model dynamics. Curves correspond to

averages over 100 realizations on a single random uncorrelated network with N = 105

nodes, scale-free in-degree distribution with exponent 2.5 and exponential out-degree

distribution. While 〈ωout〉 remains roughly constant over time, the densities quickly

decay to the stationary value 〈ωout〉. The inset shows that the ratio between the

densities of state-one nodes (same degree classes as in the main graph) and the

conserved quantity is close to one during the entire evolution.
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Figure 2. Densities of state-one nodes m(2,1) and m(3,9) vs ωout in a single realization

of the voter model dynamics on the same network of Fig. 1. The trajectories of classes

(2, 1) and (3, 9) start at the positions (0.8, 0) and (0.8, 1.0) respectively, then they

quickly hit and move along the diagonal mk = ωout, until they reach the zero-state

consensus point m(2,1) = m(3,9) = 0.

(3, 9).
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4. Voter model with link update

The same assumptions and procedures apply to the link-update voter model and the

invasion process. The link update (LU) dynamics selects first a directed connection, so

that the node at the tail will always transmit its state to the neighbor at the head.

The microscopic dynamics of the link-update voter model is described by

su(t + dt) = µu(dt)ξu + (1 − µu(dt))su(t), (23)

where as for the voter dynamics ξu is given by Eq. (3) and the binary variable µu(dt)

for the selection of a link has a probability distribution

P (µu(dt)) = k
u,indtδµu(dt),1 + (1 − k

u,indt)δµu(dt),0. (24)

A factor λ/(N
〈

kin
〉

) has been reabsorbed in the definition of dt. Proceeding as for the

voter model (we skip the details), we arrive at the equation for the evolution of the

relative densities mk for the different degree classes,

dmk(t)

dt
= −kinmk(t) + kin

∑

k′

Pin(k′|k)mk′(t). (25)

Regarding the stationary state, the same result as for the voter model is found. The

state-one relative densities behave again as mk(t) =
∑

k′ Pin(k′|k)mk′(t), and by

normalization of the conditional probability a solution is the uniform vector mk(t) =

m ∀k. We can once again prove, within the heterogeneous mean field approach and

for correlated strongly connected components, that a conserved quantity of the form

ω =
∑

k
ϕkmk(t) exists and is defined by the eigenvector problem

ϕ̃k =
∑

k′

Pin(k|k′)ϕ̃k′, (26)

where now ϕ̃k = kinϕk. In general, it is not possible to derive these coefficients without

further specifying the form of degree-degree correlations in the network.

When two-point correlations are absent,

dmk(t)

dt
= −kinmk(t) + kinωout(t). (27)

In the stationary state, mk = ωout(t) ∀k, but ωout(t) is not a conserved quantity for

the link update process as it was for the voter model. Instead, the conserved quantity

is

ωoi =

〈

kout
kin

mk(t)

〉

/

〈

kout
kin

〉

=
∑

k

kout
kin

P (k)mk(t)/〈
kout
kin

〉, (28)

which follows from Eq. (27). Compare this expression with that for the total

magnetization in uncorrelated undirected networks w = ω = (
∑

k P (k)mk(t)) /〈k〉 which

corresponds to the conserved quantity for those structures [22]. The dependence of the

conserved weighted magnetization on the ratio between out- and in-degree for directed
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Table 1. Conserved quantities for voter-like models in strongly connected components

of directed networks. 1st column, existence of conserved quantity for correlated

networks; 2nd column, conserved quantity for uncorrelated networks; 3rd column,

stationary values for the relative densities; 4th column, density decay.

ωcorr ωunc mst
k

mk

VM ∃ ωout = 1
〈kout〉

P

k
koutP (k)mk(t) ωout mst

k
+ (mk(0) − mst

k
)e−t

LU ∃ ωoi = 1
〈kout/kin〉

P

k

kout
kin

P (k)mk(t) ωoi mst
k

+ (mk(0) − mst
k

)e
−kint

IP ∃ ωin = 1
〈1/kin〉

P

k

1
kin

P (k)mk(t) ωin mst
k

+ (mk(0) − mst
k

)e
−

kin
D

kin
E t

networks highlights the fact that in LU it is important to have both a high out-degree to

be influential and at the same time to have a low in-degree not to be too influenceable.

Notice that the ratio of the directed degrees is well defined since we are assuming

that the network is organized at the macroscopic scale into a SCC without peripheral

components all nodes having at least one incoming and one outgoing link. Finally, in

finite systems the probability of the state-one absorbing state is given by the conserved

quantity, P1 = ωoi, and so fixed by the initial condition.

The derivation of how the state-one relative densities converge to their stationary

value in uncorrelated networks is more intricate than for the voter model, but we can

make use of a quasi-stationary approximation [45] in order to solve Eq. (27), exploiting

the fact that ωoi is the conserved quantity. In the stationary state ωout = ωoi, and we

approximate the equation by

dmk(t)

dt
= −kinmk(t) + kinωoi. (29)

For a given initial condition mk(0), the solution is

mk(t) = ωoi(mk(0) − ωoi)e
−kint

. (30)

As in the voter model, all the densities decay exponentially fast to the stationary value

ωoi, but in contrast not all the densities decay with the same velocity, which depends on

the in-degree. Higher in-degree classes have smaller relaxation times and decay faster

than lower ones, but the transient is always faster as compared to the VM.

5. Invasion process

The invasion process (IP) picks nodes at random that export their state to a randomly

chosen outgoing neighbor. A certain node u will update its state in a passive form

only when one of its incoming neighbors v is selected as the first node in one iteration

of the dynamics and then v chooses u among all its outgoing neighbors to transmit

it its state. In this situation, it is more convenient to work with the probability of

node u undergoing a state update with final state 1, ξ
(1)
u , and the probability of node u
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undergoing a state update with final state 0, ξ
(0)
u . The probability distributions of these

dichotomic stochastic variables are

P (ξ(1)
u ) = Φ1

udtδ
ξ
(1)
u ,1

+ (1 − Φ1
udt)δ

ξ
(1)
u ,0

, (31)

P (ξ(0)
u ) = Φ0

udtδ
ξ
(0)
u ,1

+ (1 − Φ0
udt)δ

ξ
(0)
u ,0

, (32)

with

Φ1
u(t) =

∑

v

avusv(t)/kv,out, (33)

Φ0
u(t) =

∑

v

avu(1 − sv(t))/kv,out (34)

and the parameter λ of the Poisson process for the happening of events reabsorbed in

dt. Using these expressions, the dynamics is described at the microscopic scale by

su(t + dt) = ξ(1)
u (dt)(1 − ξ(0)

u (dt))

+ (1 − ξ(1)
u (dt))(1 − ξ(0)

u (dt))su(t). (35)

Following the same methodology as for the voter model, the drift equations for the

relative densities in the different degree classes read

dmk(t)

dt
= kin

∑

k′

1

k′

out
Pin(k′|k)(mk′(t) − mk(t)). (36)

The existence of a conserved quantity ω =
∑

k
ϕkmk(t) in the correlated case is governed

by the eigenvalue problem

ϕ̃k =
∑

k′

Pin(k|k′)/kout
∑

k′′ Pin(k′′|k′)/k′′

out
ϕ̃k′ , (37)

where ϕ̃k = ϕkkin
∑

k′′ Pin(k′′|k)/k′′

out. Summing both sides of this equation over k,

one arrives once more to a trivial identity and so a conserved quantity exists in general

on networks with degree-degree correlations. As we see next, we can be more specific

on uncorrelated networks, for which Eq. (36) reduces to

dmk(t)

dt
=

kin
〈

kin
〉(m(t) − mk(t)), (38)

where m(t) =
∑

k
P (k)mk(t) is the total density of state-one nodes in the network.

In the stationary state, mk(t) = m(t) ∀k, but here m(t) is not a conserved quantity

for the IP in uncorrelated directed networks. Instead, the conserved quantity is

ωin(t) =

〈

mk(t)

kin

〉

/

〈

1

kin

〉

=
∑

k

1

kin
P (k)mk(t)/

〈

1

kin

〉

. (39)

In finite systems, the probability of the state-one absorbing state is given by this

conserved quantity, P1 = ωin, and is therefore fixed by the initial condition. The

dependence of the weights on the inverse of the in degree implies that those nodes
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with low in-degree, so less influenceable, have the highest contribution and control the

process. This dependence on the in degree is analogous to the dependence on the degree

of the conserved quantity w = ω = (
∑

k 1/kP (k)mk(t)) /〈k〉 in uncorrelated undirected

networks [20].

After a transient, m(t) reaches the value ωin, so that the stationary values of the

relative densities are mk(t) = ωin ∀k. This result tells us that all the densities become

independent of k and reach the same stationary value, as in the previous processes.

The derivation of how the state-one relative densities converge to their stationary

value in uncorrelated networks is more intricate than for the voter model, but like for

the link update we can make use of a quasi-stationary approximation [45] in order to

solve Eq. (38). Substituting into Eq. (38) that in the stationary state m(t) = ωin,

dmk(t)

dt
=

kin
〈

kin
〉

(

ωin − mk(t)
)

. (40)

For a given initial condition mk(0), the solution is

mk(t) = ωin +
(

mk(0) − ωin
)

e
−

kin
fi

kin
fl t

. (41)

All the densities decay exponentially to the stationary value ωin. Higher in-degree

classes decay faster than lower ones with a relaxation time that is proportional to the

inverse of the in-degree, as is the case for LU. Due to the average degree in the relaxation

time, however, transients are generally slower in the IP than in the LU. When compared

with the VM, the IP dynamics exhibits a slower transient for degree classes with in-

degree below average while those with in-degree above the average converge faster to

the stationary state.

6. Conclusions

We have introduced an analytical formalism from microscopic dynamics to show that

three different nonequilibrium dynamical models with two-absorbing states running

on strongly connected components of directed networks with heterogeneous degrees

and degree-degree correlations have associated ensemble average conservation laws.

These conservation laws have been fully determined when degree-degree correlations are

absent. The existence of ensemble average conservation laws is a general characteristic

of Markov processes with two or more absorbing states.

Let us briefly discuss the validity and underlying assumptions of the conservation

laws. For a stochastic process, existence of a quantity that is conserved in every single

realization would require the state transition graph to be disconnected into components

that are not mutually accessible. Then a non-trivial conserved quantity would be

constant on a given component and vary across components. The voter-like models

studied here, however, have weakly connected state transition graphs. For any pair of

configurations (a, b), there is a trajectory of positive probability either from a to b or
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from b to a. Thus any quantity can be conserved only in an ensemble, i.e. as an average

over the statistical distribution of trajectories starting from the same initial condition.

The constraints imposed on the dynamics by the conservation laws lead to

interesting and nontrivial behavior. From a practical point of view, they are related

to the stationary values and the characteristic relaxation times of the relative densities

of nodes in state one in each degree class and, in finite systems, gives the probabilities of

reaching the two possible absorbing states. In this sense, the conservation laws obtained

in the thermodynamic limit for a system that does not order in that limit (i.e. does

not reach the absorbing state) determine the probabilities of reaching each absorbing

state for a finite system. The contribution of each node to he conserved global weighted

magnetization is always a specific function of the directed degrees. In the case of the

VM, the out-degree is the weight that controls the importance of the node as a measure

of its influence, while in the IP it is the inverse of the in-degree, and in the LU it is the

ratio between out and in-degree. In all cases, the conserved quantities are determined

by local properties that encode the importance of each node in the network. Depending

on the dynamics, what seems important from a local perspective is to be influential

reaching a large number of neighbors, or not to be too influenceable, with a low number

of incoming connections, or both at the same time.

From a broad perspective, these studies help in the understanding of how the rich

structure of real systems affects the dynamical processes that run on top. However,

many questions still remain unsolved. In which specific way do degree correlations alter

the results for uncorrelated networks? How is the diffusive fluctuations regime in SCCs

of finite directed networks? Is the finite size scaling of consensus times the same as in

undirected networks? On the other hand, it seems realistic to restrict to SCCs for a

number of densely connected systems, like for instance the world trade web [32], but in

sparse directed networks the whole structure of core and peripheral components should

be taken into account. Numerical simulations in some specific model networks [28] show

that the appearance of an input component seems to prevent the system, even if finite,

from reaching an absorbing state for specific initial conditions. How does the complete

structure of a directed network couples to the initial conditions of the dynamics to

induce the presence of zealots and how do they affect in quantitative terms the behavior

of the whole system still needs further research.

During the final completion of this work, we became aware of recent work [46]

discussing the fixation probabilities of mutants for Voter-like dynamics on directed

networks. Since there exists a direct relation between fixation probabilities of mutants

and exit probabilities, and so conserved quantities, some of the results derived in

that paper –without reference to conservation laws- concerning the dependence on the

directed degrees are in correspondence to some of our results on uncorrelated strongly

connected components.
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[8] Jérôme Chave. Spatial patterns and persistence of woody plant species in ecological communities.

The American Naturalist, 157:51–65, 2001.
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