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ABSTRACT

The RNA-RNA interaction problems (RIP) deals with the
energetically optimal structure of two RNA molecules that bind to
each other. The standard model introduced by Alkan et al. (J.
Comput. Biol. 13: 267-282, 2006) allows secondary structures in
both partners as well as additional base-pairs between the two
RNAs subjects to certain restrictions that allow a polynomial-time
dynamic programming solution. We derive the partition function
for RIP based on a notion of “tight structures” as an alternative
to the approach of Chitsaz et al. (Bioinformatics, ISMB 2009).
This dynamic programming approach is extended here by a full-
fledged computation of the base pairing probabilities. The O(N6)
time and O(N*) space algorithm is implemented in C (available
from htt p: // waw. conbi nat ori cs. cn/cbpc/rip.htm)andis
efficient enough to investigate for instance the interactions of small
bacterial RNAs and their target mMRNAs.

1 INTRODUCTION

RNA-RNA interactions constitute one of the fundamental hagisms
of cellular regulation. In an important subclass, small RNA
specifically bind a larger (m)RNA target. Examples includie t
regulation of translation in both prokaryotes (Narberhaus Vogel,
2007) and eukaryotes (McManus and Sharp, 2002; Banerjee a
Slack, 2002), the targeting of chemical modifications (Exiehie

et al, 2002), and insertion editing (Benne, 1992), transcrilio

of the thermodynamics of binding in its structural conseupes
is a necessary prerequisite to understanding RNA basethtiegu
mechanisms. The exact location of binding and the subséquen
impact of the interaction on the structure of the target ke
can have profound biological consequences. In the caseMfAsR
mRNA interactions, these details decide whether the sSRNA is
positive or negative regulator of transcription dependingvhether
binding exposes or covers the Shine-Dalgarno sequenceni@ha
et al, 2007; Majdalaniet al, 2002). Similar effects have been
observed using artificially designed opener and closer Rias
regulate the binding of thuR protein to human mRNAs (Meisner
et al, 2004; Hackermillleet al., 2005).

In its most general form, the RNA-RNA interaction problem
(RIP) is NP-complete (Alkart al., 2006; Mneimneh, 2007). The
argument for this statement is based on an extension of thke wo
of Akutsu (2000) for RNA-folding with pseudoknots. Polyniatia
time algorithms can be derived, however, by restrictingspace
of allowed configurations in ways that are similar to pseundk
folding algorithms (Rivas and Eddy, 1999).

Several restricted versions of RNA-RNA interaction haverbe
considered in the literature. The simplest approach cene&ts
the two interacting sequences and subsequently employghel\sl
modified standard secondary structure folding algorithnmhe T
algorithmsRNAcof ol d (Hofackeret al, 1994; Bernhartet al,

n’2’006),pai rf ol d (Andronescuet al, 2005), andNUPACK (Ren

et al, 2005) subscribe to this strategy. A major shortcoming of
this approach is that it cannot predict important motifshsas

control (Kugel _and G_oodric_:h, 2007)_' The common theme in m‘”"nykissing-hairpin loops. The paradigm of concatenation hias a
RNA classes, including miRNAs, siRNAs, snRNAs, gRNAs, and ooy “generalized to the pseudoknot folding algorithm ofa&iv

snoRNAs is the formation of RNA-RNA interaction structuthat
are more complex than simple sense-antisense interactidmnes
ability to predict the details of RNA-RNA interactions bathterms

*to whom correspondence should be addressed. Phone: *85126800;
Fax: *86-22-2350-9272jluck@ant af e. edu

and Eddy (1999). The resulting model, however, still does no
generate all relevant interaction structures (Chitsaal, 2009;
Qin and Reidys, 2008). An alternative line of thought is to
neglect all internal base-pairings in either strand andampmute
the minimum free energy (mfe) secondary structure for their

(© Oxford University Press 2009.
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hybridization under this constraint. For instanBdAdupl ex and
RNAhybr i d (Rehmsmeieet al., 2004) follows this line of thought.
RNAup (Mucksteinet al,, 2006, 2008) andnt aRNA (Buschet al.,
2008) restrict interactions to a single interval that remainpaired
in the secondary structure for each partner. These modeis ha
proved particularly useful for bacterial SRNA/mRNA intetians.
To-date only a handful of interaction structures are knokat are
more complex than those coveredibyt aRNA/RNAup. The most
famous example is the repressionflofA by OxySRNA, see Fig. 1,
which involves to widely separated kissing hairpin loopsga@man
and Altuvia, 2000). A second important example is the bigdif
box H/ACA snoRNAs with their targets (Jiet al., 2007). Due to
the highly conserved interaction motif, snoRNA/target ptewes
are treated more efficiently using a specialized tool (Tateal,
2009) however.

Pervouchine (2004) and Alkaet al. (2006) independently
derived and implemented minimum free energy (mfe) folding
algorithms for predicting the joint secondary structure taf
interacting RNA molecules with polynomial time complexitiy
their model, a “joint structure” means that the intramolacu
structures of each molecule are pseudoknot-free, theniolecular
binding pairs are noncrossing and there exist no so-calkégh “
zags”, see Fig. 1 and 2 for examples of the “joint structures”
The optimal “joint structure” can be computed@( N°) time and
O(N*) space by means of dynamic programming.

A Y

Fig. 1. Left: Natural structure A) (Alkan et al, 2006) and the joint
structure predicted byi p, (B), formed by the th@xySsmall RNA and its
mRNA targetfhlA. Right: Dot Plot showing the base pairing probabilities
(proportional to the area of the squares) between the twetsties (upper
right triangle) and the interaction structure predicted thg maximum
weighted matching algorithm (MWM) (Cary and Stormo, 1995bGw,
1973), in which the base pairs are weighted by its bindindpalodity (lower
left). The cut point between the two sequences is indicagetbbizontal and
vertical lines, intermolecular base pairs are depictedhéntiiue upper right
and lower left rectangle, respectively.

Recently, Chitsazet al. (2009) extended this approach to
a dynamic programming algorithm that computes the pantitio
function of “joint structures”, also inO(N°®) time. The key
innovation for passing from the mfe folding of Alkatal.(2006) to
the partition function is a unique grammar by which eachratton
structure can be generated. Then, the computation of thiiqar
function follows the outline of McCaskill's approach for RN
secondary structure folding (McCaskill, 1990).

(A)
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Fig. 2. Left: Joint structure predicted ByRI S (Pervouchine, 2004)) and
ri p (B) between the small RNAcvBand its mRNA targetlppARight::
Dot Plot, as in Fig. 1.

The key idea is to identify a certain subclass of interaction
structure that can serve as building blocks in a recursive
decomposition generalizing the loop-decomposition ofoedary
structures. These “tight structures” are a generalizatiohe sub-
secondary structures enclosed by a unique closing pairhén t
following two sections we first derive a grammar that allows t
unambiguous parsing of zigzag-free interaction strusturtaus
forming the basis for the computation of the partition fumact
in O(N®) time and O(N*) memory, corresponding the energy
minimization algorithm of Alkanet al. (2006). Then we proceed
by deriving the recursions for the base-pairing probaéditwhich
are based on a conceptual reversing of the production rules.

The output ofri p consists of the partition function, the base
pairing probability matrix and a specific joint structureheTlatter
is predicted by the maximal weighted matching algorithm (MW
(Cary and Stormo, 1995; Gabow, 1973)N?) time andO(N?)
memory, where the base pairs are weighted by their respectiv
binding probabilities. Finally, we discuss p and showcase first
example applications of the softwarep.

2 JOINT STRUCTURES

2.1 Combinatorics of Interaction Structures

Two interacting RNAs are represented diagrams(Chenet al., 2008) R
and S with N and M vertices, resp. In order to simply the notation in the
following we index the vertices such th&; is the 5’ end of R and S
denotes th&’ end of S. The edges of2 and.S represent the intramolecular
base pairs. The induced subgraphSbbn a subsequencgs;, . .., S;) is
denoted byS([z, j]. In particular,S[i, ] = S; andS[i,i — 1] = @.

A complexC(R, S, I) is a graph consisting of two diagranfs and S
(as induced subgraphs) and an additional Isef arcs of the formR; S
such that each vertex has degree at most one, see Fig. 3. Welrsha
C(R,S,I) by arranging the vertices aR and S in two lines, showing
the R-arcs in the upper, the&-arcs in the lower halfplane and-arcs
vertically. A subcomplex is a subgraph 6finduced by the subsequences
(Ri17“"R.71) and(SiQ,...,Sjg).

An arc is calledinterior if its start and endpoint are both contained in
either R or S and exterior, otherwise. An interior ard?;, R;, is an R-
ancestorof the exterior arcR;S; if i1 < i < j1. Analogously,S;, S;,
is an S-ancestor ofR;S; if i < j < j2 The sets ofR-ancestors and-
ancestors oR?; S; are denoted byl g (R;S;) andAs(R;S;), resp. We will
also refer toR; S; as a descendant &;, R;, andsS;, S;, in this situation.
The R- and S-ancestors of?; S; with minimum arc-length are referred to
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Fig. 3. A complexC induced byR][1, 14] andS[1, 13].

as R- and S-parents, see Fig. 4A). Finally, we callR;, R;, andS;, S},
dependent if they have a common descendant and indepeptiyise.
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Fig. 4. (A) Ancestors and parents: for the exterior &¢S4, we have the
following ancestor setgl p(R3S4) = {R1Rs, R2 R4} andAg(R354) =
{S256,53S55}. In particular, R2 R4 and S3Ss are the R-parent andS-
parent respectively.

(B) Subsumed and equivalent arc®; Rg subsumesS;Ss and S5Ss.
Furthermore R2 R is equivalent taS1 S.

Consider the subcomplex’ = (R’,S’,I’) induced byR’ = RJ[i1, j1]
andS’ = S[i2, j2] and suppose there is an exterior &gS;, with ancestors
R;Rj andS;, S;,. Then we say thaR; R; is C’-subsumedh S, S/, if for
any RSy, € I',i < k < j impliesi’ < k' < j'. Incase ofC’ = C,
we call R; R; simply “subsumed” inS;, S;/, see Fig. 4(B). If R;, R;, is
subsumed irf;, S, andvice versawe call these arcsquivalent

/A0 00000 1 000 00U/

TSIz

Fig. 5. Left: Azig-zag, generated bigz S1, R3.S3 andR5 Sy (red).Right:
Ajoint structure induced byR[1, 24] andS[1, 23].

A joint structure J; j.ne = J(R[i,j];S[h,€],1"), Fig. 5, is a
subcomplex of”'(R, S, I') with the following properties:

1. R, S are secondary structures without internal pseudoknots.

2. There are no external pseudoknots, i.eR;f S, , Ri, Sj, € I’ where
i1 < iz, thenj; < jo.

3. There are no “zig-zags”, iR;, R;, andS;,S;, are dependent, then
either R;, R;, is subsumed by;, S;, orvice versa

In absence of exterior arcs a joint structure reduces to ragbgieces of
secondary structure ail and.S, to which we will refer as a pair cfegmerst
for short. As segmenf|i1, j1] is maximal if there is no segmens§[i, j]
strictly containingS|[i1, j1].

Joint structures are exactly the configurations that aresidered in
the maximum matching approach of Pervouchine (2004), inethergy
minimization algorithm of Alkaret al. (2006), and in the partition function

approach of Chitsazt al. (2009). In the following we introduce tight
structures (ts), or tights, a specific class of joint strregu Tights form the
basis of our algorithmic approach and can be viewed as thsitiige closure
of standard loops w.r.t. exterior arcs.

Fix an arbitrary joint structurd,, p.. 4. ThenJ; j.n ¢ C Jg b;c,q IS tight
in Ja,b;c,d if

1. it contains at least one exterior dRg, S,

2. for any exterior ard?;, S;, € J; j.pn,¢ holds
(AR(Riy Sj1) U As(Riy 1)) N Jabie,d € Jiyjinoe

3. there does not exist anyf, ;,:n,,¢, g Ji,j;n,¢ CONtaining at least one
exterior arc,R;, Sj, , such that for any sucR;, S;, (Ar(R:, Sj,)U
AS(Rilsjl)) N Ja,bic,d € Jiy,j13hy,e, holds.

Given a (ts)JiT’j;hy,_,, we observe that neither origj, h and/, can be start
or endpoints of a segment. In particular, neither, k, and¢ are isolated. In
combination with the non-zig-zag property, we conclude there are only
the following four basic types of (ts), Fig. 6:

t RiRj € JY,, ,andSySe & TV
D SpSp €, yandRiR; €5
: {RiRj,ShS[} € Jo

i,j;h, 2
: {RZSh} = Jf,j;h,f andi = j,h =1

o> Jq

o

The latter case corresponds to a single external edge.

L8 T 3

Fig. 6. Tight structures (ts) of typgz, A, [J, ando.

In the Appendix, we will prove the following
PROPOSITION2.1. LetJ, 1. q be ajoint structure. Then:

1. AnyJ, p.. q-(ts) is of one of the four typey, A, [J, or o

»05C,

2. Any exterior arc inJ, y..,q is contained in a uniqud, . 4-(ts)

3. Ja,p;e,a decomposes into a unique collection & .. 4-(ts) and
maximal segments.

adouble-tight joint structurgdts), JPrlv

Given a (ts)J, igzrs 0 1N

10,J0;758’
JZ Joirs? whereig < i < j < jo, is defined as follows: there exists labels

a, b, c,dwherei < a <b < jandr < c < d < sand (ts)J}

z,a;T,C’
T in 7T
Jb’j:’d’S in Ji0+17].0_1ms such that

JDT,\v T

. 71T
1,537, 8 Zyll;”‘wCUJa“‘lyb—l%C“'l»d—1UJb,j;d,s’ (21)

where the disjoint unior refers to both the vertex and arc sets of the joint

structures, see Fig. 7. The case of a double-tight joincmre,]ﬁﬁ‘f, in
a (ts), J. o

4,J310,80"

useJPT DT o gPTH 12

Cirs in order to to denote eithefi’j;r’ i jits

With the help of (dts), we decompose (ts) in the following way
Let Jyj;r’s be a (ts) of typey and letR;, | Sy, andRy,, Sy, be the leftmost
and rightmost exterior arcs iy j; s andi + 1 <41 < j1 < j — 1. Then

is defined accordingly. By abuse of language, we simply
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Fig. 7. A (dts) Jg 5y 1, (red) inJ2,15,1,11 (blue box). Note that the joint
structureJy 16;1,11 itself is 7-tight.

Jit1,j—1;r,s decomposes into

Rli+ 1,4 — Y0JLY:) UR) +1,5 - 1],
if J};;h Se,

Rli+ 1,41 — 1}qu1§1 s
otherwise,

JT .
Ry, Sey’

2.2)
UR[j1 + 1,5 — 1]

WhereJ{ij’} denotes a/; 41 ;—1;r,s-(tS) of typesy or o and JR} S
denotes the unique (ts) if+1, J,l r,s contain the exterior ar&;, Sy.

Analogously, in case of a (tsJ)L i with leftmost and rightmost exterior
arcsRy,, Sy, and Ry, Sy, andr + 1 <rp<s1<s—1,Jijrt1,5-1
can be decomposed in the form

Slr+1,71 — l}UJZ{]ATj}S US[s1 +1,s — 1],
T T .
i JRh Sey JRh2 Sey? (2.3)
Slr+1,r1 — l}UJPJTrl 51US[31 +1,s—1],
otherwise,
{&0} . i
WhereJZ1 s denotes &/; ;.r41,s—1-tight of type A oro.
Fora (ts)J':’ with7 +1 <141 < j; < j— 1 we analogously derive

1,778

Jit1,j—1;ms =
2.4)
Rli+ 1,41 — l]LJJ{A -

21,J1;7,S

UR[j1 + 1,5 — 1],

whereJZ{Aj - , denotes a/; 1 1, s-tight of type A or CI.

Prop.(2. 1) and equ. (2.1-2.4) establish, for each jointcstire, a unique
decomposition into interior and exterior arcs. In Fig. 8 vi®ws how to

decompose a tight of the typeg, A, or [J by means of equ. (2.2-2.4).

The above decompositions form the combinatorial basigi®cbmputation
of the partition function.

2.2 Refined Decomposition

The unique (ts) decomposition would in principle alreadffiseito construct
a partition function algorithm. Indeed, each decompositibep, such as
equ. (2.1-2.4), corresponds to a multiplicative recursielation for the
partition functions associated with the joint structur€om a practical
point of view, however, this would result in an unwieldy erp®e
implementation. The reason are the multiple break paints, ¢, d, ...,
each of which correspond to a nesfear -loop.

We therefore need a refined decomposition that reduced theberw
of break points. To this end we call a joint structuight-tight if its
rightmost block is a (ts). We adopt the point of view of Algaier Dynamic
Programming (Giegerich and Meyer, 2002) and regard eaobntjgasition
rule as a production in a suitable grammar. Fig. 8 summati@esmajor
steps in the decomposition: (I) “arc-removal” to reduce)dthe scheme is
complemented by the usual loop decomposition of secondargtsres, and
(11) “block-decomposition” to split a joint structure intao blocks.

The details of the decomposition procedures are collectéppendix C,
where it is shown that for each joint structue n1 37 We indeed obtain
a unique decomposition-tree (parse-tree), denoted’ly, , ,,. More

Procedure (a)
|

M — I o]

m-0.30. 0O

Procedure (b)

P m——

S N =
- = us
— EES o« E o

H.- [

Emmm@@@
C D E F G H J

JdBDO

> |

Fig. 8. lllustration of Procedure (a) the reduction of arbitraripjstructures
and right-tight structures, and Procedure (b) the decoitiposof tight
structures. The panel below indicates the 10 different sypiestructural

componentsA, B: maximal secondary structure segmeRis, j} S|[r, s];
C: arbitrary joint structureJ; j,, s; D: right-tight structures/*T Girss E
double-tight structureIPJTr 5+ F: tight structure of types7, A or [J; G:
type [ tight structure]Fj s ; H: type sy tight structureJZV] s ; Jitype A
tight structureJl st ; K: exterior arc.

S =

A LY o

Zodly

Fig. 9. The decomposition tre€;, . , . for the joint structure/; 15;1,s.

precisely|TJ1’N:1’M has root/; 1, and all other vertices correspond to
a specific sub-complex af; n;1,5s Obtained by the successive application
of the decomposition steps of Fig. 8 and the loop decompositif the
secondary structures. A concrete example is shown in Fig. 9.

2.3 Extended Loop Model

The standard energy model for RNA folding (Mathees al, 1999) is
consistent with the basic decomposition of secondary strecliagrams in
the following sense: for secondary structures, the anal@girig. 8 reads

S—.S|PS|P and P —(S) (2.5)

representing the cases that either the first base pair isreda paired. Here
S denotes an arbitrary structure, whiteis secondary structure enclosed by
a base pair. In fact, we use this decomposition to evalua@esétondary
structure segments andB in Fig. 8.

The energy model, however, enforces a further refinementhef t
decomposition by distinguishing three different types adgs, for which
energy contributions need to be computed by means of differgles:
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hairpin loopsP — Ha, interior loops (including bulges and stacked base
pairs) P — Int, and multi-branched loopsP — M. These are now
expanded further

Ha — (h) M — (M'M") (2.6)

where h, i/, " are the unpaired regions of the hairpin and interior
loops. Multi-branch loops are further decomposed into comepts with
a single branchV/’ and with multiple branched/”’ for which the energy
contributions are assumed to be additive. For completeness recall
the productionsM’ — .M'|P and M" — .M"|PM"|Pm, where
m is a stretch of unpaired nucleotides. The importance of tefined
decomposition lies in the fact that the energy of each suttsire can be
obtained as a sum of the energies of the substructures atesbeiith non-
terminal symbols and an additional contribution that dejseaniquely on
the production and the terminals. The latter rules form {ecsic energy
parameterdMathewset al., 1999).

The description of joint structures includes two furthepeg of loops,
both of which being arising in the context of exterior araslléwing Chitsaz
et al. (2009), we call thenmybrid andkissing loop Fig. 10.

Int — (i Pi")

:ms;gf | TTT@”

3 T

3 5 3
—o—o—o
Fane C/{? T 00—,

Fig. 10. The two new loop types in interaction structures: the hyktagp)
and the kissing loop (bottom).

e A hybrid (Hyil,iz;h,n) consists of a series of intermolecular interior
loops formed by > 2 exterior arcsR;, Sj,,...,R;,S;, such
that R;, S;, is nested WlthlnR”L+1 S]h+1 and the internal segments

Rlip, +1,ip41 —1] andS[j;, +1, jp41 — 1] consist of unpaired bases

only. In other words, a hybrid is an unbranched stem-loopcaire

formed by external arcs

A kissingloop (Kr,,r;) is either a pair,(R;R;, R[i + 1,7 — 1]),

together with a nonempty set @; R;-children, R;, S;,,... where

i < i1 < j, orapair(S;S;,S[i+ 1,7 — 1]), with a nonempty

set of S;S;-children R;, S;,,... wherei < j1 < j. Kissing

loops have been smgled out both for logical reasons andubecsome
investigations into their thermodynamic properties hagerbreported

in the literature (Gaget al., 2005).

Let us now have a closer look at the energy evaluation/gf.y, ;.
Each decomposition step in Fig. 8 results in substructutesses energies
we assume to contribute additively and generalized loopsribed to be
evaluated directly. There are the following two scenarios:

I. Arc removal. Most of the decomposition operations in Procedure (b)
displayed in Fig. 8 can be viewed as the “removal” of an arcrésponding

to the closing pair of a loop in secondary structure foldirigllowed

by a decomposition. Both: the loop-type and the subsequessilpe
decomposition steps depend on the newly exposed structleaients.
W.l.0.g., we may assume that we open an interior basefpdi; .

The set of base pairs aR[:, j] consists of all interior paird?, R, with
i < p < ¢ < jand all exterior pairR, Sy with i < p < j. An interior
arc isexposedon R[i + 1,5 — 1] if and only if it is not enclosed by any
interior arc inRJ[i, j]. An exterior arc iexposen R[: + 1, j — 1] if and
only if it is not a descendant of any interior arc B[ + 1,5 — 1]. Given
R;j, the arcs exposed oR[i + 1,5 — 1] corresponds to the base pairs
immediately interioof R; R;. Let us writeEr(; ;) = R[Z ]]UER[z h for
this set of “exposed base pairs” and its subsets of interidrexterior arcs.
As in secondary structure folding, the loop type is deteediby E[; ;) :=
ER as follows:

Egr = 0 hairpin loop
Er =
Ep =

E%,|Eg| =1 interior loop (including bulge and stacks)
E%, |Eg| > 2 multi-branch loop

Er = Eg, kissing hairpin loop
|E%],|E%| > 1 general kissing loop

This picture needs to be refined even further since the arovalis coupled
with a further decomposition of the interv&l[: + 1,5 — 1]. This prompts
us to distinguish (ts) and (dts) with different classes gfased base pairs on
one or both strands. It will be convenient, furthermore tude information
on the type of Ioop in which it was found.

Fora(ts)JY iiihe oftypevs, J, J hot is of typeE, if S[h, £] is not enclosed

in any base pal(Jv’h e) Suppose]v ) is located immediately interior

to the closing panSqu pb<h<t < q). If the loop closed byS, Sy is

a multiloop, then]v h.o I8 Of typeM (Jv M o). I 5,5, is contained in a

klssmg loop, we dlstlngwsh the typEsandK dependlng on Whether or not
= @. Fig. 11 displays the further decomposition fq i s

R AT Fa EES

)

Fig. 11. Further refinement: the four decompositions QVJ via
Procedure (b). The green rectangle denotes isolated sEgnTehe Ietters
I, M, etc denote the loop-type and the type of of the exposed)asttbe
double-tight structures. See also Fig. 8 for more detailhemotation. The
four cases correspond to the four contributions in equ)(3.3

For a (dts)J’T (denoted by E” in Fig. 8) we need to determine the
type of the exposed pairs of botR[p, q] and S[r, s]. Hence each such
structure will be indexed by two types. In total, we arrivel& distinct
cases since some combinations cannot occur. For instancis)acannot
be external in both? and S, i.e., typeEE does not exit, wher& means
external.

1. Block decomposition. The second type of decomposition is the splitting
of joint structures into “blocks”, such as the decomposiiof a right-tight
structure in Procedure (a) and a double-tight joint stmecin Procedure
(b) in Fig. 8. A right-tight structures]R]T h.¢ May appear in two ways,
depending on Whether or not the rlghtmost tight structurefigype o.
More precisely, letR;, S;, denote the rightmost exterior arc lff"] ht
There is a uniques;_;;p,,¢~(ts) Jgnsh’ such thatR;, S;, € Jgnﬁn'
We distinguish type 8) loops induced by]};ilsjl being of typeo from
all other cases ). Analogously, (IB) and (IA) are defined for double-
tight joint structure. For instance, Fig. 12 displays theafeposition of
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K K
function@Q = S e~ F(5)/kT where the sum runs over all the secondary
.E - :ﬂ structuresS thatscan be constructed from a given sequence of lefdth
F F This factorization of terms can be realized by |ntroduc@§ o where
/ \ :E the sum is taken over all substructurégh, ¢] on the segmenth, ¢] for
" which S, S, € S[h, ] is a base pair, an@;, Y for all the conflguratlons
:ﬂ on [h, (], irrespective of whether or naf;, and S, are base paired.
= particular, we have) = Qf 5 and arrive at the recursion (right to Ieft
K F block decomposition) ’
s -1 s b 3.1
Fig. 12. Decomposition OURJT KKB by means of procedure (b). Here the Dot - ; Fhi-194; G5
red rectangle denotes a pair of secondary segments haermgdperty that
at least one of them is not isolated. In order to compute? »,¢ We need to distinguish between the three types of
loops that are treated dlfferently in standard RNA energylehgMathews
K etal, 1999): hairpin loops, interior loops (including bulgesiatacked base
I:l:l pairs), and multi-branch loops, see Figure 14.
M
— T Qhp —e T 4 S O TG

0,3

K K K F F K K K
DM ©m om Qm @m £ 30y T
M M M M M M

QP =5(Qp .y + e mMaa/kT) Qb (—(aat(t=fag)/kT

Fig. 13. Decomposition ofJDT KM by means of procedure (b). The five i 3.9
alternatives correspond to the three additive terms in €yd). 82)
where Q™ is the auxiliary array representing multi-branched loops,

described in detail by McCaskill (1990).

JRT KKB SupposeJZDJT ¢ is a (dts) contained in a kissing loop, that is
we have eltherE ;é Zor Eg S[h.0) # @. W.l.o.g., we may assume
EE ;A . Then at least one of the two “blocks” contains the exterior
arc belonglng toER[Z ;) see Fig. 13. The situation is analogous if we
decompose a joint structuréRT _;» which is contained in a kissing loop.
Energy Parameters.The energy model implementedrin p in an extension
of the standard parametrization. In recognizes the foligWoop-types:

1. Hairpin-loop A hairpin loop Ha, ; has tabulated energies/t 3.2 Recursions for joint structures
depending on their sequence and length. The production rules described in the previous section ave translated
2. Interior-loop An interior loop Int;, j,;i,,j, also have tabulated into recursion equations for the partition function of eatipe. The
energiegInt computation of the partition function proceeds “from theiie to the

g 91,J13%2,72°

3. Multi-loop A multi-loop M, j, has energyv; + az(t + 1) + ascz, outside”, see equs. (3.3,3.4). The recursions are imiéidliwith the
wheret = |Ei | (“br;gghing order”) insideR[io, jo] andes is energies of individual external base pairs and empty sesgnstructures
h b ﬁ[ioij?] d verti tainedifi-. i ’ on subsequences of length up to four. In order to differentiaulti- and
e number of isolated vertices containedifio, jo). kissing-loop contributions, we introduce the partitiomdtions QT and
4. Kissing-loopA kissing-loop K, j, has energyd: + Ba(t + 1) + Q.
ﬁifc?' wheret‘ = ‘|E§2[i0,j0]| and c; is ‘the number Of-ISC)-lated R[z 4] or S[i, 7] having at least one arc contained in a multi-loop. Similarly
vertices contained itk[io, jo] in analogy with the parametrization of Q¥ - denotes the partition function of secondary structuresigi j] or

multiloops. Sli, ]} in which at least one arc is contained in a kissing loop.
5. Hybrid A hybrid Hy, i0id1ode has energszl’%]lw = o9 + For instance, the recursion fo;yfj"ﬁ < inFig. 11 reads:
D) lir]et,i9+1;j9,j9+1’ where a intermolecular interior loop it
) o M e~ Gigin,e/ kT
formed by R;,Sj, and Ry, Sj,., is treated like interior loop Q) jrs = Z QY ,_; € 7
INtig,jgiigs1.5041 With an affine scaling. bt

DTMM _—(a;+as)/kT —(h—i—1)ag/kT m
. . . . R + x (e + Q"
In the Discussion we also consider a different energy patrazaion of @n.tirs ( @1n-)

hybrid loops (Bernharet al., 2006) and the approach of Dimitrov and Zuker % (e—(j—/-’—l)as/kT + Q1 1)s
(2004).

+QDT KM —(B14+82)/kT o (ef(h i— 1)ﬁ3/kT+Q

hlrs i+1,h— 1)

x (e7 =B /RT o Ql2+1,j—1)7

3 PARTITION FUNCTION QUM e~(e1+2a2)/KT [~(i—t=Das /KT m
. h,[,r‘ s€ i+1,h—1
3.1 Recursions for secondary structures
—(h—i—1)ag/kT
The additivity of loop energies, see Section 2.3, translatenediately into +e Jos anﬂ,jﬂ + Q?Jrl-,jle?Jrl,hfl} }
the multiplicativity of the Boltzmann factors that conuitie to the partition (3.3)

Here, Qm] denotes the partition function of secondary structures on
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DT KM
@z]rs

Analogously, the recursion for the (d

_ v,M

- Z {(Qi,hmh
01,41

+QY

iyi15m,g1 €

of Fig.13 is given by

QDT,KM
4,757, 8

—Bo /KT ALK —ao/kT
+ Ql 5815 Tv]le

e~ (a2+B2) /KT QA F

4,157,551

—a2/kTQRT,FM
i1+1,5;51+1,s

—ay /KTy RT,KM
e )i Y151 +1,

ALK
TR ir €
(3.4

The complete set of recursions comprises for@%) . 5, 15 4D-arrays, for
right-tight structurte s 24 AD-arrays, for (dts())z i 18 4D-arrays
and 16 4D-arrays for arbitrary interaction structu@azkj . In addition, we
need the usual matrices for the secondary structhaBdS and the above
mentioned matrices for kissing loops. The full set of reimns is compiled
in the Supplemental Material.

4 BASE PAIRING PROBABILITIES
4.1 Approach

In contrast to the computation of the partition functionoffr the inside to
the outside”, the computation of the base pairing probagsliare obtained
“from the outside to the inside”. That is, the longest-rarugrs are
computed first. This is analogous to McCaskill's algorithan $§econdary
structures (McCaskill, 1990).

Let .,]I‘E ;’1Y2Y3 be the set of substructures j.;, , C Ji,n;1,07 Such
that J; j.n,¢ appears inTy, ., ,, as an interaction structure of type
¢ € {DT,RT,~7, A, 0,0} with loop-subtypesy;, Y2 € {M,K,F} on
the sub-intervalsR[i, j| and S[h, ], Y3 € {A,B}. Let ]P’g .Y1Y2Y3 be

the probability of‘,]I6 Y1 Y2Y3 For |nstance,IP>RT MKA is the sum over all
the probabilities of substructureli bt € TJl Ni1M such thatJ; j.p,e
is a right-tight structure of typeA and RJ[:, j], S[h ¢] are enclosed by
a multi-loop and kissing loop, respectively. Then the cotapon of the
pairing probabilities reduces to a trace-back routine & diecomposition
tree constructed in Section 2.2.

SetJ = Jl,N;l,M: T: TJl,N;l,M and IetAJM;hj : {J|J¢7]';h"z €
T'} denote the set of all joint structurgssuch thatJ; ;.5 ¢ is a vertex in the
decomposition tre@. Then

Ph,j;h,e = Py (4.1)
JEN; jin.e
and furthermore
Y1YsY:
P{J}L; 3 = > Pijihe- 4.2)
£, Y1YaY3

Jigih, e €375 h 0
4.2 Case Study: Secondary Structures

In order to illustrate the logic of our backtracking procegjuwe first
consider the special case of secondary structures.

Let Pg;R; denote the base pairing binding probability &f; R;,
i.e.]P’RiRj = ZRiR,,EW QwQ ™', where the sums is taken over all the
partition functions of secondary structurés in R such thatR; R; € W.
Let Ty be the decomposition tree of a particular secondary streiétton
R[1, N] via Procedure (c), the key observation here is

RRj e W < R;R; € Tw. (4.3)

LetQ(R;R;) = {W | R;R; € Tw }, i.e. the set of secondary structures
whose decomposition tree contain the pRifR; as a leaf. Clearly, via
equ. (4.3), we obtain

WEeQ(R; R;)

Pr,Rr; = QwQ ™. (4.4)
Next, in order to COMput®p, r,, we need to express this probability via
sum over the probabilities of the substructu¢esuch that is the parent of

R;R; in the decomposition tree. Lek® (4, ) denote the set of secondary

segmentsk([s, j] in which R; is connected withR; and IetIP”;z R, be its

probability. By construction, we havég, r; = ]P’Ri R;’ since the parent of

R;R; in the decomposition tree must be a secondary segignyj] such
that R; R; € R[i, j]. Therefore the computation di‘fRiRj is reduced to

the calculation of the substructure probabil]l’(gii R;" The decomposition

- e

h [4 h [

(D — (@GR oD
h [4 h ¢ h ¢ h [
//’\\ Ve’
(o mm D mwm S (D
h ¢ h i i ¢ h i i [4

O Lo

i i j

Y
j

Fig. 14. Extended version of Procedure (c). The panel below indsciaten
left to right the segment&? (4, 5), in which R;, R; is paired, the set of
unpaired segmentskR“ (s, j), R™(i,7), containing least one arc with an
outer loop of typeM and finally R* (i, 7), the set of arbitrary segments.

is summarized in Procedure (c), Fig. 14. This represemtatifferes from
the usual implementation of the RNA standard folding moday at that
we can afford more moving indices in each recursion sinceettiger i p
algorithms requireg)(n%) time. Inspection of Fig. 14 shows that for an
RY(i, j)-parent we have to distinguish the five cases displayed in g
Denote byR™ (4, j) the set of segment&[i, j] € Trpy, ) CONtaining at
least one arc with an outer loop of typé, and write R*(z, j) for the set
of all segmentsi[i, j] € Try,n). Furthermore, SdPrzr%i,Rj andIP’fei’Rj
for the probabilities ofR™ (i, j) and R*(i, j), respectively. For (L1) and
(L4) in Fig. 15, it is possible that = 7 andj = ¢ holds. However, via
further backtracking fo?® (i, j) and R™ (4, j) we can recursively calculate
the binding probability from the inside to the outside. Baling the logic of

v O\ e
/ h i i ¢ ¢
e MmO
/ hoo i ¢ h ¢
£ e

h h [4
AN b S —

L4 7 N,
Cu o b NTa 4 m N
\ h i j ¢ T ¢
27N //’ ‘\\
L5 é/ m \ b —u / m N
h i j [2 (4

Fig. 15. Backtracing for secondary structures: for a parenkbti, j) we
have five cases according to Procedure (c): external (Ligriém loop
(L2), closing pair of a multi-loop (L3), (L4) and (L5) denotike scenarios
arising from decomposing ®™(h, ¢)-segment. See equ. (4.5) for the
corresponding recursions.
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Fig. 15, we obtain the following recursion f@l‘}?, R, and therefore
AN
b Q5. 1Q% Ps;s; = P%i,sj + ZPhAf%M’ 4.11)
Pr, r; = > { PR, R, 7’(,25 Bt
h,t h,e
—  —— .
M with P4 = PAE 4 PAM 4 pAK | pAF,
nt Note that the expressions f@rRiRj and]P’sisj are not symmetric. This
b Q?,je_G’“@‘ivf/kT is due to the fact that our decomposition routine give pesfee to arc-
+ PR, R, Qb removals inR over those inS. This asymmetry is necessary to ensure that
hot the decomposition in Fig. 8 is unambiguous.
L2 Finally, we calculate the binding probability of an exterarc R;S;.
QM. . Qb e (art2en+(t—i-1)az)/kT Since R;S; is a (ts) of typeo, P, 5, is directly given by the probability
4Py, —hAlizl e - of this special substructure in equ. (4.2).
hotie Q. (4.5)
L3
Qb o~ (a2t (i—h+e—j)az)/kT -A_ — -A_ —
PP g / =i
em= g o=
L4 / [
pr | QR Q0o (et Nen) /AT S ) N @ @
+ PR, R, Qm : e
h,t ] \
L5 ™ %} @ t{i;o @
Analogously, the recursions for the base pairing prolt#sliPy, , and ‘\ o/_\
. v
P%,.r, are given by \ —@— @ = @ Or@ or@
P = (P oot o> @ cm= 5
h,t
’ (N |
Sy By Ty S HO O ==, [
Qe 00 e m-— | m
9% \Nm= — o 7
Py, r, = Py R % [N |
’ ; QL - ~ i -

4.6) @ @ @ an
4.3 Base pairing probabilities for joint structures . /
SetX1 = {J | R;R; € J}. Now we apply the same strategy to the joint @ — [ @ 11 @k 1] @ 1T 1

structures appearing in Fig. 8. L&’ denote the partition function which

sums over all the possible joint structutés n;1,57. Then by definition, we \ @ D:l 1 \@ I:I:I 1
have > 0
J
Pr, R, = % 4.7 P
Q o=@ a
In order to comput@’RiRj we classifyX; according to the parent @¢; R ; / @ / I
inT:

£1 = {J | Rli,j] € T, R[i,j] € R"(, )} @/@ @ [ =l @

UL HIT | Jijshe €T, J; i, EJX'§»} h

Ut [ € Tisna €30) 0 2 Y im e
VUL | Jigine € Ty Jijine € Tijin e}y ) @ L ' i

h,l

which translates to

Pr . =Pb . + pVEMFK} | PO, 4.9 Fig. 16. IIIustratic_)n qf the back-_tra(?ing procedure._ For eac_h temeneed to
il R By ; b3kt ; indihat (4.9) add up the contributions of derivations that contain a paldr substructure.
where we use the shorthai > {5 F K} — pv.ELpv.M L pY.F L pv K
for identical positions, j, h, £. Analogously, we obtain for pairs ifi: In order to compute the binding probabilities of both imte@nd exterior
_ b arcs, the key is to employ an “inverse” grammar induced byir
T2 ={J| S[h, 4] € T, S[h,{] € S°[h, €]} back in the decomposition tree as displayed in Fig. 16. Biueiof this
4.10 i i i
UK 1 igine € T Jijine € 3550 03 (4.10)  backtracking, we obtain the recurrence formulae in anatogjre case of

by secondary structures, discussed above.
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5 RESULTS AND DISCUSSION

In this contribution we have introduced a framework in which

the partition function and the base pairing probabiliti€zigzag-

free RNA-RNA interactions can be derived in a natural wayr Ou

approach is implemented in the software packaige using the full

standard energy model for RNA secondary structures and &-mul

loop-like additive parametrization for kissing loops. Tiartition
function computed by i p is equivalent to that derived by Chitsaz
et al. (2009) based on a different mathematical framework.

The algorithmic approach taken here was motivated by a. .~

combinatorial analysis of zigzag-free interaction stuoes. From

a mathematical point of view, our approach is centered aroun

the notions of tight structures and decomposition trees [dlter
described in full detail in the appendix). A detailed math¢oal
analysis, in particular the derivation of the generatingcfion and
further enumeration results, will be discussed elsewhere.

The computation of the partition function conceptuallyldols
the logic of the McCaskill's approach (McCaskill, 1990) feNA
secondary structures. The generalization of the computaii the
base pairing probabilities, however, is less straightvéod. The
reason is that base pairs in joint structures are not alvweeyarique
closing pairs of loop, hence base pairing probabilitiesncarbe
identified directly with the probabilities of certain (t$)stead, one
has to compute the pairing probabilities by explicitly g back”
all contributing joint structures.

For consistency with the approach of Chitsstzal. (2009), we
include an independent initialization energy to each hybrid. A
scaling of the energies in hybrids is also implemented.rAtgvely,
an single initialization energy is used in many other RNA-
cofolding algorithms, includingRNAcof ol d (Bernhartet al,

"

77 )

D\\N

AR e £ Nucs e < ropys -5

(A)

Fig. 17.rip versus RNAcofol d: dot plots (top) and diagrams
(bottom) of joint structures of the two RNA molecules
GCUCACUACAGCUUGUUGGGAACAACAGGCUCUAGUGAGU and
GAAACGGAGCGGAACCUCUUUUAACCCUUGAAGUCACUGCCCGUUUC
as predicted byRNAcof ol d (Bernhartet al, 2006) (left) andri p with
parametersdy = 5.1kcal/mol, o = 0.92) used by (Chitsaet al,, 2009)
(middle) and be rescaled by a global= 4.1kcal/mol andoo = 0,

o = 1 (right). Dot Plot: Upper right: Base binding probabilityhet area of
the squares is proportional to the corresponding pair fibties. Lower
left: structure predicted by the maximum weighted matchaigorithm
(MWM) (Cary and Stormo, 1995; Gabow, 1973), in which the ljzaies are
weighted by its binding probability. The two lines formingess indicate
the cut point, intermolecular base pairs are depicted irbthe upper right
and lower left rectangle.

2006) and the approach of Dimitrov and Zuker (2004). This This computation can easily be performed as a post-prowpssi

initialization term can be introduceal posteriorionce the partition
function of the joint structure®’ and the partition functiong) »

ther i p output.
Back-tracing of the base pairing patterns that underlieftbe

and Qs of the isolated interaction partners have been computed®nergy of RNA-RNA binding is of great importance in detailed
Let Q; denote the set of all joint structures containing at leastStudies of NcRNA-mRNA interactions. The details of the iigd

one external arc and denote Y, the set of all structures that
have none. The partition function computed biyp is Q"'P =

sites have a crucial impact on the interpretation of the agatfpnal
results and on the comparison of the computational preaicind

Q(1) + Q(). For the non-interacting contribution we have €xPperimental data. It was shown by Mucksteinal. (2008), for
Q(Q0) = QrQs. Taking the initiation term into account, we have nstance, that positive and negative regulation of baaitenRNAs

to computeQ = Q(Q1) exp(—e/kT) + QrQs, from which we
easily obtain the corrected value Q21 ).

can be distinguished depending on whether the interactiootare
contains the Shine-Dalgarno sequence in stable stem osestpo

In addition to computing the equilibrium thermodynamics of @n Predominantly unpaired region.

RNA-RNA interactions (Chitsazt al., 2009), theri p software
also predicts details of the interaction structures thérase The
base pairing probabilities are represented in “dotplotsil@gous to
those inRNAc of ol d (Bernhartet al., 2006), Fig. 17. Two diagonal
blocks (in white) contain the internal base pairs of the taaipg
interaction molecules, the shaded rectangles displayntkesicting
pairs. The upper-right triangle shows the base pairing gividities.
In the lower-left triangle, the unweighted maximum expdcte
accuracy structure is displayed. It is given by the optimAlAR
RNA interaction structure with each possible base pair hteid by
its base pairing probability. As shown by Bernhetrtal. (2006), the
pairing probabilities can also be rescaled quite easilyafaingle
initiation energy contribution:

[Pzr‘gi‘pQrip —Pi;(Q0)QrQs] e /T L P (Q0)QrQs
[Q7* — QrQsle~/*T + QrQs

(5.1)

So far, very few interaction structures are known that areemo
complex than those computable BNAup/i nt aRNA. It remains
unclear, however, whether this is a correct representafioeality.

It is entirely conceivable that multi-point contacts suchtlae one

in the OxyS3fhlA system (Argaman and Altuvia, 2000) are rarely
observed experimentally because they are typically exclifdom
candidate lists due to the lack of readily detectable pgir@gions.

A survey withr i p may be suitable to provide us with a much more
unbiased picture.

In this contribution we have focussed on the algorithmic
background for computing detailed models of RNA-RNA intti@ns
in the most general framework that is computationally fielasi
at the moment. The current implementation rafp is mostly
intended as a reference implementation. Due to the immense
computational costs incurred several dozens of intercigpend-
dimensional arrays; i p is a means of last resort for those cases
where one suspects complex interaction structures beyeneach
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of simpler interaction models. We are here in a similar posit
as with the Sankoff algorithm (which addresses the closeted

dynamic programming problem of simultaneous alignment an

structure prediction). While the full implementations asw
and of limited use in particular in large-scale studies,ythee
instrumental in optimizing the procedure and in devisinficient
nearly exact pruning heuristics that can dramatically cedthe
fraction of array entries that need to be computed (Havgegad,
2007). The full implementation also serves a starting pfunthe
exploration of further variations on the theme. One operstjoe is
the computation of “hybrid probabilities”, i.e., probaitiés]P):'E;h_z

that R[7, j] and]h, ¢] form an “interaction stem” or a even an entire

uninterrupted interaction region. Another line of resbazoncerns

Bernhart, S., Tafer, H., Muckstein, U., Flamm, C., Stadkerand Hofacker, I. (2006)
Partition function and base pairing probabilities of RNAédredimers.Algorithms

qd Mol. Biol., 1, 3-3.

Busch, A., Richter, A. and Backofen, R. (2008) IntaRNA: ééfit prediction of
bacterial SRNA targets incorporating target site accéigitand seed regions.
Bioinformatics 24, 2849-2856.

Cary, R. and Stormo, G. (1995) Graph-theoretic approachNé Rnodeling using
comparative dataProc. Int. Conf. Intell. Syst. Mol. Biql3, 75-80.

Chen, W., Qin, J. and Reidys, C. (2008) Crossings and nestintangled diagrams.
Electron. J. Comh.15, R86.

Chitsaz, H., Salari, R., Sahinalp, S. and Backofen, R. (R@0®artition function
algorithm for interacting nucleic acid strands. In press.

Dimitrov, R. A. and Zuker, M. (2004) Prediction of hybridizan and melting for
double-stranded nucleic acidBiophys. J.87, 215-226.

Gabow, H. (1973)mplementation of algorithms for maximum matching on npatite
graphs Ph.D. thesis, Stanford University, Stanford (Califojni248p.

improved energy models for the more complex types of l00pSGago, S., De la Pefia, M. and Flores, R. (2005) A kissing-limteraction in a

possibly along the lines of Isambert and Siggia (2000).

In order to store the partition function and the base pairing

probabilities of joint structures ini p, we employ4-dimensional
arrays. For the recursion for the partition functio/, we use
16 matrices,24 matrices forQ®T, 18 matrices forQPT and 15
matrices forQT, in the context of taking into account the loop
energy. The complete set of partition function recursiond all
details on the particular implementationrdfp can be found at
http://ww. conbi natorics.cn/cbpc/rip.htm . The
space complexity of i p is O(N*). Summations in our recursion
equations run over at most two independent indices. Thexefioe
time complexity inri p is O(N®). In order to obtain the pairing
probabilities we trace back in the decomposition tree. Tiveshave
the same space complexity and time complexity as for caiogla
the partition function.
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APPENDIX
A Proof of Proposition 2.1

Let <1 be the partial order<; over the set of interior arcs, given by
Si Si; <1 SiySi, <= o < 11 < j1 < j2. Similarly,
let <2 denote the partial order over the set of exterior afgsS;, <2
Ri,Rj, <= i1 <i2, j1 < j2.

Let R;S; be the maximal (rightmost) exterior arc of, ;. 4. We
consider the set of maximaR;S;-ancestors, M. In case ofM = &
we immediately observel; ., = R;Sj, i.e. J; jn.e is of typeo.
Suppose nextM| = 1. By symmetry we can, without loss of generality,
assumeM = {R;, R;, }. Let R;;S;, the minimal exterior arc being an
descendant oR;, R;, and letj; denote either the start point of the maximal
R;,Sj, S-ancestor or sej; = jo if no such ancestor exists. Then, by

construction,Jibjl;jg jistightin J, 3 . 4. Finally, in case of M| = 2,

i.e. M = {R;, Rj,,Sr Ss; }. We may, without loss of generality, assume
thatR;, R;, subsumes,, Ss, . Again we consider the minimal descendant

of R;, R;,, R.Sy. Let z* be either the start point of the maximak
ancestor ofR, S, or z* = z, otherwise. Then/;, ; ..+ s, IS tight. If
R;, R;, is equivalent taSy, Ss;, thenJ;, j, .- s, is tight. In the above
procedure we have constructed a (t8}, of typer € {7, A, o} that

contains the maximal exteriof, ; . q-arc. By definition of (ts) and the fact

that we have non-crossing arcs it follows that any otheriftsJ, ».c,q is

disjoint to J*. We proceed by considering the rightmost exterior arc of

Ja,b,c,qa that is not contained i’*, concluding assertion (c) by induction
on the number of exterior arcs df, ;. 4. Since any exterior arc of, p, ¢ 4

is contained in a unique (ts) generated by the above proeg¢hir follows,
see Fig. 18.

Fig. 18. lllustration of Prop.2.1.

B Derivation of equ. (2.2)-(2.4)

According to Prop. 2.1(ii), there exist uniqug 1 ;_ 1, s-tight structures

T T L — T
Ji1~,i2;r-,T1 and Jj2,j1;51;5 such that Jiy igsrry = JRhlsfl and

- —JT : ' .
Jjogris1,s = JRh2 Sey respectively. We have the following two scenarios:

, we haver = s, in which caseJ’

11,J157,8
. I o . .
is of typeo orinview of .S & J;¥,. . o Jiy jy e, 1S Of typesy, otherwise.
In case ofJ}

T L i inJ: .
Ry, Se, # JRhQ Sey! Jiyjrims s @(dts) indiyq j—1;r,s-

in case ofJL

=Jr
Rpq Seq Ry, Se,

In order to arrive at equ. (2.4), we firstly observe that thexist only
one Jiy1,;—1;rs-tight structure,JiT_jl‘T_S sinceS,Ss € Jit1,j—1;r,s-
Furthermore, consider the skf, consisting of arc that equivalent £.S5.

In case ofM = @, we haves~ or ‘]E-jrr » Otherwise.

11,J1;57:8
C Construction of the Decomposition Trees

Let us begin by giving an interpretation of Prop. 2.1.

Procedure (a)[Block Decomposition]

input a joint structuredo = J; ;.5 ¢, Which is noto-tight or a maximal
secondary segment (ms).

output a unique tredy (Yo) = (Vo (T), Ea(T))

Let: < 5% < j+ 1 andR[j*, j] be thedo-(ms) contain;. In particular,
j* = j+ lin case of such an ms does not exist gifd= 1 if R[:, j] itself
is a (ms). Analogously, we defing[¢*, ¢]. We construct the tre@, (J¢)
recursively as follows:

initialization: Vo (T') = {Jo} andE4(T) = @.

(al): in case ofj* = j 4+ 1 and¢* = ¢ + 1, i.e. ¥y is right-tight, then
Yo decomposes via Prop. 2.1 (b) and (c) int@d@tight structured; =

Jffj’;ﬁﬁ"’} and ajoint structurds = J; ;, —1.5,4, —1, Wherei < i1 < j
andh < h; < ¢. Accordingly, we have

Va(T) Va(T) @] {191, 192},
Ea(T) Ea(T) @]} {190191, 190192}.

(5.2)
(5.3)

(a2) otherwise, ¥9 decomposes into a right-tight structur@s =
JEL -y In 9o and two (ms)ds = R[j*,j], 95 = S[€*,4].
Accordingly, we have

Va(T)
Bu(T) =

(5.4)
(5.5)

Va(T) @] {193, 194, 195},
Ea(T) @]} {190193, Y04, 190195}.

We iterate the process
structures og-ms.
We proceed by providing an interpretation of equ. (2.2%)2.
Procedure (b): [Arc Removal and block decomposition]
input a (ts)do = J; j:n.e
output a unique tredy, (do) = (Vi (T), Ep(T))
initialization: V4, (T') = {do } and E (T) = 2.
We distinguishJ(z, j; h, £) by type:
o: do nothing.
[I: according to equ. (2.4)}p decomposes intd1 = Ry Ry, 92 = R[i +

until all the leavesf(¥o) are eitherdo-tight

1,01 —1],93 = ijjff,i[ and¥s4 = R[j1 + 1,5 — 1], which gives rise to
W(T) = Va(T)U{¥1,92,93,94}, (5.6)
Ey(T) = FEo(T)U {001,002, %003, %004} (5.7)

. according to equ. (2.2), we consider the setJof i j_1;p,¢-tight
structures, denoted hy/. In case off M| = 1, J;41,;—1;n,c decompose
into a sequence of d; 1 j_1.p,¢-tight structureds = Ji{fl’j.}_ljh . and
two Ji+17]'_1;h7g-ms,l97 = R[Z + 1,21 — 1] andﬂg = R[]l + 1,] — 1],
where: < i1 < 71 < j. Accordingly,

(T) = Vo (T)U{¥1,96,97,9s}, (5.8)
Ey(T) = Eo(T)U {991,900, 9007, 909s}.  (5.9)
In case of| M| > 1, Ji11 1,5, decomposes into a sequence consisting
of a (dts) in J; 11 j_1;n,e, denoted bydg = Jgj,jfl;h,z and two

JiHTj,l;h’g-ms.z% = R[’L + 1,21 — 1} anddg = R[]l + 1,7 — l],
wherei < i1 < j1 < j. Accordingly,

Wi (T) Va(T) U{01,97,98,79},
Ey(T) = EuT)U{9V1,00097,9098,%009}.

(5.10)
(5.11)
Furthermore, lei; < iz < ji andh < jo < ¢, a (dts)dg = JET

. ) " i+1,j—1;h,0
in Jit1,j—1;n,c decomposes into d; 1 j_1;x,¢-tight structuredip =

{v.0.2.08} anq a right-tight joint structure)y; = JET

b ’ o in
1,425k, j2 i2+1,51;52+1,4
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Jit1,j-1;h0- 1€
Wi (T) Va(T) U {910,911},
Eb(T) Eq (T) U {1991910, 1991911}.
A\ analogous to typey via symmetry.

(5.12)
(5.13)

Finally, we have the well-known (Waterman and Smith, 19&)psdary
structure loop-decomposition
Procedure (c):[Secondary Structure]
input a secondary structurgy = R, j]
output a treeT.(9o) = (Ve (T), Ec(T))
initialization: V;,(T') = {do } and B (T) = @.
We distinguish the following two cases:
(c1):in case ofR; R; ¢ R[i, ], let @% denote empty segment in which all
the vertices are isolated. For< j* < j+1, let zg* be the maximal empty
segment that containg;. In particular, if; is not isolated, we havg* =
j+1.LetRP(i1,j*—1) denote the segment in whid®y, is connected with
Rj«_,. ThenRYJi, j] decomposes as followB[i, j| = (Y1 = R[i,i1 —
1],92 = Rb(i1,5* — 1),93 = @;:*) and we set

Ve(T) Ve(T) U {1, ¥2,093},

Ec(T) = Ec(T)U{d001,0002,0003}.

(5.14)
(5.15)

(¢2): in case ofR;R; € R[i,j], i.e. for R[i,j] = R®(i,j), we have
a decomposition into the paitys = R;R;,95 = Rl[a + 1,b — 1]).
Accordingly, we hava’.(T') = V(T)U{4,95} andE.(T) = E.(T)U
{90%4, 9005 }.

We iterate (c1) and (c2), until all the leavesTirare either isolated segments
or single arcs.

For any joint structure,/; n;1,p7, We can now construct a tree, with
root.Jy, n.1,n and whose vertices are specific subgraph$,0§,1,17. The
latter are obtained by successive application of Proce@)e(b) and (c),
see Fig. 9. To be precise, |éf be the graph rooted id; n,1,as defined
inductively as follows: for the induction basis for fixed .1, 5s Only one,
Procedure (a), (b) or (c) applies. Procedure (a), (b) or &jecates the
(procedure-specific, nontrivial) subtreé,, T}, andT.. Suppose; is a
leaf of T" that has been constructed via Procedure (a), (b) or (c). Aada of
the induction basis, each such leaf is input for exactly awnegqzlure, which
in turn generates a corresponding subtree. Prop. 2.1 and2gt2.4) imply
that  itself is a tree. We denote this decomposition tred’by ., ,,, see
Fig. 9.
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