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Abstract

Most non-coding RNAs are short and/or poorly conserved in sequence. Most of the longer examples, furthermore,
consist of a collection of conserved structural motifs rather that a coherent globally conserved secondary structure.As
a consequence, the conceptually simple problem of homologysearch becomes a complex and technically demanding
task. Despite the best efforts of databases such asRfam, the situation is complicated further by the sparsity of informa-
tion on many — in particular prokaryotic — RNA families. In this contribution we review recent efforts to customize
sequence-based search tools for ncRNA applications. In particular semi-global alignments and the development of
methods for fragmented pattern search have brought significant practical advances. Current developments in this
area focus on the integration of fragmented sequence pattern search with search algorithms for secondary structure
patterns. As one example, we introduce herefragrep3.

1. Introduction

Non-coding RNAs are a very heterogeneous class of
transcripts. It may not come as a surprise, therefore,
that no single computational approach is suitable to deal
with all of the diverse types. In this contribution we
focus onhomology search: given a one or more known
representative sequences of a particular ncRNA the task
at hand is to identify all homologous sequences in an
un-annotated string of genomic DNA. For this particular
purpose it is convenient to classify ncRNAs into several
categories:

1. large ribosomal RNAs, i.e., the major components
of the small and large RNA subunits of nuclear and
organellar ribosomes.

2. small housekeeping RNAs.
This class includes most of the classical ncRNAs,
including tRNAs, 5S rRNA, snoRNAs, spliceoso-
mal RNAs, as well as many of the small bacterial
RNAs.

Email addresses:axel@picb.ac.cn (Axel Mosig),
zhuliang@picb.ac.cn (Liang Zhu),
studla@bioinf.uni-leipzig.de (Peter F. Stadler)

3. large mRNA-like ncRNAs.
This class contains many moderate-size non-
protein-coding transcripts that are spliced and
polyadenylated, giving rise to processed RNAs
with a size of several kb. In this class we include
also giant ncRNAs.

The task of homology search can be subdivided into two
phases. The first, and typically more difficult, step is to
localize the ncRNA gene in the genomic DNA. In the
second – refinement – step, the exact structure of the
ncRNA gene needs to be determined.

The LSU and SSU rRNA of category (1) are suffi-
ciently large and well-conserved even at kingdom level,
so that their genomic locations are easily determined by
a simpleblast (1) search. Homology search of the ml-
ncRNAs in category (3), on the other hand, is largely
uncharted territory. We will therefore focus here on the
small housekeeping RNAs.

Preprint submitted to Preprint May 2, 2009
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Figure 1: Conservation of the U7 sequence in four clades (Tetrapoda, dominated by mammalian sequence, teleost fishes, sea urchins, and
drosophilid flies. While significant conservation is observed with each of these, fairly narrow, groups, the consensus over all four clades shows
multiple in/dels and very little conservation beyond two functional sequences boxes: the histone binding motif and the Sm binding motif. Adapted
from (2).

2. Conservation Patterns

The difficulty of the homology search problem is nat-
urally determined by the amount of information that is
contained in the query sequence(s), and by the level
sequence conservation between query sequence(s) and
subject genome. The search for house-keeping ncR-
NAs is in general much more difficult than the search
for protein coding gene because of the much smaller
size of the ncRNAs, which limits the query information.
The search for conserved protein-coding sequences is
furthermore simplified by the large, informative amino-
acid alphabet. In contrast, theper letter information
content is quite limited in nucleic acid queries. As a
consequence, nucleotide-basedblastn by default seed
words of 7 or more. The substantial in/del rates in ncR-
NAs can make it impossible to meet this criterion.

Protein-coding information is localized in the three
bases of the codon, and stabilizing selection at the pro-
tein level often acts to preserve contiguous peptide mo-
tifs (e.g. those specified asprosite patterns (3)). The
need to maintain the reading frame furthermore severely
restricts the distribution of in/dels between homolo-
gous protein-coding sequences. Indeed, the in/del dis-
tribution can be used to distinguish coding from non-
coding regions in pairwise sequence alignments (4). A
search for locally similar translations, as implemented
in tblastn andtblastx thus often works very well
for coding sequences.

The evolutionary constraints on ncRNAs are quite
different. There is no need to maintain reading frames,
thus there are not strong restrictions on the distribution
of in/dels. Divergent sequences therefore do not neces-
sarily contain gap-free substring of sufficient length to
act as seeds forblast-like approaches. Figure 1 shows
the conservation pattern of the U7 snRNA (2) as an ex-
ample. In many cases, there is little constraint on local
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Figure 2: Comparison of the 5’stems of 7SK snRNAs. Conserved
regions are color-coded to indicate conservation: conserved (red), two
and three compensatory mutations (ochre, green). Pale colors indicate
that a base-pair cannot be formed by all the sequences. Lowercase
letters denote a deletion in some sequences. Correspondingregions of
the helices are highlighted by a gray background. Adapted from (5).

sequence patterns. Instead, much of the stabilizing se-
lection may act to preserve secondary structure motifs,
such as the tRNA clover leafs. Fig. 2 shows the 5’ hair-
pins of metazoan 7SK RNA as an example.

By definition, base-pairing patterns are non-local in
the sequence. Therefore, they cannot be identified by
simple sequence-search techniques but require more so-
phisticated computational approaches — and more of-
ten than not orders of magnitudes more in terms of com-
putational resources.

Beyond the information contained in the ncRNA it-
self, we can sometimes utilize additional sources of
constraint’s. Since many of the house-keeping ncR-

2



NAs are pol-III transcripts, we may include additional
knowledge about the gene structure. For instance, the
poly-T terminator can help to distinguish spurious hits
from promising candidates. For snRNAs, we can ex-
pect a particular promoter structure with well-conserved
promixal and distal sequence elements that can be in-
cluded in the search patterns (6; 7). We shall return to
this point in the discussion of a few individual case stud-
ies.

3. Query Data

Typically, a homology search project starts from a
collection of trusted, preferably experimentally vali-
datedseed sequences. The most common source for
them is theRfam database (8), one of the family-specific
RNA databases such asmirbase (9) for microRNAs,
snoRNABase (10) for small nucleolar RNAs, or one of
the specialized collections dealing with a single fam-
ily such as thetmRNAdb andSRPdb (11), or telomerase
RNA collection (12). For some RNA families, extensive
data sets covering broad phylogenetic ranges are avail-
able. For less well-studied ncRNAs, however, the seed
sets of often sparse and very limited in their phyloge-
netic range. In the latter case, it can be very hard to de-
tect additional homologs, in particular to find homologs
outside the sub-tree spanned by the available seed se-
quences.

In many cases, furthermore, seed sequences are not
readily available but have to be retrievedmanuallyfrom
the literature. This is in particular the case for prokary-
otic small RNAs, which are more often identified only
by genomic coordinates in some supplementary spread-
sheet file. This unfortunate state of affairs has re-
cently been recognized as a problem. It is addressed
by theRNA Family Sectionof the journalRNA Biology,
which provides an incentive to organize such data in a
form that is much more readily accessible for homology
search projects and to incorporate them into theRfam

database (13).

4. Fragmented Pattern Search

The phenomenon of fragmentation is a common
theme found in conservation patterns of ncRNA: while
a few blocks are strongly conserved, large regions
are not sufficiently conserved to allow unambiguous
alignments or even consist of completely unrelated se-
quences. Fragmentation can be observed on the level of
sequence as well as on the level of secondary structure,
and correspondingly needs to be taken into account on

both levels. For some RNA families such as telRNA
(see Figure 3), this leads to highly divergent sequence
lengths, contributing to the difficulty of ncRNA homol-
ogy search.

4.1. Modeling Sequence Homology
As fragmentation of conserved regions is a common

phenomenon in the evolution of ncRNA, basically all
methods used for sequence-based homology search deal
with at least some degree of fragmentation. Basic local
alignment tools such asblast andssearch (16) are
limited to detecting individual blocks of conservation
in pairwise comparisons. As argued above, however,
the conserved regions tend to be too short and insignif-
icant to be aligned as proper matches. Correspond-
ingly, searching across longer phylogenetic timescales
requires homology search methods with a higher degree
of sensitivity. In the context of RNA homology search,
profile-based approaches such as Hidden Markov Mod-
els (HMMs) have been attributed higher sensitivity than
pairwise alignment based tools (17).

The log-odds scores typcially implemented in profile
HMMs capture homology within conserved regions in a
way that allows a much more sensitive search than sim-
ple regular expression. A shortcoming of HMMs in the
presence of fragmentation is length variability in poorly
conserved regions. Gap lengths in HMMs tend to follow
a restricted type of distribution (such as a negative bi-
nomial distribution); correspondingly, length deviations
when searching across larger evolutionary time-scales
will be assigned low significance scores.

An approach where sequence fragmentation has been
explicitly taken into account is implemented in the
fragrep2 tool (18): conserved blocks are modeled as
position frequency matrices(PFMs), whereas the un-
conserved gaps outside these blocks are represented by
lower and upper bounds on their length. Search patterns
in fragrep are typically modelled from a multiple se-
quence alignment; conserved regions are labelled man-
ually, so that the PFMs as well as bounds for the gap
regions can be extracted using thealn2pattern tool.
For querying a model against a genome, matches are
reported wherever the conserved blocks match with a
pre-specified score, and satisfying the upper and lower
bounds on the distance between the conserved blocks.

For matching individual PFMs,fragrep employs a
scoring scheme originally used for matching transcrip-
tion factor binding sites (19), which has been addition-
ally equipped to allow insertions and deletions. Com-
pared with log-odd scores,fragrep2 scores range in
the unit interval, making them particularly accessible
for manually adapting the search pattern.

3
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Figure 3: Vertebrate tel-
RNA has been identified as
fragmented into eight con-
served regions (14; 15). The
lengths of the non-conserved
regions vary widely between
teleost fish (black box plots)
and eutheria (red box plots).
The box plots indicate min-
imum, maximum, and av-
erage length of the non-
conserved regions.

4.2. Modeling Structure Homology

On the level of secondary structure, fragmentation
is naturally harder to capture than on sequence level.
Covariance models, as implemented inRsearch (20)
or infernal (21; 22), are a natural generalization of
sequence-based HMMs to SCFGs (Stochastic Context
Free Grammars), which are necessary to describe sec-
ondary structures. Correspondingly, their features in
terms of detecting fragmented homology are similar to
HMMs: Conserved homologous blocks are represented
by statistically significant patterns. As in HMMs, large
irregular gap patterns are problematic in this framework,
because they have to be modelled explicitly and can-
not easily be approximated by simple bounds. A sec-
ond issue with SCFG-based approaches is their exten-
sive resource consumption (which is equivalent to that
of the Sankoff-style structural alignments proposed in
(23) for applications in homology search). In prac-
tise, one therefore typically uses efficient filters such
as RaveNnA (24) to reduce the search space to man-
ageable subset.ERPIN (25) also uses a dynamic pro-
gramming approach. Instead of a full SCFG, it employs

log-odds-score profiles for each of the helices and sin-
gle stranded regions. An advantage is that in this way
pseudoknots can be incorporated quite easily. As is the
case with HMMs and SCFGs,ERPIN learns its search
pattern from a structure-annotated input alignment.

Pattern search tools such asRNAmotif (26) or Sean
Eddy’srnabob, on the other hand, utilize manually con-
structed search patterns that are much less detailed but
much faster to search. The main problem with this ap-
proach is the quality of the search patterns. In prac-
tise, only experts on particular RNA families are capa-
ble of constructing descriptors that are sufficiently spe-
cific and nevertheless sensitive enough to beat simple
blast searches (27). The efforts to construct good de-
scriptors is thus likely to offset the computational effi-
ciency of the pattern search.

The fragrep3 tool has been designed as a hybrid
of the fragmented pattern search toolfragrep2 and
the structure-search approach ofrnabob. The result-
ing algorithm is conceptually similar toERPIN in that it
individually scores local matches of the individual se-
quence and structure patterns. Like its predecessors,
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however,fragrep3 treats poorly conserved regions as
simple distance constraints between significantly con-
served blocks.

The philosophy of thefragrep tools is an inter-
mediate between the statistical approaches and the
descriptor-based methods. As withinfernal or ER-
PIN, the user supplies a multiple sequence alignment.
Forfragrep, the user also has to provide an additional
annotation line indicating the blocks that are to be con-
verted into PFMs. Goodness-of-match parameters are
then derived automatically that are adjusted so that each
sequence in the input will be recognized. The user can
then easily modify these parameters, e.g. in order to re-
lax the requirements on conservation within the blocks
or the inter-block distances.

5. Semi-global Alignment Strategies

Semi-global alignments can be seen as a natural ap-
proach to ncRNA homology search. Rather than Smith-
Waterman-style local alignments as implemented in
Ssearch, the semi-global version demands the com-
plete query sequence to be aligned against the (long) ge-
nomic DNA. Semi-global alignments as a tool for RNA
homology search have been investigated only recently.
For each positionk in the subject genome sequence, one
computes the scoresk of the best semi-global alignment
ending ink. Only local optima ofsk along the genome
are of interest.

Semi-global alignments with affine gap penalties as
implemented inGotohScan (29) turn out to be an
extraordinarily useful tool, as lowering gap extension
penalties allows to explicitly account for the phenomena
of fragmented homology patterns and length variability.
Fig. 4 shows an example of distribution of these locally
optimal scores, which can be used readily to estimateE-
values for candidate hits.GotohScan proved useful on
a large scale for annotating ncRNA in identifying ma-
jor parts of the ncRNAs in the genome ofTrichoplax
adhaerens, most notably the full repertoire of major and
minor spliceosomal snRNAs, the genes for RNase P and
MRP RNAs, the SRP RNA, as well as several small nu-
cleolar RNAs (29). Similarly encouraging results were
obtained forAspergillus fumigatus(30).

In the context of vault RNA screens, combining
GotohScan semi-global alignments proved particularly
successful when combined with pre- or post-filtering
with other homology search approaches, most notably
fragrep.
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Figure 4: Distribution ofGotohScan scores for the genome of the
sticklebackGasterosteus aculeatususing four human vault RNAs as
queries. In this example, the true hits (circled) are separated only
marginally from the background distribution, which is estimated on
flight directly from the data. For only two of the four queries(hgv1
and the ensemble ncRNA ENST00000401240, which was recently
identified as a bona fide vault RNA (28)), we obtain clear hits (marked
by circles). For the other two shortest query sequences, stickleback
vault RNAs are among the best few dozend hits. The best hit forhgv2
(AF045144) turns out the be a false positive upon closer inspection.

6. Further Signals of ncRNA Genes

When dealing with RNA homology search problems
that are not readily solved with a simpleblast search,
it is rarely the case that any particular search method
will yields just a single or only a few candidates among
which the true homologs are readily identified. Instead,
further evaluation of a larger number of candidates is
necessary. To this end, further evidence can be gathered
from several of the following aspects:

• Conservation scores:When dealing with a candi-
date that can be spotted in a genome-wide align-
ment with one or several other species, it is pos-
sible to measure the evolutionary conservation of
the candidate. TheRNAz program (31) can be
used to computez-scores; also,fragrep2 allows
to search genome-wide alignments rather than just
single genomes.

• Promoter sequences:Evidence for a functional
transcript may in some cases be as straightforward
as a conserved TATA box at the 5’ end of the pu-
tative transcript. Moreover, many polymerase III
transcribed ncRNA genes have relatively well un-
derstood promoter sequences. These can enhance
significance considerably in some homology mod-
els, as detailed for U7 snRNA and 7SK RNA in the
case studies below.
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• Synteny:For some ncRNA genes, vicinity to other
genes is conserved. For instance, the study on vault
RNA (32) found vaultRNA being part of the syn-
tenically conservedprotocadherin cluster, which
is syntenically conserved between shark and hu-
man (33).

• Phylogenetic coherence:Naturally, a candidate se-
quence should be validated whether it fits into the
phylogeny of its known homologous family mem-
bers. This is typically achieved by fitting the can-
didate into an alignment of the known sequences,
allowing to inspect a phylogenetic tree or network
constructed from the alignment.

• Functional aspects:Some well-studied families of
ncRNA contain functional elements whose homol-
ogy patterns can be modelled more precisely than
generic modeling and search tools would allow.
Modeling of 3’P4 and 5’P4 regions in RNAse MRP
(34) may be attributed as such pattern, as well as
the H/ACA snoRNA domain in telRNA discussed
below.

7. Case Studies

7.1. Vault RNAs in Protostomes
A scenario wherefragrep3 proves useful in combi-

nation withGotohScan is the annotation of protostome
vault RNA. Vault RNAs are small polymerase III tran-
scripts which are difficult to annotate due their length of
only about 100 nucleotides. Until recently, they were
only known in mammals, and have been found only
recently in other vertebrates and basal deuterostomes
(32) utilizing a combination ofblast, GotohScan and
fragrep2.

The combined search for sequence and structure ho-
mology implemented infragrep3 further increased the
sensitivity of the search procedure and enabled us to find
the first well-supported vault RNA candidates in pro-
tostomes. Candidates inHelobdella robustawere ob-
tained in a two-step procedure: First, lower deuteros-
tome sequences were aligned against theHelobdella
genome usingGotohScan with very low stringency.
In a second step, a secondary-structure constrained
fragrep pattern was searched against the (several ten-
thousands) of candidate sequences from the first step.
Among the few candidates obtained this way, only one
turned out to exhibit the internalB-Boxpromoter ele-
ment. This candidate was searched against theLottia
giganteagenome, which produced a candidate with no-
tably higher homology scores, also exhibiting the nec-
essary secondary structure and internalB-Boxpromoter

elements. A simpleblast search ofLottia candidate
against the the same genome, finally, revealed a paralo-
gous locus on the same scaffold, which however lacks a
descernible box B element, Fig. 5.

7.2. Telomerase RNA

Although telRNA is part of the telomerase complex
in most eukaryotes, it demonstrates a surprisingly large
variability in terms of both sequence and secondary
structure. This is reflected by a length variation rang-
ing from 147nt in the ciliateTetrahymena paravoraxto
1554nt in the fungusCandida albicans. Even within the
mammals telRNA length stretches between 321 and 541
nucleotides. Essentially the only constant secondary
structure feature is the pseudoknotted region that cap-
tures the template region, while loss or insertion of sec-
ondary structure elements is commonly observed. The
challenge in homology search across longer time scales
is to predict – or rather guess – which elements are con-
served and which have been lost.

Some aspects of telRNA, however, contribute signif-
icantly to the specificity of search patterns. In some
species, at least the template region is known precisely
through sequencing the telomeric region. Although only
5 (insects) to 25 (saccharomycotina) nucleotides long,
including the template region into the homology search
pattern enhances the specificity significantly. Further-
more, vertebrate telRNA is known to contain a H/ACA
snoRNA domain (14). This domain is known to indeed
share the same function as in snoRNA, namely as a lo-
cator within the nucleus (35). This indeed legitimates to
borrow strategies from snoRNA annotation tools, such
assnoReport (36) orsnoGPS (37), as part of telRNA
homology search, and constitutes an example of how
functional understanding of a non-coding RNA may not
only boost homology search, but is an inevitable part of
the search process.

7.3. Small nuclear RNAs

An inherent problem in annotating many of the small
nuclear and nucleolar RNA their short length which
does not contain homology fragments for sufficiently
unambiguous identification. However, as a number of
these short RNAs are transcribed by Polymerase III,
their relatively well understood promoter structures can
be utilized for annotating them much more reliably.
This observation extends to the the small nuclear RNAs
transcribed by pol-II, which share a similar promoter
structure (38). These external elements were utilized
in particular systematic surveys of U7 snRNA and 7SK
RNA in animal genomes:
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Figure 5: Consensus profiles for protostome vtRNAs (top), along with the basal deuterostome vtRNA identified in (32). TheinternalBox AandBox
B pol-III promoters elements are highlighted red and green, respectively. Base pairs of the consensus structure are indicated by angular brackets
< · · · >.

U7 snRNA:The U7 snRNA is known to contain sev-
eral conserved elements: beside a histone binding site
and a Sm-binding motif, they are flanked by a stem-
loop structure at the 3’ end which is enclosed by two
GC pairs. In (2), these elements were used to set up a
homology search pattern, along with a species-specific
model for theproximal sequence element(PSE). This
was derived from upstream regions of U1, U2, U4,
U5, U4atac, U11, and U12 spliceosomal RNAs, all of
which are longer and hence typically better annotated.
Assembling all these sequence models into afragrep

search pattern is straightforward. Unambiguous candi-
dates were obtained through filtering the candidates ob-
tained byfragrep usingRNAbob.

7SK RNA:A similar approach as described for anno-
tating U7 snRNA was successful to annotate 7SK RNA
in invertebrate deuterostomia (39), and subsequently in
arthropods (5). As insights into the functioning of 7SK
RNA suggest, a GGC-GCC stem with a loop region cru-
cial for P-TEFb binding were modelled usingfragrep;
candidates thus obtained were iteratively filtered by pos-
sessing a suitable PSE, as well as structural alignments
using theRalee mode (40) in theEmacs editor.

Similar to the U7 and 7SK RNA studies, vaultRNA
candidates reported in (32) were also validated by their
polIII promoter sequences. In principle, this promoter
based homology might even carry to some pol II tran-
scribed small RNAs whose transcription is activated by
essentially the same PSE as many of their pol III tran-
scribed relatives.

8. Discussion

Many ncRNA families are at present beyond the
reach of automated or semi-automated pipelines for
their annotation due to their rapid evolution and the re-
sulting lack of significantly conserved features. The an-
notation of these families requires computational, evo-
lutionary, and experimental approaches to go hand in
hand and often require a thorough understanding of

functional or regulatory aspects to separate true candi-
dates from false positives.

In this respect, we can expect a certain relief from the
increasing availability of sequenced transcriptomes and
genomes, which shortens the evolutionary gaps across
which homology search needs to be performed. How-
ever, major losses or gains of structural elements within
relatively short evolutionary timescales are commonly
observed, and still impose major challenges for homol-
ogy search. Eventually, genome-wide alignments have
the potential to better unveil synteny patterns. A sys-
tematic utilization of synteny will yet require a thor-
ough and evolutionarily dense understanding of whole-
genome-evolution, which are currently beyond reach.
Hence, family-specific studies that meticulously assem-
ble family-specific peculiarities into a homology model
appear to be the only viable way to cover larger evolu-
tionary gaps at present.
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