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ABSTRACT
The RNA-RNA interaction problems (RIP) deals with the

energetically optimal structure of two RNA molecules that bind to
each other. The standard model introduced by Alkan et al. (J.
Comput. Biol. 13: 267-282, 2006) allows secondary structures in
both partners as well as additional base-pairs between the two
RNAs subjects to certain restrictions that allow a polynomial-time
dynamic programming solution. We derive the partition function
for RIP based on a notion of “tight structures” as an alternative
to the approach of Chitsaz et al. (Bioinformatics, ISMB 2009).
This dynamic programming approach is extended here by a full-
fledged computation of the base pairing probabilities. The O(N6)

time and O(N4) space algorithm is implemented in C (available
from http://www.combinatorics.cn/cbpc/rip.html) and is
efficient enough to investigate for instance the interactions of small
bacterial RNAs and their target mRNAs.

1 INTRODUCTION
RNA-RNA interactions constitute one of the fundamental mechanisms
of cellular regulation. In an important subclass, small RNAs
specifically bind a larger (m)RNA target. Examples include the
regulation of translation in both prokaryotes (Narberhausand Vogel,
2007) and eukaryotes (McManus and Sharp, 2002; Banerjee and
Slack, 2002), the targeting of chemical modifications (Bachellerie
et al., 2002), and insertion editing (Benne, 1992), transcriptional
control (Kugel and Goodrich, 2007). The common theme in many
RNA classes, including miRNAs, siRNAs, snRNAs, gRNAs, and
snoRNAs is the formation of RNA-RNA interaction structuresthat
are more complex than simple sense-antisense interactions. The
ability to predict the details of RNA-RNA interactions bothin terms
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of the thermodynamics of binding in its structural consequences
is a necessary prerequisite to understanding RNA based regulation
mechanisms. The exact location of binding and the subsequent
impact of the interaction on the structure of the target molecule
can have profound biological consequences. In the case of sRNA-
mRNA interactions, these details decide whether the sRNA isa
positive or negative regulator of transcription dependingon whether
binding exposes or covers the Shine-Dalgarno sequence (Sharma
et al., 2007; Majdalaniet al., 2002). Similar effects have been
observed using artificially designed opener and closer RNAsthat
regulate the binding of theHuRprotein to human mRNAs (Meisner
et al., 2004; Hackermülleret al., 2005).

In its most general form, the RNA-RNA interaction problem
(RIP) is NP-complete (Alkanet al., 2006; Mneimneh, 2007). The
argument for this statement is based on an extension of the work
of Akutsu (2000) for RNA-folding with pseudoknots. Polynomial-
time algorithms can be derived, however, by restricting thespace
of allowed configurations in ways that are similar to pseudoknot
folding algorithms (Rivas and Eddy, 1999).

Several restricted versions of RNA-RNA interaction have been
considered in the literature. The simplest approach concatenates
the two interacting sequences and subsequently employs a slightly
modified standard secondary structure folding algorithm. The
algorithmsRNAcofold (Hofacker et al., 1994; Bernhartet al.,
2006),pairfold (Andronescuet al., 2005), andNUPACK (Ren
et al., 2005) subscribe to this strategy. A major shortcoming of
this approach is that it cannot predict important motifs such as
kissing-hairpin loops. The paradigm of concatenation has also
been generalized to the pseudoknot folding algorithm of Rivas
and Eddy (1999). The resulting model, however, still does not
generate all relevant interaction structures (Chitsazet al., 2009;
Qin and Reidys, 2008). An alternative line of thought is to
neglect all internal base-pairings in either strand and to compute
the minimum free energy (mfe) secondary structure for their
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hybridization under this constraint. For instance,RNAduplex and
RNAhybrid (Rehmsmeieret al., 2004) follows this line of thought.
RNAup (Mücksteinet al., 2006, 2008) andintaRNA (Buschet al.,
2008) restrict interactions to a single interval that remains unpaired
in the secondary structure for each partner. These models have
proved particularly useful for bacterial sRNA/mRNA interactions.
To-date only a handful of interaction structures are known that are
more complex than those covered byintaRNA/RNAup. The most
famous example is the repression offhlA by OxySRNA, see Fig. 1,
which involves to widely separated kissing hairpin loops (Argaman
and Altuvia, 2000). A second important example is the binding of
box H/ACA snoRNAs with their targets (Jinet al., 2007). Due to
the highly conserved interaction motif, snoRNA/target complexes
are treated more efficiently using a specialized tool (Taferet al.,
2009) however.

Pervouchine (2004) and Alkanet al. (2006) independently
derived and implemented minimum free energy (mfe) folding
algorithms for predicting the joint secondary structure oftwo
interacting RNA molecules with polynomial time complexity. In
their model, a “joint structure” means that the intramolecular
structures of each molecule are pseudoknot-free, the intermolecular
binding pairs are noncrossing and there exist no so-called “zig-
zags”, see Fig. 1 and 2 for examples of the “joint structures”.
The optimal “joint structure” can be computed inO(N6) time and
O(N4) space by means of dynamic programming.
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Fig. 1. Left: Natural structure (A) (Alkan et al., 2006) and the joint
structure predicted byrip, (B), formed by the theOxySsmall RNA and its
mRNA targetfhlA. Right: Dot Plot showing the base pairing probabilities
(proportional to the area of the squares) between the two structures (upper
right triangle) and the interaction structure predicted bythe maximum
weighted matching algorithm (MWM) (Cary and Stormo, 1995; Gabow,
1973), in which the base pairs are weighted by its binding probability (lower
left). The cut point between the two sequences is indicated by horizontal and
vertical lines, intermolecular base pairs are depicted in the blue upper right
and lower left rectangle, respectively.

Recently, Chitsazet al. (2009) extended this approach to
a dynamic programming algorithm that computes the partition
function of “joint structures”, also inO(N6) time. The key
innovation for passing from the mfe folding of Alkanet al.(2006) to
the partition function is a unique grammar by which each interaction
structure can be generated. Then, the computation of the partition
function follows the outline of McCaskill’s approach for RNA
secondary structure folding (McCaskill, 1990).
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Fig. 2. Left: Joint structure predicted byIRIS (Pervouchine, 2004) (A) and
rip (B) between the small RNAgcvBand its mRNA targetdppARight: :
Dot Plot, as in Fig. 1.

The key idea is to identify a certain subclass of interaction
structure that can serve as building blocks in a recursive
decomposition generalizing the loop-decomposition of secondary
structures. These “tight structures” are a generalizationof the sub-
secondary structures enclosed by a unique closing pair. In the
following two sections we first derive a grammar that allows the
unambiguous parsing of zigzag-free interaction structures, thus
forming the basis for the computation of the partition function
in O(N6) time andO(N4) memory, corresponding the energy
minimization algorithm of Alkanet al. (2006). Then we proceed
by deriving the recursions for the base-pairing probabilities, which
are based on a conceptual reversing of the production rules.

The output ofrip consists of the partition function, the base
pairing probability matrix and a specific joint structure. The latter
is predicted by the maximal weighted matching algorithm (MWM)
(Cary and Stormo, 1995; Gabow, 1973) inO(N3) time andO(N2)
memory, where the base pairs are weighted by their respective
binding probabilities. Finally, we discussrip and showcase first
example applications of the softwarerip.

2 JOINT STRUCTURES

2.1 Combinatorics of Interaction Structures
Two interacting RNAs are represented asdiagrams(Chenet al., 2008)R
andS with N andM vertices, resp. In order to simply the notation in the
following we index the vertices such thatR1 is the 5′ end ofR and S1

denotes the3′ end ofS. The edges ofR andS represent the intramolecular
base pairs. The induced subgraph ofS on a subsequence(Si, . . . , Sj) is
denoted byS[i, j]. In particular,S[i, i] = Si andS[i, i − 1] = ∅.

A complexC(R, S, I) is a graph consisting of two diagramsR andS
(as induced subgraphs) and an additional setI of arcs of the formRiSj

such that each vertex has degree at most one, see Fig. 3. We shall draw
C(R, S, I) by arranging the vertices ofR and S in two lines, showing
the R-arcs in the upper, theS-arcs in the lower halfplane andI-arcs
vertically. A subcomplex is a subgraph ofC induced by the subsequences
(Ri1 , . . . , Rj1 ) and(Si2 , . . . , Sj2 ).

An arc is calledinterior if its start and endpoint are both contained in
either R or S and exterior, otherwise. An interior arcRi1Rj1 is an R-
ancestorof the exterior arcRiSj if i1 < i < j1. Analogously,Si2Sj2

is anS-ancestor ofRiSj if i2 < j < j2 The sets ofR-ancestors andS-
ancestors ofRiSj are denoted byAR(RiSj) andAS(RiSj), resp. We will
also refer toRiSj as a descendant ofRi1Rj1 andSi2Sj2 in this situation.
TheR- andS-ancestors ofRiSj with minimum arc-length are referred to
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Fig. 3. A complexC induced byR[1, 14] andS[1, 13].

asR- andS-parents, see Fig. 4,(A). Finally, we callRi1Rj1 andSi2Sj2

dependent if they have a common descendant and independent,otherwise.

1 2 3 4 5 6 7 81 2 3 4 5 6(A) (B)

Fig. 4. (A) Ancestors and parents: for the exterior arcR3S4, we have the
following ancestor setsAR(R3S4) = {R1R6, R2R4} andAS(R3S4) =
{S2S6, S3S5}. In particular, R2R4 and S3S5 are theR-parent andS-
parent respectively.
(B) Subsumed and equivalent arcs:R1R8 subsumesS1S4 and S5S8.
Furthermore,R2R5 is equivalent toS1S4.

Consider the subcomplexC′ = (R′, S′, I′) induced byR′ = R[i1, j1]
andS′ = S[i2, j2] and suppose there is an exterior arcRaSb with ancestors
RiRj andSi′Sj′ . Then we say thatRiRj is C′-subsumedin Si′Sj′ , if for
anyRkSk′ ∈ I′, i < k < j implies i′ < k′ < j′. In case ofC′ = C,
we call RiRj simply “subsumed” inSi′Sj′ , see Fig. 4,(B). If Ri1Rj1 is
subsumed inSi2Sj2 andvice versa, we call these arcsequivalent.

1 24

1 23

1 2 3 4 5

Fig. 5. Left: A zig-zag, generated byR2S1, R3S3 andR5S4 (red).Right:
A joint structure induced byR[1, 24] andS[1,23].

A joint structure, Ji,j;h,ℓ = J(R[i, j]; S[h, ℓ], I′), Fig. 5, is a
subcomplex ofC(R, S, I) with the following properties:

1. R, S are secondary structures without internal pseudoknots.

2. There are no external pseudoknots, i.e., ifRi1Sj1 , Ri2Sj2 ∈ I′ where
i1 < i2, thenj1 < j2.

3. There are no “zig-zags”, ifRi1Rj1 andSi2Sj2 are dependent, then
eitherRi1Rj1 is subsumed bySi2Sj2 or vice versa.

In absence of exterior arcs a joint structure reduces to a pair of pieces of
secondary structure onR andS, to which we will refer as a pair ofsegments
for short. As segmentS[i1, j1] is maximal if there is no segment,S[i, j]
strictly containingS[i1, j1].

Joint structures are exactly the configurations that are considered in
the maximum matching approach of Pervouchine (2004), in theenergy
minimization algorithm of Alkanet al. (2006), and in the partition function

approach of Chitsazet al. (2009). In the following we introduce tight
structures (ts), or tights, a specific class of joint structures. Tights form the
basis of our algorithmic approach and can be viewed as the transitive closure
of standard loops w.r.t. exterior arcs.

Fix an arbitrary joint structureJa,b;c,d. ThenJi,j;h,ℓ ⊂ Ja,b;c,d is tight
in Ja,b;c,d if

1. it contains at least one exterior arcRi1Sj1

2. for any exterior arcRi1Sj1 ∈ Ji,j;h,ℓ holds
`
AR(Ri1Sj1 ) ∪ AS(Ri1Sj1 )

´
∩ Ja,b;c,d ∈ Ji,j;h,ℓ

3. there does not exist anyJi1,j1;h1,ℓ1 $ Ji,j;h,ℓ containing at least one
exterior arc,Ri1Sj1 , such that for any suchRi1Sj1

`
AR(Ri1Sj1 )∪

AS(Ri1Sj1 )
´
∩ Ja,b;c,d ∈ Ji1,j1;h1,ℓ1 holds.

Given a (ts)JT
i,j;h,ℓ, we observe that neither onei, j, h andℓ, can be start

or endpoints of a segment. In particular, neitheri, j, h, andℓ are isolated. In
combination with the non-zig-zag property, we conclude that there are only
the following four basic types of (ts), Fig. 6:

▽ : RiRj ∈ J▽
i,j;h,ℓ andShSℓ 6∈ J▽

i,j;h,ℓ

△ : ShSℓ ∈ J△
i,j;h,ℓ andRiRj 6∈ J△

i,j;h,ℓ

� : {RiRj , ShSℓ} ∈ J�
i,j;h,ℓ

◦ : {RiSh} = J◦
i,j;h,ℓ andi = j, h = ℓ.

The latter case corresponds to a single external edge.

Fig. 6. Tight structures (ts) of type▽, △, �, and◦.

In the Appendix, we will prove the following

PROPOSITION2.1. LetJa,b;c,d be a joint structure. Then:

1. AnyJa,b;c,d-(ts) is of one of the four types▽, △, �, or ◦

2. Any exterior arc inJa,b;c,d is contained in a uniqueJa,b;c,d-(ts)

3. Ja,b;c,d decomposes into a unique collection ofJa,b;c,d-(ts) and
maximal segments.

Given a (ts)J▽
i0,j0;r,s, a double-tight joint structure(dts), JDT,|▽

i,j;r,s , in

J▽
i0,j0;r,s, wherei0 < i < j < j0, is defined as follows: there exists labels

a, b, c, d wherei ≤ a < b ≤ j andr ≤ c < d ≤ s and (ts)JT
i,a;r,c,

JT
b,j;d,s in JT

i0+1,j0−1;r,s such that

J
DT,|▽
i,j;r,s = JT

i,a;r,c∪̇Ja+1,b−1;c+1,d−1∪̇JT
b,j;d,s, (2.1)

where the disjoint unioṅ∪ refers to both the vertex and arc sets of the joint

structures, see Fig. 7. The case of a double-tight joint structure,JDT,|△
i,j;r,s , in

a (ts),J△
i,j;r0,s0

, is defined accordingly. By abuse of language, we simply

useJDT
i,j;r,s in order to to denote eitherJDT,|▽

i,j;r,s or J
DT,|△
i,j;r,s .

With the help of (dts), we decompose (ts) in the following way:
Let J▽

i,j;r,s be a (ts) of type▽ and letRh1
Sℓ1 andRh2

Sℓ2 be the leftmost
and rightmost exterior arcs inJi,j;r,s andi + 1 ≤ i1 ≤ j1 ≤ j − 1. Then
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6

15

1 11

Fig. 7. A (dts) J
DT |▽
6,15;1,11 (red) inJ2,15;1,11 (blue box). Note that the joint

structureJ1,16;1,11 itself is▽-tight.

Ji+1,j−1;r,s decomposes into
8
>>>><

>>>>:

R[i + 1, i1 − 1]∪̇J
{▽,◦}
i1,j1;r,s∪̇R[j1 + 1, j − 1],

if JT
Rh1

Sℓ1
= JT

Rh2
Sℓ2

;

R[i + 1, i1 − 1]∪̇JDT
i1,j1;r,s∪̇R[j1 + 1, j − 1]

otherwise,

(2.2)

whereJ
{▽,◦}
i1,j1;r,s denotes aJi+1,j−1;r,s-(ts) of type▽ or ◦ andJT

RhSℓ

denotes the unique (ts) inJi+1,j−1;r,s contain the exterior arcRhSℓ.

Analogously, in case of a (ts)J△
i,j;r,s with leftmost and rightmost exterior

arcsRh1
Sℓ1 andRh2

Sℓ2 , andr + 1 ≤ r1 ≤ s1 ≤ s − 1, Ji,j;r+1,s−1

can be decomposed in the form
8
>>>><

>>>>:

S[r + 1, r1 − 1]∪̇J
{△,◦}
i,j;r1,s1

∪̇S[s1 + 1, s − 1],

if JT
Rh1

Sℓ1
= JT

Rh2
Sℓ2

;

S[r + 1, r1 − 1]∪̇JDT
i,j;r1,s1

∪̇S[s1 + 1, s − 1],

otherwise,

(2.3)

whereJ
{△,◦}
i1,j1;r,s denotes aJi,j;r+1,s−1-tight of type△ or ◦.

For a (ts)J�
i,j;r,s with i + 1 ≤ i1 ≤ j1 ≤ j − 1 we analogously derive

Ji+1,j−1;r,s =

R[i + 1, i1 − 1]∪̇J
{△,�}
i1,j1;r,s∪̇R[j1 + 1, j − 1],

(2.4)

whereJ
{△,�}
i1,j1;r,s denotes aJi+1,j−1;r,s-tight of type△ or �.

Prop.(2.1) and equ. (2.1-2.4) establish, for each joint structure, a unique
decomposition into interior and exterior arcs. In Fig. 8 we show how to
decompose a tight of the types▽, △, or � by means of equ. (2.2-2.4).
The above decompositions form the combinatorial basis for the computation
of the partition function.

2.2 Refined Decomposition
The unique (ts) decomposition would in principle already suffice to construct
a partition function algorithm. Indeed, each decomposition step, such as
equ. (2.1-2.4), corresponds to a multiplicative recursionrelation for the
partition functions associated with the joint structures.From a practical
point of view, however, this would result in an unwieldy expensive
implementation. The reason are the multiple break pointsa, b, c, d, . . . ,
each of which correspond to a nestedfor-loop.

We therefore need a refined decomposition that reduced the number
of break points. To this end we call a joint structureright-tight if its
rightmost block is a (ts). We adopt the point of view of Algebraic Dynamic
Programming (Giegerich and Meyer, 2002) and regard each decomposition
rule as a production in a suitable grammar. Fig. 8 summarizestwo major
steps in the decomposition: (I) “arc-removal” to reduce (dts). The scheme is
complemented by the usual loop decomposition of secondary structures, and
(II) “block-decomposition” to split a joint structure intotwo blocks.

The details of the decomposition procedures are collected in Appendix C,
where it is shown that for each joint structureJ1,N;1,M we indeed obtain
a unique decomposition-tree (parse-tree), denoted byTJ1,N ;1,M

. More

or

or

or

or or

or

oror

Procedure (b)

Procedure (a)

= or or

A B C D E F G H J K

Fig. 8. Illustration of Procedure (a) the reduction of arbitrary joint structures
and right-tight structures, and Procedure (b) the decomposition of tight
structures. The panel below indicates the 10 different types of structural
components:A, B: maximal secondary structure segmentsR[i, j], S[r, s];
C: arbitrary joint structureJi,j;r,s; D: right-tight structuresJRT

i,j;r,s; E:

double-tight structureJDT
i,j;r,s; F: tight structure of type▽, △ or �; G:

type� tight structureJ�
i,j;r,s; H: type▽ tight structureJ▽

i,j;r,s; J: type△

tight structureJ△
i,j;r,s; K : exterior arc.

Fig. 9. The decomposition treeTJ1,15;1,8
for the joint structureJ1,15;1,8.

precisely,TJ1,N ;1,M
has rootJ1,N;1,M and all other vertices correspond to

a specific sub-complex ofJ1,N;1,M obtained by the successive application
of the decomposition steps of Fig. 8 and the loop decomposition of the
secondary structures. A concrete example is shown in Fig. 9.

2.3 Extended Loop Model
The standard energy model for RNA folding (Mathewset al., 1999) is
consistent with the basic decomposition of secondary structure diagrams in
the following sense: for secondary structures, the analogue of Fig. 8 reads

S → .S
˛
˛ PS

˛
˛ P and P → (S) (2.5)

representing the cases that either the first base pair is unpaired or paired. Here
S denotes an arbitrary structure, whileP is secondary structure enclosed by
a base pair. In fact, we use this decomposition to evaluate the secondary
structure segmentsA andB in Fig. 8.

The energy model, however, enforces a further refinement of the
decomposition by distinguishing three different types of loops, for which
energy contributions need to be computed by means of different rules:
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hairpin loopsP → Ha, interior loops (including bulges and stacked base
pairs) P → Int, and multi-branched loops:P → M. These are now
expanded further

Ha → (h) Int → (i′Pi′′) M → (M ′M ′′) (2.6)

where h, i′, i′′ are the unpaired regions of the hairpin and interior
loops. Multi-branch loops are further decomposed into components with
a single branchM ′ and with multiple branchesM ′′ for which the energy
contributions are assumed to be additive. For completeness, we recall
the productionsM ′ → .M ′|P and M ′′ → .M ′′|PM ′′|Pm, where
m is a stretch of unpaired nucleotides. The importance of thisrefined
decomposition lies in the fact that the energy of each substructure can be
obtained as a sum of the energies of the substructures associated with non-
terminal symbols and an additional contribution that depends uniquely on
the production and the terminals. The latter rules form the specific energy
parameters(Mathewset al., 1999).

The description of joint structures includes two further types of loops,
both of which being arising in the context of exterior arcs. Following Chitsaz
et al. (2009), we call themhybrid andkissing loop, Fig. 10.

5’

3’

5’ 3’

3’ 5’

5’

3’

5’ 3’

3’ 5’

3’ 5’

3’

5’

Fig. 10. The two new loop types in interaction structures: the hybrid(top)
and the kissing loop (bottom).

• A hybrid (Hyi1,iℓ;j1,jℓ
) consists of a series of intermolecular interior

loops formed byℓ ≥ 2 exterior arcsRi1Sj1 , . . . , Riℓ
Sjℓ

such
thatRih

Sjh
is nested withinRih+1

Sjh+1
and the internal segments

R[ih +1, ih+1−1] andS[jh +1, jh+1−1] consist of unpaired bases
only. In other words, a hybrid is an unbranched stem-loop structure
formed by external arcs

• A kissing-loop (KRi,Rj
) is either a pair,(RiRj , R[i + 1, j − 1]),

together with a nonempty set ofRiRj -children, Ri1Sj1 , . . . where
i < i1 < j, or a pair (SiSj , S[i + 1, j − 1]), with a nonempty
set of SiSj-children Ri1Sj1 , . . . where i < j1 < j. Kissing
loops have been singled out both for logical reasons and because some
investigations into their thermodynamic properties have been reported
in the literature (Gagoet al., 2005).

Let us now have a closer look at the energy evaluation ofJi,j;h,ℓ.
Each decomposition step in Fig. 8 results in substructures whose energies
we assume to contribute additively and generalized loops that need to be
evaluated directly. There are the following two scenarios:
I. Arc removal. Most of the decomposition operations in Procedure (b)
displayed in Fig. 8 can be viewed as the “removal” of an arc (corresponding
to the closing pair of a loop in secondary structure folding)followed
by a decomposition. Both: the loop-type and the subsequent possible
decomposition steps depend on the newly exposed structuralelements.
W.l.o.g., we may assume that we open an interior base pairRiRj .

The set of base pairs onR[i, j] consists of all interior pairsRpRq with
i ≤ p < q ≤ j and all exterior pairsRpSh with i ≤ p ≤ j. An interior
arc isexposedon R[i + 1, j − 1] if and only if it is not enclosed by any
interior arc inR[i, j]. An exterior arc isexposedon R[i + 1, j − 1] if and
only if it is not a descendant of any interior arc inR[i + 1, j − 1]. Given
Rij , the arcs exposed onR[i + 1, j − 1] corresponds to the base pairs
immediately interiorof RiRj . Let us writeER[i,j] = Ei

R[i,j]
∪̇Ee

R[i,j]
for

this set of “exposed base pairs” and its subsets of interior and exterior arcs.
As in secondary structure folding, the loop type is determined byER[i,j] :=
ER as follows:

ER = ∅ hairpin loop

ER = Ei
R, |ER| = 1 interior loop (including bulge and stacks)

ER = Ei
R, |ER| ≥ 2 multi-branch loop

ER = Ee
R kissing hairpin loop

|Ei
R|, |Ee

R| ≥ 1 general kissing loop

This picture needs to be refined even further since the arc removal is coupled
with a further decomposition of the intervalR[i + 1, j − 1]. This prompts
us to distinguish (ts) and (dts) with different classes of exposed base pairs on
one or both strands. It will be convenient, furthermore to include information
on the type of loop in which it was found.

For a (ts)J▽
i,j;h,ℓ of type▽, J▽

i,j;h,ℓ is of typeE, if S[h, ℓ] is not enclosed

in any base pair(J▽,E
i,j;h,ℓ). SupposeJ▽

i,j;h,ℓ is located immediately interior
to the closing pairSpSq (p < h < ℓ < q). If the loop closed bySpSq is

a multiloop, thenJ▽
i,j;h,ℓ is of typeM (J▽,M

i,j;h,ℓ). If SpSq is contained in a
kissing-loop, we distinguish the typesF andK, depending on whether or not
Ee

S[h,ℓ]
= ∅. Fig. 11 displays the further decomposition forJ▽,M

i,j;r,s.

M

M

K

I

i j

K

M

M

M M

M
M

i jji j ji i

M

Fig. 11. Further refinement: the four decompositions ofJ▽,M
i,j;r,s via

Procedure (b). The green rectangle denotes isolated segments. The letters
I, M, etc denote the loop-type and the type of of the exposed arc(s) of the
double-tight structures. See also Fig. 8 for more details onthe notation. The
four cases correspond to the four contributions in equ. (3.3).

For a (dts)JDT
p,q,r,s (denoted by “E” in Fig. 8) we need to determine the

type of the exposed pairs of bothR[p, q] and S[r, s]. Hence each such
structure will be indexed by two types. In total, we arrive at18 distinct
cases since some combinations cannot occur. For instance, a(dts) cannot
be external in bothR andS, i.e., typeEE does not exit, whereE means
external.
II. Block decomposition. The second type of decomposition is the splitting
of joint structures into “blocks”, such as the decompositions of a right-tight
structure in Procedure (a) and a double-tight joint structure in Procedure
(b) in Fig. 8. A right-tight structuresJRT

i,j;h,ℓ may appear in two ways,
depending on whether or not the rightmost tight structure isof Type ◦.
More precisely, letRi1Sj1 denote the rightmost exterior arc inJRT

i,j;h,ℓ.

There is a uniqueJi,j;h,ℓ-(ts) JT
Ri1

Sj1
, such thatRi1Sj1 ∈ JT

Ri1
Sj1

.

We distinguish type (rB) loops induced byJT
Ri1

Sj1
being of type◦ from

all other cases (rA). Analogously,(lB) and (lA) are defined for double-
tight joint structure. For instance, Fig. 12 displays the decomposition of
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K

B

K

A

K

K

K

B

K

K

B

K

F

F

F

K

F

K

Fig. 12. Decomposition ofJRT,KKB

i,j;h,ℓ by means of procedure (b). Here the
red rectangle denotes a pair of secondary segments having the property that
at least one of them is not isolated.

M

M M M

K

K F KK K

MM

K

M

KF

Fig. 13. Decomposition ofJDT,KM

i,j;h,ℓ by means of procedure (b). The five
alternatives correspond to the three additive terms in equ.(3.4).

JRT,KKB

i,j;h,ℓ . SupposeJDT
i,j;r,ℓ is a (dts) contained in a kissing loop, that is

we have eitherEe
R[i,j]

6= ∅ or Ee
S[h,ℓ]

6= ∅. W.l.o.g., we may assume

Ee
R[i,j]

6= ∅. Then at least one of the two “blocks” contains the exterior
arc belonging toEe

R[i,j]
, see Fig. 13. The situation is analogous if we

decompose a joint structure,JRT
i,j;r,ℓ, which is contained in a kissing loop.

Energy Parameters.The energy model implemented inrip in an extension
of the standard parametrization. In recognizes the following loop-types:

1. Hairpin-loop A hairpin loop Hai,j has tabulated energiesGHa
i,j

depending on their sequence and length.

2. Interior-loop An interior loop Inti1,j1;i2,j2 also have tabulated
energiesGInt

i1,j1;i2,j2
.

3. Multi-loop A multi-loop Mi0,j0 has energyα1 + α2(t + 1) + α3c2,
wheret = |Ei

R[i0,j0]
| (“branching order”) insideR[i0, j0] andc2 is

the number of isolated vertices contained inR[i0, j0].

4. Kissing-loopA kissing-loopKi0,j0 has energyβ1 + β2(t + 1) +
β3c2, where t = |Ei

R[i0,j0]
| and c2 is the number of isolated

vertices contained inR[i0, j0] in analogy with the parametrization of
multiloops.

5. Hybrid A hybrid Hyi1,iℓ;j1,jℓ
has energyGHy

i1,iℓ;j1,jℓ
= σ0 +

σ
P

θ GInt
iθ ,iθ+1;jθ ,jθ+1

, where a intermolecular interior loop

formed by Riθ
Sjθ

and Riθ+1
Sjθ+1

is treated like interior loop
Intiθ ,jθ ;iθ+1,jθ+1

with an affine scalingσ.

In the Discussion we also consider a different energy parametrization of
hybrid loops (Bernhartet al., 2006) and the approach of Dimitrov and Zuker
(2004).

3 PARTITION FUNCTION

3.1 Recursions for secondary structures
The additivity of loop energies, see Section 2.3, translates immediately into
the multiplicativity of the Boltzmann factors that contribute to the partition

functionQ =
P

S e−F (S)/kT , where the sum runs over all the secondary
structuresS that can be constructed from a given sequence of lengthM .
This factorization of terms can be realized by introducingQb

h,ℓ, where
the sum is taken over all substructuresS[h, ℓ] on the segment[h, ℓ] for
which ShSℓ ∈ S[h, ℓ] is a base pair, andQs

h,ℓ for all the configurations
on [h, ℓ], irrespective of whether or notSh and Sℓ are base paired. In
particular, we haveQ = Qs

1,N and arrive at the recursion (right to left
block decomposition)

Qs
h,ℓ = 1 +

X

i,j

Qs
h,i−1Qb

i,j . (3.1)

In order to computeQb
h,ℓ we need to distinguish between the three types of

loops that are treated differently in standard RNA energy model (Mathews
et al., 1999): hairpin loops, interior loops (including bulges and stacked base
pairs), and multi-branch loops, see Figure 14.

Qb
h,ℓ =e−GHa

h,ℓ/kT +
X

i,j

e−GInt
i,j;h,ℓ/kT Qb

i,j

+
X

i,j

Qm
h+1,i−1Qb

i,je−(α1+2α2+(ℓ−j−1)α3)/kT ,

Qm
h,ℓ =

X

i,j

(Qm
h,i−1 + e−(i−h)α3/kT )Qb

i,je−(α2+(ℓ−j)α3)/kT ,

(3.2)

where Qm is the auxiliary array representing multi-branched loops,as
described in detail by McCaskill (1990).

3.2 Recursions for joint structures
The production rules described in the previous section are now translated
into recursion equations for the partition function of eachtype. The
computation of the partition function proceeds “from the inside to the
outside”, see equs. (3.3,3.4). The recursions are initialized with the
energies of individual external base pairs and empty secondary structures
on subsequences of length up to four. In order to differentiate multi- and
kissing-loop contributions, we introduce the partition functions Qm

i,j and

Qk
i,j . Here,Qm

i,j denotes the partition function of secondary structures on
R[i, j] or S[i, j] having at least one arc contained in a multi-loop. Similarly,
Qk

i,j denotes the partition function of secondary structures onR[i, j] or
S[i, j] in which at least one arc is contained in a kissing loop.

For instance, the recursion forQ▽,M
i,j;r,s in Fig. 11 reads:

Q▽,M
i,j;r,s =

X

h,ℓ



Q▽,M
h,ℓ;r,se−GInt

i,j;h,ℓ/kT

+QDT,MM

h,ℓ;r,s e−(α1+α2)/kT × (e−(h−i−1)α3/kT + Qm
i+1,h−1)

× (e−(j−ℓ−1)α3/kT + Qm
ℓ+1,j−1),

+QDT,KM

h,ℓ;r,s e−(β1+β2)/kT × (e−(h−i−1)β3/kT + Qk
i+1,h−1)

× (e−(j−ℓ−1)β3/kT + Qk
ℓ+1,j−1),

+Q▽,M
h,ℓ;r,se−(α1+2α2)/kT

ˆ
e−(j−ℓ−1)α3/kT Qm

i+1,h−1

+ e−(h−i−1)α3/kT Qm
ℓ+1,j−1 + Qm

ℓ+1,j−1Qm
i+1,h−1

˜
ff

.

(3.3)
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Analogously, the recursion for the (dts)QDT,KM
i,j;r,s of Fig.13 is given by

QDT,KM
i,j;r,s =

X

i1,j1



(Q▽,M
i,i1;r,j1

e−β2/kT + Q△,K
i,i1;r,j1

e−α2/kT

+Q�
i,i1;r,j1

e−(α2+β2)/kT + Q△,F
i,i1;r,j1

e−α2/kT )QRT,KM
i1+1,j;j1+1,s

+Q△,K
i,i1;r,j1

e−α2/kT QRT,FM
i1+1,j;j1+1,s

ff

.

(3.4)

The complete set of recursions comprises for (ts)QT
i,j;r,s, 15 4D-arrays, for

right-tight structuresQRT
i,j;r,s, 24 4D-arrays, for (dts)QDT

i,j;r,s, 18 4D-arrays

and 16 4D-arrays for arbitrary interaction structuresQI
i,j;r,s. In addition, we

need the usual matrices for the secondary structuresR andS, and the above
mentioned matrices for kissing loops. The full set of recursions is compiled
in the Supplemental Material.

4 BASE PAIRING PROBABILITIES

4.1 Approach
In contrast to the computation of the partition function “from the inside to
the outside”, the computation of the base pairing probabilities are obtained
“from the outside to the inside”. That is, the longest-rangepairs are
computed first. This is analogous to McCaskill’s algorithm for secondary
structures (McCaskill, 1990).

Let Jξ,Y1Y2Y3

i,j;h,ℓ be the set of substructuresJi,j;h,ℓ ⊂ J1,N;1,M such
that Ji,j;h,ℓ appears inTJ1,N ;1,M

as an interaction structure of type
ξ ∈ {DT, RT,▽,△, �, ◦} with loop-subtypesY1, Y2 ∈ {M,K,F} on
the sub-intervalsR[i, j] and S[h, ℓ], Y3 ∈ {A,B}. Let Pξ,Y1Y2Y3

i,j;h,ℓ be

the probability ofJξ,Y1Y2Y3

i,j;h,ℓ . For instance,PRT,MKA

i,j;h,ℓ is the sum over all
the probabilities of substructuresJi,j;h,ℓ ∈ TJ1,N ;1,M

such thatJi,j;h,ℓ

is a right-tight structure of typerA and R[i, j], S[h, ℓ] are enclosed by
a multi-loop and kissing loop, respectively. Then the computation of the
pairing probabilities reduces to a trace-back routine in the decomposition
tree constructed in Section 2.2.

SetJ = J1,N;1,M , T = TJ1,N ;1,M
and letΛJi,j;h,ℓ

= {J |Ji,j;h,ℓ ∈
T} denote the set of all joint structuresJ such thatJi,j;h,ℓ is a vertex in the
decomposition treeT . Then

PJi,j;h,ℓ
=

X

J∈Λi,j;h,ℓ

PJ (4.1)

and furthermore

Pξ,Y1Y2Y3

i,j;h,ℓ =
X

Ji,j;h,ℓ∈Jξ,Y1Y2Y3
i,j;h,ℓ

Pi,j;h,ℓ. (4.2)

4.2 Case Study: Secondary Structures
In order to illustrate the logic of our backtracking procedure, we first
consider the special case of secondary structures.

Let PRiRj
denote the base pairing binding probability ofRiRj ,

i.e. PRiRj
=

P

RiRj∈W QW Q−1, where the sums is taken over all the

partition functions of secondary structuresW in R such thatRiRj ∈ W .
Let TW be the decomposition tree of a particular secondary structure W on
R[1, N ] via Procedure (c), the key observation here is

RiRj ∈ W ⇐⇒ RiRj ∈ TW . (4.3)

Let Ω(RiRj) = {W | RiRj ∈ TW }, i.e. the set of secondary structures
whose decomposition tree contain the pairRiRj as a leaf. Clearly, via
equ. (4.3), we obtain

PRiRj
=

X

W∈Ω(RiRj)

QW Q−1. (4.4)

Next, in order to computePRiRj
, we need to express this probability via

sum over the probabilities of the substructuresξ such thatξ is the parent of

RiRj in the decomposition tree. LetRb(i, j) denote the set of secondary
segmentsR[i, j] in which Ri is connected withRj and letPb

Ri,Rj
be its

probability. By construction, we havePRiRj
= Pb

Ri,Rj
, since the parent of

RiRj in the decomposition tree must be a secondary segmentR[i, j] such
that RiRj ∈ R[i, j]. Therefore the computation ofPRiRj

is reduced to

the calculation of the substructure probabilityPb
Ri,Rj

. The decomposition

s

h l

bs u

h l

b

lh lh
b um

h l

b b uu mu

i j i jh l h llh
m

u b

lh

uu

b u m s

i ji j i ji j

Fig. 14. Extended version of Procedure (c). The panel below indicates from
left to right the segmentsRb(i, j), in which Ri, Rj is paired, the set of
unpaired segments,Ru(i, j), Rm(i, j), containing least one arc with an
outer loop of typeM and finallyRs(i, j), the set of arbitrary segments.

is summarized in Procedure (c), Fig. 14. This representation differes from
the usual implementation of the RNA standard folding model only it that
we can afford more moving indices in each recursion since theentirerip
algorithms requiresO(n6) time. Inspection of Fig. 14 shows that for an
Rb(i, j)-parent we have to distinguish the five cases displayed in Fig. 15.
Denote byRm(i, j) the set of segmentsR[i, j] ∈ TR[1,N] containing at
least one arc with an outer loop of typeM, and writeRs(i, j) for the set
of all segmentsR[i, j] ∈ TR[1,N]. Furthermore, setPm

Ri,Rj
andPs

Ri,Rj

for the probabilities ofRm(i, j) andRs(i, j), respectively. For (L1) and
(L4) in Fig. 15, it is possible thath = i andj = ℓ holds. However, via
further backtracking forRs(i, j) andRm(i, j) we can recursively calculate
the binding probability from the inside to the outside. Following the logic of

L1

L2

L3

L4

L5

b b

b

b

b

b

b

b

s s

u

u

u

u

m

m

m

mu

i j

i j

i j

i j

i j

h lh

l

h l

h l

h l h l

h l

h l

h lh

l

uu

Fig. 15. Backtracing for secondary structures: for a parent ofRb(i, j) we
have five cases according to Procedure (c): external (L1), interior loop
(L2), closing pair of a multi-loop (L3), (L4) and (L5) denotethe scenarios
arising from decomposing aRm(h, ℓ)-segment. See equ. (4.5) for the
corresponding recursions.
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Fig. 15, we obtain the following recursion forPb
Ri,Rj

Pb
Ri,Rj

=
X

h,ℓ



Ps
Rh,Rℓ

Qs
h,i−1Qb

i,j

Qs
h,ℓ

| {z }

L1

+ Pb
Rh,Rℓ

Qb
i,je−GInt

h,ℓ;i,j/kT

Qb
h,ℓ

| {z }

L2

+ Pb
Rh,Rℓ

Qm
h+1,i−1Qb

i,je−(α1+2α2+(ℓ−j−1)α3)/kT

Qb
h,ℓ

| {z }

L3

+ Pm
Rh,Rℓ

Qb
i,je−(α2+(i−h+ℓ−j)α3)/kT

Qm
h,ℓ

| {z }

L4

+ Pm
Rh,Rℓ

Qm
h,i−1Qb

i,je−(α2+(ℓ−j)α3)/kT

Qm
h,ℓ

| {z }

L5

ff

.

(4.5)

Analogously, the recursions for the base pairing probabilities Pm
Ri,Rj

and

Ps
Ri,Rj

are given by

Pm
Ri,Rj

=
X

h,ℓ



Pb
Ri−1,Rℓ

e−(α1+2α2+(ℓ−1−h)α3)/kT

×
Qb

j+1,hQm
i,j

Qb
i−1,ℓ

+ Pm
Ri,Rℓ

Qm
i,jQb

j+1,he−(α2+(ℓ−h)α3)/kT

Qm
i,ℓ

ff

Ps
Ri,Rj

=
X

h,ℓ

Ps
Ri,Rℓ

Qs
i,jQb

j+1,h

Qs
i,ℓ

.

(4.6)

4.3 Base pairing probabilities for joint structures
SetΣ1 = {J | RiRj ∈ J}. Now we apply the same strategy to the joint
structures appearing in Fig. 8. LetQI denote the partition function which
sums over all the possible joint structuresJ1,N;1,M . Then by definition, we
have

PRi,Rj
=

P

J∈Σ1
QJ

QI
. (4.7)

In order to computePRiRj
we classifyΣ1 according to the parent ofRiRj

in T :

Σ1 = {J | R[i, j] ∈ T, R[i, j] ∈ Rb(i, j)}

∪
[

h,ℓ

{J | Ji,j;h,ℓ ∈ T, Ji,j;h,ℓ ∈ J▽
i,j;h,ℓ}

∪
[

h,ℓ

{J | Ji,j;h,ℓ ∈ T, Ji,j;h,ℓ ∈ J�
i,j;h,ℓ},

(4.8)

which translates to

PRiRj
= Pb

Ri,Rj
+

X

h,ℓ

P▽,{E,M,F,K}
i,j;h,ℓ +

X

h,ℓ

P�
i,j;h,ℓ, (4.9)

where we use the shorthandP▽,{E,M,F,K}
i,j;h,ℓ = P▽,E+P▽,M+P▽,F+P▽,K

for identical positionsi, j, h, ℓ. Analogously, we obtain for pairs inS:

Σ2 = {J | S[h, ℓ] ∈ T, S[h, ℓ] ∈ Sb[h, ℓ]}

∪
[

i,j

{J | Ji,j;h,ℓ ∈ T, Ji,j;h,ℓ ∈ J△i,j;h,ℓ},
(4.10)

and therefore

PSiSj
= Pb

Si,Sj
+

X

h,ℓ

P△
h,ℓ;i,j , (4.11)

with P△ = P△,E + P△,M + P△,K + P△,F.
Note that the expressions forPRiRj

andPSiSj
are not symmetric. This

is due to the fact that our decomposition routine give preference to arc-
removals inR over those inS. This asymmetry is necessary to ensure that
the decomposition in Fig. 8 is unambiguous.

Finally, we calculate the binding probability of an exterior arc RiSj .
SinceRiSj is a (ts) of type◦, PRiSj

is directly given by the probability
of this special substructure in equ. (4.2).

b b

= or or

Fig. 16. Illustration of the back-tracing procedure. For each term,we need to
add up the contributions of derivations that contain a particular substructure.

In order to compute the binding probabilities of both interior and exterior
arcs, the key is to employ an “inverse” grammar induced by tracing
back in the decomposition tree as displayed in Fig. 16. By virtue of this
backtracking, we obtain the recurrence formulae in analogyto the case of
secondary structures, discussed above.
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5 RESULTS AND DISCUSSION
In this contribution we have introduced a framework in which
the partition function and the base pairing probabilities of zigzag-
free RNA-RNA interactions can be derived in a natural way. Our
approach is implemented in the software packagerip using the full
standard energy model for RNA secondary structures and a multi-
loop-like additive parametrization for kissing loops. Thepartition
function computed byrip is equivalent to that derived by Chitsaz
et al. (2009) based on a different mathematical framework.

The algorithmic approach taken here was motivated by a
combinatorial analysis of zigzag-free interaction structures. From
a mathematical point of view, our approach is centered around
the notions of tight structures and decomposition trees (the latter
described in full detail in the appendix). A detailed mathematical
analysis, in particular the derivation of the generating function and
further enumeration results, will be discussed elsewhere.

The computation of the partition function conceptually follows
the logic of the McCaskill’s approach (McCaskill, 1990) forRNA
secondary structures. The generalization of the computation of the
base pairing probabilities, however, is less straight-forward. The
reason is that base pairs in joint structures are not always the unique
closing pairs of loop, hence base pairing probabilities cannot be
identified directly with the probabilities of certain (ts).Instead, one
has to compute the pairing probabilities by explicitly “tracing back”
all contributing joint structures.

For consistency with the approach of Chitsazet al. (2009), we
include an independent initialization energyσ0 to each hybrid. A
scaling of the energies in hybrids is also implemented. Alternatively,
an single initialization energyε is used in many other RNA-
cofolding algorithms, includingRNAcofold (Bernhart et al.,
2006) and the approach of Dimitrov and Zuker (2004). This
initialization term can be introduceda posteriorionce the partition
function of the joint structuresQI and the partition functionsQR

and QS of the isolated interaction partners have been computed.
Let Ω1 denote the set of all joint structures containing at least
one external arc and denote byΩ0 the set of all structures that
have none. The partition function computed byrip is Qrip =
Q(Ω1) + Q(Ω0). For the non-interacting contribution we have
Q(Ω0) = QRQS . Taking the initiation term into account, we have
to computeQ = Q(Ω1) exp(−ε/kT ) + QRQS , from which we
easily obtain the corrected value forQ(Ω1).

In addition to computing the equilibrium thermodynamics of
RNA-RNA interactions (Chitsazet al., 2009), therip software
also predicts details of the interaction structures themselves. The
base pairing probabilities are represented in “dotplots” analogous to
those inRNAcofold (Bernhartet al., 2006), Fig. 17. Two diagonal
blocks (in white) contain the internal base pairs of the two pairing
interaction molecules, the shaded rectangles display the interacting
pairs. The upper-right triangle shows the base pairing probabilities.
In the lower-left triangle, the unweighted maximum expected
accuracy structure is displayed. It is given by the optimal RNA-
RNA interaction structure with each possible base pair weighted by
its base pairing probability. As shown by Bernhartet al. (2006), the
pairing probabilities can also be rescaled quite easily fora single
initiation energy contribution:

P
ǫ
ij =

ˆ

P
rip

ij Qrip
− Pij(Ω0)QRQS

˜

e−ε/kT + Pij(Ω0)QRQS

[Qrip
− QRQS]e−ε/kT + QRQS

(5.1)

(A)(A) (B) (C)

3'-

5'- -3'

-5' 3'-

5'- -3'

-5' 3'-

5'- -3'

-5'

Fig. 17. rip versus RNAcofold: dot plots (top) and diagrams
(bottom) of joint structures of the two RNA molecules
GCUCACUACAGCUUGUUGGGAACAACAGGCUCUAGUGAGU and
GAAACGGAGCGGAACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC
as predicted byRNAcofold (Bernhartet al., 2006) (left) andrip with
parameters (σ0 = 5.1kcal/mol, σ = 0.92) used by (Chitsazet al., 2009)
(middle) and be rescaled by a globalǫ = 4.1kcal/mol and σ0 = 0,
σ = 1 (right). Dot Plot: Upper right: Base binding probability, the area of
the squares is proportional to the corresponding pair probabilities. Lower
left: structure predicted by the maximum weighted matchingalgorithm
(MWM) (Cary and Stormo, 1995; Gabow, 1973), in which the basepairs are
weighted by its binding probability. The two lines forming across indicate
the cut point, intermolecular base pairs are depicted in theblue upper right
and lower left rectangle.

This computation can easily be performed as a post-processing of
therip output.

Back-tracing of the base pairing patterns that underlie thefree
energy of RNA-RNA binding is of great importance in detailed
studies of ncRNA-mRNA interactions. The details of the binding
sites have a crucial impact on the interpretation of the computational
results and on the comparison of the computational prediction and
experimental data. It was shown by Mücksteinet al. (2008), for
instance, that positive and negative regulation of bacterial mRNAs
can be distinguished depending on whether the interaction structure
contains the Shine-Dalgarno sequence in stable stem or exposed in
an predominantly unpaired region.

So far, very few interaction structures are known that are more
complex than those computable byRNAup/intaRNA. It remains
unclear, however, whether this is a correct representationof reality.
It is entirely conceivable that multi-point contacts such as the one
in the OxyS/fhlA system (Argaman and Altuvia, 2000) are rarely
observed experimentally because they are typically excluded from
candidate lists due to the lack of readily detectable pairing regions.
A survey withrip may be suitable to provide us with a much more
unbiased picture.

In this contribution we have focussed on the algorithmic
background for computing detailed models of RNA-RNA interactions
in the most general framework that is computationally feasible
at the moment. The current implementation ofrip is mostly
intended as a reference implementation. Due to the immense
computational costs incurred several dozens of interdependent 4-
dimensional arrays,rip is a means of last resort for those cases
where one suspects complex interaction structures beyond the reach
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of simpler interaction models. We are here in a similar position
as with the Sankoff algorithm (which addresses the closely related
dynamic programming problem of simultaneous alignment and
structure prediction). While the full implementations areslow
and of limited use in particular in large-scale studies, they are
instrumental in optimizing the procedure and in devising efficient
nearly exact pruning heuristics that can dramatically reduce the
fraction of array entries that need to be computed (Havgaardet al.,
2007). The full implementation also serves a starting pointfor the
exploration of further variations on the theme. One open question is
the computation of “hybrid probabilities”, i.e., probabilitiesP

Hy

i,j;h,ℓ

thatR[i, j] and[h, ℓ] form an “interaction stem” or a even an entire
uninterrupted interaction region. Another line of research concerns
improved energy models for the more complex types of loops,
possibly along the lines of Isambert and Siggia (2000).

In order to store the partition function and the base pairing
probabilities of joint structures inrip, we employ4-dimensional
arrays. For the recursion for the partition function,QI , we use
16 matrices,24 matrices forQRT , 18 matrices forQDT and15
matrices forQT , in the context of taking into account the loop
energy. The complete set of partition function recursions and all
details on the particular implementation ofrip can be found at
http://www.combinatorics.cn/cbpc/rip.html. The
space complexity ofrip is O(N4). Summations in our recursion
equations run over at most two independent indices. Therefore, the
time complexity inrip is O(N6). In order to obtain the pairing
probabilities we trace back in the decomposition tree. Thus, we have
the same space complexity and time complexity as for calculating
the partition function.
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(2004) mRNA openers and closers: modulating AU-rich element-controlled mRNA
stability by a molecular switch in mRNA secondary structure. Chembiochem., 5,
1432–1447.

Mneimneh, S. (2007) On the approximation of optimal structures for RNA-
RNA interaction. IEEE/ACM Trans. Comp. Biol. Bioinf. In press,
doi.ieeecomputersociety.org/10.1109/TCBB.2007.70258.

Mückstein, U., Tafer, H., Bernhard, S., Hernandez-Rosales, M., Vogel, J., Stadler, P.
and Hofacker, I. (2008) Translational control by RNA-RNA interaction: Improved
computation of RNA-RNA binding thermodynamics. In Elloumi, M., Küng, J.,
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APPENDIX

A Proof of Proposition 2.1
Let ≺1 be the partial order≺1 over the set of interior arcs, given by
Si1Sj1 ≺1 Si2Sj2 ⇐⇒ i2 < i1 < j1 < j2. Similarly,
let ≺2 denote the partial order over the set of exterior arcsRi1Sj1 ≺2

Ri2Rj2 ⇐⇒ i1 < i2, j1 < j2.
Let RiSj be the maximal (rightmost) exterior arc ofJa,b,c,d. We

consider the set of maximalRiSj-ancestors,M . In case ofM = ∅
we immediately observeJi,j;h,ℓ = RiSj , i.e. Ji,j;h,ℓ is of type ◦.
Suppose next|M | = 1. By symmetry we can, without loss of generality,
assumeM = {Ri1Rj1}. Let Ri0Sj0 the minimal exterior arc being an
descendant ofRi1Rj1 and letj∗0 denote either the start point of the maximal
Ri0Sj0 S-ancestor or setj∗0 = j0 if no such ancestor exists. Then, by
construction,Ji1,j1;j∗

0
,j is tight in Ja,b,c,d. Finally, in case of|M | = 2,

i.e. M = {Ri1Rj1 , Sr1
Ss1

}. We may, without loss of generality, assume
thatRi1Rj1 subsumesSr1

Ss1
. Again we consider the minimal descendant

of Ri1Rj1 , RzSx. Let x∗ be either the start point of the maximalS-
ancestor ofRzSx or x∗ = x, otherwise. ThenJi1,j1;x∗,s1

is tight. If
Ri1Rj1 is equivalent toSr1

Ss1
, thenJi1,j1;r1,s1

is tight. In the above
procedure we have constructed a (ts),J∗, of typeτ ∈ {▽,△, �, ◦} that
contains the maximal exteriorJa,b,c,d-arc. By definition of (ts) and the fact
that we have non-crossing arcs it follows that any other (ts)in Ja,b,c,d is
disjoint to J∗. We proceed by considering the rightmost exterior arc of
Ja,b,c,d that is not contained inJ∗, concluding assertion (c) by induction
on the number of exterior arcs ofJa,b,c,d. Since any exterior arc ofJa,b,c,d

is contained in a unique (ts) generated by the above procedure, (b) follows,
see Fig. 18.
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Fig. 18. Illustration of Prop.2.1.

B Derivation of equ. (2.2)-(2.4)
According to Prop. 2.1(ii), there exist uniqueJi+1,j−1;r,s-tight structures
JT

i1,i2;r,r1
and JT

j2,j1;s1,s such that Ji1,i2;r,r1
= JT

Rh1
Sℓ1

and

Jj2,j1;s1,s = JT
Rh2

Sℓ2
, respectively. We have the following two scenarios:

in case ofJT
Rh1

Sℓ1
= JT

Rh2
Sℓ2

, we haver = s, in which caseJT
i1,j1;r,s

is of type◦ or in view ofSrSs 6∈ J▽
i,j;r,s Ji1,j1;r,s is of type▽, otherwise.

In case ofJT
Rh1

Sℓ1
6= JT

Rh2
Sℓ2

, Ji1,j1;r,s is a (dts) inJi+1,j−1;r,s.

In order to arrive at equ. (2.4), we firstly observe that thereexist only
oneJi+1,j−1;r,s-tight structure,JT

i1,j1;r,s sinceSrSs ∈ Ji+1,j−1;r,s.
Furthermore, consider the setM , consisting of arc that equivalent toSrSs.
In case ofM = ∅, we haveJ△

i1,j1;r,s or J�
i1,j1;r,s, otherwise.

C Construction of the Decomposition Trees
Let us begin by giving an interpretation of Prop. 2.1.
Procedure (a)[Block Decomposition]
input: a joint structureϑ0 = Ji,j;h,ℓ, which is notϑ0-tight or a maximal
secondary segment (ms).
output: a unique treeTa(ϑ0) = (Va(T ), Ea(T ))
Let i ≤ j∗ ≤ j + 1 andR[j∗, j] be theϑ0-(ms) containj. In particular,
j∗ = j + 1 in case of such an ms does not exist andj∗ = 1 if R[i, j] itself
is a (ms). Analogously, we defineS[ℓ∗, ℓ]. We construct the treeTa(ϑ0)
recursively as follows:
initialization: Va(T ) = {ϑ0} andEa(T ) = ∅.
(a1): in case ofj∗ = j + 1 andℓ∗ = ℓ + 1, i.e. ϑ0 is right-tight, then
ϑ0 decomposes via Prop. 2.1 (b) and (c) into aϑ0-tight structureϑ1 =

J
{▽,△,�,◦}
i1,j;h1,ℓ and a joint structureϑ2 = Ji,i1−1;h,h1−1, wherei ≤ i1 ≤ j

andh ≤ h1 ≤ ℓ. Accordingly, we have

Va(T ) = Va(T ) ∪ {ϑ1, ϑ2}, (5.2)

Ea(T ) = Ea(T ) ∪ {ϑ0ϑ1, ϑ0ϑ2}. (5.3)

(a2) otherwise, ϑ0 decomposes into a right-tight structureϑ3 =
JRT

i,j∗−1;h,ℓ∗−1 in ϑ0 and two (ms)ϑ4 = R[j∗, j], ϑ5 = S[ℓ∗, ℓ].
Accordingly, we have

Va(T ) = Va(T ) ∪ {ϑ3, ϑ4, ϑ5}, (5.4)

Ea(T ) = Ea(T ) ∪ {ϑ0ϑ3, ϑ0ϑ4, ϑ0ϑ5}. (5.5)

We iterate the process until all the leaves ofTa(ϑ0) are eitherϑ0-tight
structures orϑ0-ms.

We proceed by providing an interpretation of equ. (2.2)-(2.4).
Procedure (b): [Arc Removal and block decomposition]
input: a (ts)ϑ0 = Ji,j;h,ℓ

output: a unique treeTb(ϑ0) = (Vb(T ), Eb(T ))
initialization: Vb(T ) = {ϑ0} andEb(T ) = ∅.
We distinguishJ(i, j;h, ℓ) by type:
◦: do nothing.
�: according to equ. (2.4),ϑ0 decomposes intoϑ1 = RaRb, ϑ2 = R[i +

1, i1 − 1], ϑ3 = J
{�,△}
i1,j1;h,ℓ andϑ4 = R[j1 + 1, j − 1], which gives rise to

Vb(T ) = Va(T ) ∪ {ϑ1, ϑ2, ϑ3, ϑ4}, (5.6)

Eb(T ) = Ea(T ) ∪ {ϑ0ϑ1, ϑ0ϑ2, ϑ0ϑ3, ϑ0ϑ4}. (5.7)

▽: according to equ. (2.2), we consider the set ofJi+1,j−1;h,ℓ-tight
structures, denoted byM . In case of|M | = 1, Ji+1,j−1;h,ℓ decompose

into a sequence of aJi+1,j−1;h,ℓ-tight structureϑ6 = J
{▽,◦}
i+1,j−1;h,ℓ and

two Ji+1,j−1;h,ℓ-ms,ϑ7 = R[i + 1, i1 − 1] andϑ8 = R[j1 + 1, j − 1],
wherei ≤ i1 < j1 ≤ j. Accordingly,

Vb(T ) = Va(T ) ∪ {ϑ1, ϑ6, ϑ7, ϑ8}, (5.8)

Eb(T ) = Ea(T ) ∪ {ϑ0ϑ1, ϑ0ϑ6, ϑ0ϑ7, ϑ0ϑ8}. (5.9)

In case of|M | > 1, Ji+1,j−1;h,ℓ decomposes into a sequence consisting
of a (dts) in Ji+1,j−1;h,ℓ, denoted byϑ9 = JDT

i+1,j−1;h,ℓ and two
Ji+1,j−1;h,ℓ-ms.ϑ7 = R[i + 1, i1 − 1] andϑ8 = R[j1 + 1, j − 1],
wherei ≤ i1 < j1 ≤ j. Accordingly,

Vb(T ) = Va(T ) ∪ {ϑ1, ϑ7, ϑ8, ϑ9}, (5.10)

Eb(T ) = Ea(T ) ∪ {ϑ0ϑ1, ϑ0ϑ7, ϑ0ϑ8, ϑ0ϑ9}. (5.11)

Furthermore, leti1 ≤ i2 < j1 andh ≤ j2 < ℓ, a (dts)ϑ9 = JDT
i+1,j−1;h,ℓ

in Ji+1,j−1;h,ℓ decomposes into aJi+1,j−1;h,ℓ-tight structureϑ10 =

J
{▽,◦,△,�}
i1,i2;h,j2

and a right-tight joint structureϑ11 = JRT
i2+1,j1;j2+1,ℓ in
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Ji+1,j−1;h,ℓ. I.e.

Vb(T ) = Va(T ) ∪ {ϑ10, ϑ11}, (5.12)

Eb(T ) = Ea(T ) ∪ {ϑ9ϑ10, ϑ9ϑ11}. (5.13)

△: analogous to type▽ via symmetry.

Finally, we have the well-known (Waterman and Smith, 1978) secondary
structure loop-decomposition
Procedure (c):[Secondary Structure]
input: a secondary structureϑ0 = R[i, j]
output: a treeTc(ϑ0) = (Vc(T ), Ec(T ))
initialization: Vb(T ) = {ϑ0} andEb(T ) = ∅.
We distinguish the following two cases:
(c1): in case ofRiRj 6∈ R[i, j], let ∅b

a denote empty segment in which all

the vertices are isolated. For1 ≤ j∗ ≤ j +1, let ∅j
j∗ be the maximal empty

segment that containsRj . In particular, ifj is not isolated, we havej∗ =
j+1. LetRb(i1, j∗−1) denote the segment in whichRi1 is connected with
Rj∗−1. ThenR[i, j] decomposes as followsR[i, j] = (ϑ1 = R[i, i1 −

1], ϑ2 = Rb(i1, j∗ − 1), ϑ3 = ∅j
j∗ ) and we set

Vc(T ) = Vc(T ) ∪ {ϑ1, ϑ2, ϑ3}, (5.14)

Ec(T ) = Ec(T ) ∪ {ϑ0ϑ1, ϑ0ϑ2, ϑ0ϑ3}. (5.15)

(c2): in case ofRiRj ∈ R[i, j], i.e. for R[i, j] = Rb(i, j), we have
a decomposition into the pair(ϑ4 = RiRj , ϑ5 = R[a + 1, b − 1]).
Accordingly, we haveVc(T ) = Vc(T )∪{ϑ4, ϑ5} andEc(T ) = Ec(T )∪
{ϑ0ϑ4, ϑ0ϑ5}.
We iterate (c1) and (c2), until all the leaves inT are either isolated segments
or single arcs.

For any joint structure,J1,N;1,M , we can now construct a tree, with
rootJ1,N;1,M and whose vertices are specific subgraphs ofJ1,N;1,M . The
latter are obtained by successive application of Procedure(a), (b) and (c),
see Fig. 9. To be precise, letH be the graph rooted inJ1,N;1,M defined
inductively as follows: for the induction basis for fixedJ1,N;1,M only one,
Procedure (a), (b) or (c) applies. Procedure (a), (b) or (c) generates the
(procedure-specific, nontrivial) subtrees,Ta, Tb andTc. Supposeϑ† is a
leaf ofT that has been constructed via Procedure (a), (b) or (c). As incase of
the induction basis, each such leaf is input for exactly one procedure, which
in turn generates a corresponding subtree. Prop. 2.1 and equ. (2.2-2.4) imply
thatH itself is a tree. We denote this decomposition tree byTJ1,N ;1,M

, see
Fig. 9.
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