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Abstract

Most non-coding RNAs are short gliod poorly conserved in sequence. Most of the longer examplethermore,
consist of a collection of conserved structural motifs eathat a coherent globally conserved secondary strucisre.

a consequence, the conceptually simple problem of homaegsch becomes a complex and technically demanding
task. Despite the besfterts of databases suchmgan, the situation is complicated further by the sparsity obmfa-

tion on many — in particular prokaryotic — RNA families. Inishcontribution we review recentferts to customize
sequence-based search tools for ncRNA applications. licpkr semi-global alignments and the development of
methods for fragmented pattern search have brought signifigractical advances. Current developments in this
area focus on the integration of fragmented sequence paitarch with search algorithms for secondary structure
patterns. As one example, we introduce hiaregrep3.

1. Introduction 3. large mRNA-like ncRNAs.

This class contains many moderate-size non-
protein-coding transcripts that are spliced and
polyadenylated, giving rise to processed RNAs
with a size of several kb. In this class we include
also giant ncRNAs.

Non-coding RNAs are a very heterogeneous class of
transcripts. It may not come as a surprise, therefore,
that no single computational approach is suitable to deal
with all of the diverse types. In this contribution we
focus onhomology searchgiven a one or more known
representative sequences of a particular ncRNA the task
at hand is to identify all homologous sequences in an
un-annotated string of genomic DNA. For this particular
purpose it is convenient to classify ncRNAs into several
categories: The task of homology search can be subdivided into two

1. large ribosomal RNAs, i.e., the major components Phases. The first, and typically moreftiult, step is to
of the small and large RNA subunits of nuclear and l0calize the ncRNA gene in the genomic DNA. In the
organellar ribosomes. second — refinement — step, the exact structure of the

2. small housekeeping RNAs. ncRNA gene needs to be determined.
This class includes most of the classical ncCRNAS,
including tRNAs, 5S rRNA, snoRNAs, spliceoso- 1€ LSU and SSU rRNA of category (1) arefisu

mal RNAs, as well as many of the small bacterial ciently large and well-conserved even at kingdom level,
RNAS. ' so that their genomic locations are easily determined by

a simpleblast (1) search. Homology search of the ml-
Email addressesaxel@picb.ac.cn (Axel Mosig), NCRNAS in CaEQOry (3), .On the other hand, is largely
zhuliang@pich.ac.cn (Liang Zhu), uncharted territory. We will therefore focus here on the
studla@bioinf.uni-leipzig.de (Peter F. Stadler) small housekeeping RNAs.
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Figure 1: Conservation of the U7 sequence in four cladesdpetla, dominated by mammalian sequence, teleost fishesrskins, and
drosophilid flies. While significant conservation is obsehwith each of these, fairly narrow, groups, the consensesall four clades shows
multiple in/dels and very little conservation beyond two functionalusawes boxes: the histone binding motif and the Sm bindintif. rAalapted

from (2).
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for protein coding gene because of the much smaller g e S £ b: ‘e
size of the ncRNAs, which limits the query information. & &, & o I 3
The search for conserved protein-coding sequences is @  .@& .8 &' m' .
furthermore simplified by the large, informative amino- ¢ 5 305 F 5 =% 27 gt
acid alphabet. In contrast, theer letter information s & & ‘& m* e
content is quite limited in nucleic acid queries. Asa e» GO GC

Arthropoda Protostomia CONSENSUS Vertebrata &

consequence, nucleotide-baggadstn by default seed Drosophilidae  Neoptera cleetratag
words of 7 or more. The substantialdel rates in ncR-

NAs can make it impossible to meet this criterion.

Protein-coding information is localized in the three Figure 2: Comparison of the 5'stems of 7SK snRNAs. Conserved
regions are color-coded to indicate conservation: coeskfred), two

ba_lses of the codon, and StabI|IZ|ng s_,electlon at 'j‘he pro- and three compensatory mutations (ochre, green). Paleséotticate
tein level often acts to preserve contiguous peptide Mo- that a base-pair cannot be formed by all the sequences. Leaser
tifs (e.g. those specified asosite patterns (3)). The letters denote a deletion in some sequences. Corresporegjiogs of
need to maintain the reading frame furthermore severely the helices are highlighted by a gray background. Adapte {5).

restricts the distribution of jidels between homolo-

gous protein-coding sequences. Indeed, thgeindis- o
tribution can be used to distinguish coding from non- Séduence patterns. Instead, much of the stabilizing se-

coding regions in pairwise sequence alignments (4). A lection may act to preserve secqndary structure motifs,
search for locally similar translations, as implemented SUch as the tRNA clover leafs. Fig. 2 shows the 5 hair-

in tblastn andtblastx thus often works very well ~ Pins of metazoan 7SK RNA as an example.
for coding sequences. By definition, base-pairing patterns are non-local in
The evolutionary constraints on ncRNAs are quite the sequence. Therefore, they cannot be identified by

different. There is no need to maintain reading frames, Simple sequence-search techniques but require more so-

thus there are not strong restrictions on the distribution phisticated computational approaches — and more of-
of in/dels. Divergent sequences therefore do not neces-ten than not orders of magnitudes more in terms of com-

sarily contain gap-free substring offaient length to putational resources.

act as seeds farlast-like approaches. Figure 1 shows Beyond the information contained in the ncRNA it-

the conservation pattern of the U7 snRNA (2) as an ex- self, we can sometimes utilize additional sources of

ample. In many cases, there is little constraint on local constraint’s. Since many of the house-keeping ncR-
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NAs are pol-Ill transcripts, we may include additional both levels. For some RNA families such as telRNA
knowledge about the gene structure. For instance, the(see Figure 3), this leads to highly divergent sequence
poly-T terminator can help to distinguish spurious hits lengths, contributing to the fliculty of ncRNA homol-
from promising candidates. For snRNAs, we can ex- ogy search.

pect a particular promoter structure with well-conserved

promixal and distal sequence elements that can be in-4.1. Modeling Sequence Homology

cluded in the search patterns (6; 7). We shall returnto  As fragmentation of conserved regions is a common
this pointin the discussion of a few individual case stud- phenomenon in the evolution of ncRNA, basically all
ies. methods used for sequence-based homology search deal
with at least some degree of fragmentation. Basic local
alignment tools such aslast andssearch (16) are
limited to detecting individual blocks of conservation
in pairwise comparisons. As argued above, however,
the conserved regions tend to be too short and insignif-
icant to be aligned as proper matches. Correspond-
ingly, searching across longer phylogenetic timescales
requires homology search methods with a higher degree
of sensitivity. In the context of RNA homology search,
profile-based approaches such as Hidden Markov Mod-
els (HMMs) have been attributed higher sensitivity than
pairwise alignment based tools (17).

The log-odds scores typcially implemented in profile
HMMs capture homology within conserved regions in a
way that allows a much more sensitive search than sim-
ple regular expression. A shortcoming of HMMs in the

3. Query Data

Typically, a homology search project starts from a
collection of trusted, preferably experimentally vali-
datedseed sequencesThe most common source for
them is thekfam database (8), one of the family-specific
RNA databases such asrbase (9) for microRNAS,
snoRNABase (10) for small nucleolar RNAs, or one of
the specialized collections dealing with a single fam-
ily such as thecmRNAdb andSRPdb (11), or telomerase
RNA collection (12). For some RNA families, extensive
data sets covering broad phylogenetic ranges are avalil-
able. For less well-studied ncRNAs, however, the seed
sets of often sparse and very limited in their phyloge-

netic range. In the latter case, it can be very hard to de- S o
tect additional homologs, in particular to find homologs presence of frqgmentatlon IS Iength variability in poorly
' conserved regions. Gap lengths in HMMs tend to follow

gﬂés:ieesthe sub-tree spanned by the available seed Seé restricted type of distribution (such as a negative bi-

omial distribution); correspondingly, length deviaton
In many cases, furthermore, seed sequences are nop ) P gl 9

readily available but have to be retriev@@nuallyfrom when sear_chmg across !a_rger evolutionary time-scales
. S . will be assigned low significance scores.
the literature. This is in particular the case for prokary- .
. ) ; o An approach where sequence fragmentation has been
otic small RNAs, which are more often identified only . . . .
. . . explicitly taken into account is implemented in the
by genomic coordinates in some supplementary spread- i
: . . fragrep2 tool (18): conserved blocks are modeled as
sheet file. This unfortunate state offars has re- = )
. : position frequency matriceFMs), whereas the un-
cently been recognized as a problem. It is addressed .
. . . : conserved gaps outside these blocks are represented by
by theRNA Family Sectioof the journalRNA Biology .
. . . : . . lower and upper bounds on their length. Search patterns
which provides an incentive to organize such data in a

form that is much more readily accessible for homology n fragreP are typlcally modelled.from a multiple se-
. . . guence alignment; conserved regions are labelled man-
search projects and to incorporate them into Rfiem

database (13) ually, so that the PFMs as vyell as bounds for the gap
' regions can be extracted using thien2pattern tool.
For querying a model against a genome, matches are
4. Fragmented Pattern Search reported wherever the conserved blocks match with a
pre-specified score, and satisfying the upper and lower

The phenomenon of fragmentation is a common bounds on the distance between the conserved blocks.
theme found in conservation patterns of ncRNA: while For matching individual PFMsfragrep employs a
a few blocks are strongly conserved, large regions scoring scheme originally used for matching transcrip-
are not sticiently conserved to allow unambiguous tion factor binding sites (19), which has been addition-
alignments or even consist of completely unrelated se- ally equipped to allow insertions and deletions. Com-
guences. Fragmentation can be observed on the level ofpared with log-odd scoresragrep2 scores range in
sequence as well as on the level of secondary structure the unit interval, making them particularly accessible
and correspondingly needs to be taken into account onfor manually adapting the search pattern.
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4.2. Modeling Structure Homology log-odds-score profiles for each of the helices and sin-

On the level of secondary structure, fragmentation 9!€ stranded regions. An advantage is that in this way
is naturally harder to capture than on sequence level. PS€Udoknots can be incorporated quite easily. As is the
Covariance models, as implementedgisiearch (20) case with HMMs and SCFGﬁ,RPINllearns _|ts search
or infernal (21; 22), are a natural generalization of pattern from a structure-annotated input alignment.

sequence-based HMMSs to SCFGs (Stochastic Context Pattern search tools such Bi$Amotif (26) or Sean
Free Grammars), which are necessary to describe secEddy’srnabob, onthe other hand, utilize manually con-
Ondary structures. Correspondingw, their features in structed search patterns that are much less detailed but
terms of detecting fragmented homology are similar to much faster to search. The main problem with this ap-
HMMs: Conserved homologous blocks are represented Proach is the quality of the search patterns. In prac-
by statistically significant patterns. As in HMMs, large tise, only experts on particular RNA families are capa-
irregular gap patterns are problematic in this framework, ble of constructing descriptors that areftiently spe-
because they have to be modelled explicitly and can- Cific and nevertheless sensitive enough to beat simple
not easily be approximated by simple bounds. A sec- blast searches (27). Theferts to construct good de-
ond issue with SCFG-based approaches is their exten-scriptors is thus likely to fiset the computationalie
sive resource consumption (which is equivalent to that ciency of the pattern search.
of the Sanké@-style structural alignments proposed in The fragrep3 tool has been designed as a hybrid
(23) for applications in homology search). In prac- of the fragmented pattern search tdalagrep2 and
tise, one therefore typically usegfieient filters such the structure-search approachmfabob. The result-
asRavelNnA (24) to reduce the search space to man- ing algorithm is conceptually similar €RPIN in that it
ageable subsetERPIN (25) also uses a dynamic pro- individually scores local matches of the individual se-
gramming approach. Instead of a full SCFG, it employs quence and structure patterns. Like its predecessors,
4



however fragrep3 treats poorly conserved regions a
simple distance constraints between significantly co
served blocks.

The philosophy of thefragrep tools is an inter-
mediate between the statistical approaches and -
descriptor-based methods. As withfernal or ER-
PIN, the user supplies a multiple sequence alignme!
Forfragrep, the user also has to provide an addition:
annotation line indicating the blocks that are to be col
verted into PFMs. Goodness-of-match parameters ¢
then derived automatically that are adjusted so that e¢
sequence in the input will be recognized. The user ¢
then easily modify these parameters, e.g. in order to |
lax the requirements on conservation within the bloc}
or the inter-block distances.

5. Semi-global Alignment Strategies

Semi-global alignments can be seen as a natural ap-

proach to ncRNA homology search. Rather than Smith-
Waterman-style local alignments as implemented in
Ssearch, the semi-global version demands the com-
plete query sequence to be aligned against the (long) ge
nomic DNA. Semi-global alignments as a tool for RNA
homology search have been investigated only recently.
For each positiok in the subject genome sequence, one
computes the scorg of the best semi-global alignment
ending ink. Only local optima ofg, along the genome
are of interest.

Semi-global alignments withfiane gap penalties as
implemented inGotohScan (29) turn out to be an
extraordinarily useful tool, as lowering gap extension
penalties allows to explicitly account for the phenomena
of fragmented homology patterns and length variability.
Fig. 4 shows an example of distribution of these locally
optimal scores, which can be used readily to estiriate
values for candidate hit&otohScan proved useful on
a large scale for annotating ncRNA in identifying ma-
jor parts of the ncRNAs in the genome dfichoplax
adhaerensmost notably the full repertoire of major and
minor spliceosomal snRNAs, the genes for RNase P and
MRP RNAs, the SRP RNA, as well as several small nu-
cleolar RNAs (29). Similarly encouraging results were
obtained forAspergillus fumigatu&30).

In the context of vault RNA screens, combining
GotohScan semi-global alignments proved particularly
successful when combined with pre- or post-filtering
with other homology search approaches, most notably
fragrep.
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Figure 4: Distribution ofGotohScan scores for the genome of the
sticklebackGasterosteus aculeatussing four human vault RNAs as
queries. In this example, the true hits (circled) are sepdranly
marginally from the background distribution, which is ested on
flight directly from the data. For only two of the four queriggvl

and the ensemble ncRNA ENST00000401240, which was recently
identified as a bona fide vault RNA (28)), we obtain clear hmaiked

by circles). For the other two shortest query sequencelaiback
vault RNAs are among the best few dozend hits. The best hitgfo2
(AF045144) turns out the be a false positive upon closereictn.

6. Further Signalsof ncRNA Genes

When dealing with RNA homology search problems
that are not readily solved with a simp@ast search,
it is rarely the case that any particular search method
will yields just a single or only a few candidates among
which the true homologs are readily identified. Instead,
further evaluation of a larger number of candidates is
necessary. To this end, further evidence can be gathered
from several of the following aspects:

e Conservation scoresiWhen dealing with a candi-
date that can be spotted in a genome-wide align-
ment with one or several other species, it is pos-
sible to measure the evolutionary conservation of
the candidate. Th&NAz program (31) can be
used to compute-scores; alsofragrep2 allows
to search genome-wide alignments rather than just
single genomes.

e Promoter sequencesEvidence for a functional
transcript may in some cases be as straightforward
as a conserved TATA box at the 5’ end of the pu-
tative transcript. Moreover, many polymerase Il
transcribed ncRNA genes have relatively well un-
derstood promoter sequences. These can enhance
significance considerably in some homology mod-
els, as detailed for U7 snRNA and 7SK RNA in the

case studies below.



e Syntenyfor some ncRNA genes, vicinity to other elements. A simplglast search ofLottia candidate
genesis conserved. Forinstance, the study on vaultagainst the the same genome, finally, revealed a paralo-
RNA (32) found vaultRNA being part of the syn- gous locus on the same $&@d, which however lacks a
tenically conservegbrotocadherin clusterwhich descernible box B element, Fig. 5.
is syntenically conserved between shark and hu-

man (33). 7.2. Telomerase RNA

Although telRNA is part of the telomerase complex
in most eukaryotes, it demonstrates a surprisingly large
variability in terms of both sequence and secondary
structure. This is reflected by a length variation rang-
ing from 147nt in the ciliatdetrahymena paravorato
1554ntin the fungu€andida albicansEven within the
mammals telRNA length stretches between 321 and 541
nucleotides. Essentially the only constant secondary
structure feature is the pseudoknotted region that cap-
tures the template region, while loss or insertion of sec-
ondary structure elements is commonly observed. The
challenge in homology search across longer time scales
is to predict — or rather guess — which elements are con-
served and which have been lost.

Some aspects of telRNA, however, contribute signif-

Phylogenetic coherenc@&laturally, a candidate se-
guence should be validated whether it fits into the
phylogeny of its known homologous family mem-
bers. This is typically achieved by fitting the can-
didate into an alignment of the known sequences,
allowing to inspect a phylogenetic tree or network
constructed from the alignment.

Functional aspectsSome well-studied families of
ncRNA contain functional elements whose homol-
ogy patterns can be modelled more precisely than
generic modeling and search tools would allow.
Modeling of 3'P4 and 5'P4 regions in RNAse MRP
(34) may be attributed as such pattern, as well as
the HACA snoRNA domain in telRNA discussed

below. icantly to the specificity of search patterns. In some
_ species, at least the template region is known precisely
7. Case Studies through sequencing the telomeric region. Although only

5 (insects) to 25 (saccharomycotina) nucleotides long,
including the template region into the homology search
pattern enhances the specificity significantly. Further-
more, vertebrate telRNA is known to contain pAGA
snoRNA domain (14). This domain is known to indeed

X . share the same function as in snoRNA, namely as a lo-
only about 100 nucleotides. Until recently, they were cator within the nucleus (35). This indeed legitimates to

only known in mammals, and have been found only . .
. borrow strategies from snoRNA annotation tools, such
recently in other vertebrates and basal deuterostomes

(32) utilizing a combination oblast, GotohScan and assnoReport (36) Or snoGPS (.37)' as part of telRNA
homology search, and constitutes an example of how
fragrep?2. . . .
. functional understanding of a non-coding RNA may not
The combined search for sequence and structure ho- . N
: . ; only boost homology search, but is an inevitable part of
mology implemented ifiragrep3 further increased the

sensitivity of the search procedure and enabled us to findthe search process.
the first well-supported vault RNA candidates in pro-

7.1. Vault RNAs in Protostomes

A scenario wheréragrep3 proves useful in combi-
nation withGotohScan is the annotation of protostome
vault RNA. Vault RNAs are small polymerase Il tran-
scripts which are diicult to annotate due their length of

tostomes. Candidates elobdella robustavere ob-
tained in a two-step procedure: First, lower deuteros-
tome sequences were aligned against etobdella
genome usingGotohScan with very low stringency.

7.3. Small nuclear RNAs

An inherent problem in annotating many of the small
nuclear and nucleolar RNA their short length which
does not contain homology fragments forffatiently

In a second step, a secondary-structure constrainedunambiguous identification. However, as a number of
fragrep pattern was searched against the (several ten-these short RNAs are transcribed by Polymerase lll,
thousands) of candidate sequences from the first step.their relatively well understood promoter structures can
Among the few candidates obtained this way, only one be utilized for annotating them much more reliably.

turned out to exhibit the intern&-Box promoter ele- This observation extends to the the small nuclear RNAs
ment. This candidate was searched against_titéa transcribed by pol-Il, which share a similar promoter

giganteagenome, which produced a candidate with no- structure (38). These external elements were utilized
tably higher homology scores, also exhibiting the nec- in particular systematic surveys of U7 snRNA and 7SK
essary secondary structure and inteBrdoxpromoter RNA in animal genomes:
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Figure 5: Consensus profiles for protostome vtRNAs (topn@hwith the basal deuterostome vtRNA identified in (32). FiternalBox AandBox
B pol-1ll promoters elements are highlighted red and greespectively. Base pairs of the consensus structure areatedi by angular brackets
<>,

U7 snRNAThe U7 snRNA is known to contain sev-  functional or regulatory aspects to separate true candi-
eral conserved elements: beside a histone binding sitedates from false positives.
and a Sm-binding motif, they are flanked by a stem-  In this respect, we can expect a certain relief from the
loop structure at the 3’ end which is enclosed by two increasing availability of sequenced transcriptomes and
GC pairs. In (2), these elements were used to set up agenomes, which shortens the evolutionary gaps across
homology search pattern, along with a species-specific which homology search needs to be performed. How-
model for theproximal sequence eleme(RSE). This ever, major losses or gains of structural elements within
was derived from upstream regions of Ul, U2, U4, relatively short evolutionary timescales are commonly
U5, Udatac, Ul11l, and U12 spliceosomal RNAs, all of observed, and still impose major challenges for homol-
which are longer and hence typically better annotated. ogy search. Eventually, genome-wide alignments have

Assembling all these sequence models inftragrep
search pattern is straightforward. Unambiguous candi-

dates were obtained through filtering the candidates ob-

tained byfragrep usingRNAbob.
7SK RNAA similar approach as described for anno-
tating U7 snRNA was successful to annotate 7SK RNA

the potential to better unveil synteny patterns. A sys-
tematic utilization of synteny will yet require a thor-
ough and evolutionarily dense understanding of whole-
genome-evolution, which are currently beyond reach.
Hence, family-specific studies that meticulously assem-
ble family-specific peculiarities into a homology model

in invertebrate deuterostomia (39), and subsequently in appear to be the only viable way to cover larger evolu-

arthropods (5). As insights into the functioning of 7SK
RNA suggest, a GGC-GCC stem with a loop region cru-
cial for P-TEFb binding were modelled usifigagrep;
candidates thus obtained were iteratively filtered by pos-

tionary gaps at present.
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