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Abstract. The functioning of a living cell is largely determined by the structure of its regulatory network,
comprising non-linear interactions between regulatory genes. An important factor for the stability and
evolvability of such regulatory systems is neutrality — typically a large number of alternative network
structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the
yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call
functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse
wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional
networks is fragmented into ~ 4.7 x 10% components. One of the smaller ones contains the wildtype network.
On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise
resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.

PACS. 87.16.Yc Regulatory genetic and chemical networks — 87.10.-e General theory and mathematical
aspects — 87.17.Aa Theory and modeling; computer simulation

1 Introduction

Neutrality [1] is crucial for robustness and evolvability [2]
of biological systems. It describes the fact that the map-
ping from genotypes to phenotypes is not invertible. A
given phenotype can be encoded by more than one geno-
type. As Wagner [2] writes, “most problems the living have
solved have an astronomical number of equivalent solu-
tions, which can be thought of as existing in a vast neutral
space”.

Computational studies of biopolymers revealed the ex-
istence of neutrality in the relation between sequence and
spatial structure. RNA molecules and proteins are gen-
erated as a chain (sequence) of nucleic bases and amino
acids respectively. The number of sequences folding into
one and the same functionally relevant spatial structure is
found to be large. It is growing exponentially with the size
of the molecule [3, 4]. Together with an adjacency given by
single mutations, the phenotypically equivalent genotypes
form the neutral network (or neutral graph). The proper-
ties of this graph, in particular its connectivity, determine
the robustness of the given genotype under mutations and
its evolvability towards new phenotypes.

Going from single molecules to the level of the whole
organism, the phenotype is not given by the set of its
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molecule structures alone: The dynamics that arises as the
result of activating and suppressing interactions between
molecules is crucial. This set of interactions is captured as
a regulatory network [5] and gives rise to a temporal se-
quence of chemical concentration vectors that are respon-
sible for the division of a single cell or the development
of an embryo. Again, the mapping from genotypes (in-
teraction networks) to phenotypes (temporal sequences)
is not injective, i.e. several network structures are able
to produce the regulatory dynamics of a given phenotype
[6, 7, 8, 9]. Here we apply the neutral graph concept to a
dynamical model [10] of cell cycle regulation in the organ-
ism of the yeast species Saccharomyces cerevisiae (bud-
ding yeast). In section 2 we introduce the model dynam-
ics and the wiring of the wildtype network. The ensemble
of functional networks that yield dynamics equivalent to
the wildtype is analyzed in section 3, finding the neutral
graph to be disconnected. In section 4 we focus on statisti-
cal properties of the subset of networks that are reachable
from the wildtype. After a remark (section 5) on the com-
putation of network statistics, section 6 offers a discussion
and open questions.

2 Cell cycle network and Boolean dynamics

During the process of cell division, a eukaryotic cell grows
and divides into two daughter cells. A cell cycle consists
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of four distinct and separate phases named G1, S, G and
M. In the G; ("growth”) phase, the cell commits itself
for cell division under certain conditions. In particular,
a necessary cell size must have been reached. A copy of
the genetic information is produced in the S (”synthesis”)
phase. The G5 ("gap”) phase precedes the actual cell di-
vision in the M phase (”mitosis”).

Here we are interested in the network of molecules (cy-
clins, inhibitors and degraders of cyclins and transcrip-
tion factors) regulating this process. We consider the reg-
ulatory network of the mono cellular eukaryotic organ-
ism Saccharomyces cerevisiae (budding yeast). Its genome
comprises 13 million base pairs and 6275 genes, of which
approximately 800 are involved in the cell cycle dynamics
[11]. The dynamics is controlled by a core of 11 key regu-
lators with 34 directed interactions [10], shown in Figure
1(a), which we denote as the wildtype network. Interac-
tions are captured by a matrix A. If node j has an acti-
vating effect on node i, the corresponding matrix element
is a;; = +1, while inhibition is coded as a;; = —1. In case
of no direct influence from j to i, we have a;; = 0. Li
et al. [10] model the regulatory dynamics with a Boolean
approach [12, 13] where each node i takes state values
S;(t) € {0,1} when being inactive / active at time ¢. In the
time-discrete dynamics, nodes are updated synchronously,
based on their weighted input sum h;(t) = >, a;;5;(t).
The state at the next time step is obtained by applying
the threshold update rule

1, hi(t) >0
Si(t + 1) = 0, hi(t) <0 . (1)
Sit), hi(t) =0

From an initial condition S(1), representing the real start-
ing state of the cell cycle, the dynamics produces the
sequence of state vectors S(1),5(2),...,5(13), shown in
Figure 1(b). The state S(13) = Gy is a fixed point of the
dynamics. The system remains in this state until node
Cln3 is externally activated. In the real system the exter-
nal activation indicates that the cell size is sufficient for
another division.

3 Functional networks and the neutral graph

Broadening our treatment of regulatory networks, we con-
sider the set of all networks with interaction matrices over
11 nodes with entries a;; € {—1,0,+1}. We call a network
functionalif it produces the state transitions of the cell cy-
cle sequence in Figure 1(b). Thus, the wildtype network
is functional. However, there are further functional net-
works. Out of the set of all 32" ~ 5.4 x 1057 networks,
approximately 5.11 x 1034 are functional [14]. Figure 1(c)
shows an example of a functional network different from
the wildtype. Figure 2 shows the statistics for the number
of interactions (arcs) present in functional networks. The
wildtype network is sparse in comparison with the aver-
age functional network. However, there are functional net-
works that are even sparser than the wildtype. These find-
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Fig. 2. Histograms of the number of interactions over func-
tional networks. Positive (green dashed curve), negative (red
dot-dashed), and total connections (black solid) of almost all
functional networks exceed the corresponding counts in the
wildtype network (arrows).
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Fig. 3. Cumulative size distribution of connected components
of the neutral graph (falling curve). The component containing
the wildtype has size 5.66 x 10%® (vertical line).

ings analogously hold when activating and inhibiting in-
teractions are counted separately. Interestingly, functional
networks have generally more suppressing than activating
interactions, as is the case for the wildtype.

A structure to reflect mutations on the set of functional
networks is the neutral graph. Its nodes are the functional
networks. Functional networks A and B are adjacent (con-
nected by an edge) in the neutral graph if A is turned
into B by a single mutation. According to our definition a
mutation is a replacement of one entry in the interaction
matrix. The Hamming distance between two networks is
the number of entries in which their interaction matrices
differ. In order to avoid confusion with the networks of
interaction we employ the term neutral graph as a syn-
onym for the more commonly used neutral network. An
important property of a neutral graph is its connected-
ness. A mutational walk from network A to network B
is a sequence of single point mutations that turns A into
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Time Cln3 MBF SBF Clnl,2 Clb5,6 Clbl,2 Mcml/SFF Cdc20&Cdcl4 Swi5 Sicl Cdhl Phase

1 1 0 0 0 0 0 0 0 0 1 1 START

2 0 1 1 0 0 0 0 0 0 1 1 Gy

3 0 1 1 1 0 0 0 0 0 1 0 Gy

4 0 1 1 1 0 0 0 0 0 0 0 Gy

5 0 1 1 1 1 0 0 0 0 0 0 S

6 0 1 1 1 1 1 1 0 0 0 0 Go

7 0 0 0 1 1 1 1 1 0 0 0 M

8 0 0 0 0 0 1 1 1 1 0 0 M

9 0 0 0 0 0 1 1 1 1 1 0 M

10 0 0 0 0 0 0 1 1 1 1 0 M

11 0 0 0 0 0 0 0 1 1 1 1 M

12 0 0 0 0 0 0 0 0 1 1 1 Gy

13 0 0 0 0 0 0 0 0 0 1 1 Stationary G

Fig. 1.

(a) The Cell Cycle Network of the yeast wildtype has 11 nodes connected with activating (green) and inhibiting (red)

interactions. Self-suppression is indicated by yellow loops. (b) A sequence of 13 states defines a cell cycle, as produced by the
network in (a). (¢) A different network (mutant) performs the same sequence of states. As the wildtype, this mutant has 34
interactions. However, 19 entries in the interaction matrix differ from the wildtype.

B without passing through non-functional networks. The
neutral graph is connected if such a mutational walk ex-
ists for each pair of functional networks. We find that the
neutral graph considered here is disconnected. One can-
not pass from all functional networks to all others by se-
quences of mutations that preserve functionality. In fact,
mutual reachability between functional networks is rare.
The neutral graph falls into =~ 4.7 x 10® connected com-
ponents with sizes distributed between ~ 6.1 x 10%* and
~ 4.4 x 10%6, as shown in Figure 2. The component of
the wildtype comprises around 5.66 x 10?® functional net-
works.

4 The wildtype component

In this section we extend the analysis of the neutral graph.
We focus on a comparison between functional networks in
the wildtype component and all functional networks. Fig-
ure 4(a-c) shows how the number of (a) negative, (b) pos-
itive and (c) all interactions is distributed. All three plots
reveal a significant statistical difference between networks
in the wildtype component and the set of all functional
networks. Networks in the wildtype component are sparse
compared with the average functional network.
Geometric information of the neutral graph is provided
in Figure 4(d) in terms of the Hamming distance of func-
tional networks from the wildtype. Functional networks in
the wildtype component are closer to the wildtype than
the average functional network is. Still the most remote
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Fig. 4. Comparison of statistics between all functional networks (solid green curves) and functional networks in the wildtype
component (dashed blue curves) of the neutral graph. (a) histogram of negative interactions, (b) histogram of positive interactions
and (c) histogram of total number of interactions in functional networks. (d) histogram of Hamming distances (minimal number
of mutations) from the wildtype. (e) Distribution of basin sizes of the G fixed point. The inset shows a zoom into the histogram
for very large basin sizes. For comparison, a vertical dotted line in each panel gives the value of the wildtype network itself.
Histograms in panels (a)-(d) are exact. Histograms in (e) were obtained by uniform sampling of 107 functional networks each
from the whole neutral graph and from its wildtype component, respectively.
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Fig. 5. The number of attractors of all functional networks (green curves) and the functional networks in the neutral graph
component containing the wildtype (blue curves). (a) Distribution of the number of fixed points. (b) Distribution of the number
of limit cycles (attractors of length at least 2). The wildtype itself has 7 fixed points (vertical dashed line) and no limit cycles.

networks in the wildtype component are found at dis-
tance 77 from the wildtype. Despite its moderate size, the
wildtype component pervades a large part of the network
space.

Shifting attention from the structural to the dynam-
ical properties of the functional networks, let us analyze
the resilience of the dynamics against perturbations. As
a measure of resilience we use the Gy basin size [10], i.e.
the number of states from which the dynamics eventually
reaches the fixed point G;. Clearly, the basin contains at
least the 13 states in the cell cycle sequence. As shown by
the distributions in Figure 4(e), actual G; basin sizes in
functional networks contain many more states. Compared
with all functional networks, basin sizes of networks in
the wildtype component concentrate at higher values. The
most frequently observed basin size is 2047 for networks
in the wildtype component, cf. the inset of Figure 4(e).
However, we have not found a functional network where
the G1 basin contained all 2048 states.

Moreover, the distributions in the number of fixed points
of functional networks show a striking difference between
the wildtype component and the whole neutral graph. Fig-
ure 5(a) displays geometric distributions in both cases.
However, networks in the wildtype component have a sig-
nificantly narrower distribution of fixed points. Interest-
ingly, dynamic attractors (limit cycles) with more than
one state show practically the same statistics in the wild-
type component as in the whole neutral graph, cf. Figure
5(b).

5 Computational aspects

Computation of histograms over functional networks is fa-
cilitated by the fact that rows of functional network matri-
ces combine independently. The set of all functional matri-
ces M is a product over sets M; of functional row vectors
for each node 7. In fact, each row of the matrix has its
own neutral graph. The Cartesian product [15] of these is

the neutral graph of the whole system. As noted by Lau
et al. [14], the set of network matrices performing a given
state sequence has a simple combinatorial structure. One
can check independently for each node 4 if it takes the
required state at each time step t. The states taken by
node ¢ only depend on the i-th row and not on the whole
matrix. Thus, a functional network can be constructed by
independently combined functional row vectors into a ma-
trix. The set M; of functional row vectors is obtained by
testing each of the 3'' ~ 2 x 10° possible vectors over
{-1,0,1} for each node i.

For calculating the histogram of the number of inter-
actions over all functional networks (Figure 4(c)), we first
calculate this histogram g; individually for each node i.
The number of functional vectors in row ¢ with exactly x
interactions is

gi(x) = {r € Mi|k(r) = z}| (2)
where k(r) is the number of non-zero entries in a row
vector r € M;.

These N histograms are now iteratively combined into

the histogram h; over the first ¢ rows according to

hi(z) = gi(@)higa (= — ) (3)
=0

with initialization hy = g1. Then hy is the histogram over
the complete matrices having NV rows. Histograms are ob-
tained anlogously for other observables like the number of
positive and negative interactions and the Hamming dis-
tance. In fact, the iterative combination of histograms is
applicable for all matrix observables that are decompos-
able into observables of single rows.

The number of attractors and the size of basins (Figure
5) do not fall into this class of row-decomposable observ-
ables. Thus sampling is used to obtain statistics of these
observables. For drawing a matrix A from the uniform dis-
tribution on M, we draw the i-th row vector of A from the
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uniform distribution on M; for all ¢ € {1,..., N}. Before
starting the sampling, the whole sets M; need to be com-
puted and stored once. In the present case, these sets are
sufficiently small with less than 2 x 10* elements for all i.

For each functional matrix A in the sample, basin sizes
and attractor numbers are obtained by complete enumer-
ation of the Boolean state space having 2V = 2048 ele-
ments.

6 Discussion & QOutlook

We have analyzed the neutral graph (also called neutral
network) of discrete regulatory networks reproducing the
cell cycle sequence of budding yeast [10]. The neutral graph
falls into many connected components. Networks in differ-
ent components of the neutral graph are not accessible to
each other through a sequence of mutations that retains
cell cycle functionality. Our finding contrasts with the con-
nected neutral graphs in the work by Ciliberti et al. in a
similar type of discrete regulatory networks [7, 8]. There,
function is defined as the eventual arrival at a predefined
fixed point from a given initial condition. In the present
study, the exact sequence of states leading to the fixed
point is part of the required phenotype. We hypothesize
that the fragmentation of the neutral graph is caused by
increasing functional constraints.

Further analysis has revealed that functional networks
accessible from the empirical wildtype are structurally and
dynamically distinct from other functional networks. Net-
works in the wildtype component are more sparsely wired
and their dynamics is more resilient to perturbations, as
compared to the average of all functional networks.

Thus, networks in the wildtype component have prop-
erties similar to the wildtype itself. This is remarkable
since most networks in the wildtype component are dis-
tant from the wildtype, having only a few interactions in
common.

Future investigations could establish conditions for the
connectedness of the neutral graph. To what extent is the
fragmentation of the neutral graph caused by the strong
discretization of interaction strengths? Allowing finer adap-
tations would lead to less fragmented neutral graphs. In
the extreme (though chemically unrealistic) limit of con-
tinuously evolving interaction strengths, the set of all func-
tional network matrices is convex and thus connected.
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