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Abstract

Ribosomal RNA genes are probably the most frequently used data source in phylo-
genetic reconstruction. Individual columns of rRNA alignments are not independent
as a consequence of their highly conserved secondary structures. Unless explicitly
taken into account, these correlation can distort the phylogenetic signal and/or
lead to gross overestimates of tree stability. Maximum Likelihood and Bayesian ap-
proaches are of course amenable to using RNA-specific substitution models that
treat conserved base pairs appropriately, but require accurate secondary structure
models as input. So far, however, no accurate and easy-to-use tool has been avail-
able for computing structure-aware aligments and consensus structures that can
deal with the large ribosomal RNAs. The RNAsalsa approach is designed to fill this
gap. Capitalizing on the improved accuracy of pairwise consensus structures and
informed by a priori knowledge of group-specific structural constraints, the tool
provides both alignments and consensus structures that are of sufficient accuracy
for routine phylogenetic analysis based on RNA-specific substitution models. The
power of the approach is demonstrated using two rRNA datasets: a mitochondrial
rRNA set of 26 Mammalia, and a collection of 28S nuclear rRNAs representative of
the five major echinoderm groups.
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1 Introduction

Ribosomal RNAs are the most widely used source of phylogenetic information,
although protein-coding genes, often derived from EST sequencing or from
sequencing complete mitogenomes, have provided an increasingly large amount
of new genomic data. The SSU and LSU rRNA genes have been sequenced
for thousands of taxa throughout the metazoan kingdom, providing a much
denser taxon coverage than what is available for any particular protein-coding
gene. Since sequence conservation varies dramatically between different regions
of rRNA genes, these data are informative on a wide range of phylogenetic
time-scales, ranging from recent to ancient splits [1, 2].

This variation in substitution rates, however, is also a major technical obstacle
for using rRNA in molecular phylogenetics. The correct assignment of homol-
ogous characters, i.e., alignment columns, is the crucial first step in molecular
systematics on which all subsequent analyses depend. The high variability
of substitution rate along the sequence, combined with similar variations in
insertion and deletion rate, makes it impossible in practice to construct unam-
biguous alignments of the more variable regions by means of standard sequence
alignment techniques.

Ribosomal RNAs, however, are highly structured, with large parts of the
molecules exhibiting very strong conservation of their base pairing patterns.
Therefore, it is natural to improve alignment accuracy by incorporating sec-
ondary structure conservation. Indeed, this approach has been advocated re-
peatedly in the literature, e.g. [3, 4, 5, 6, 7]. In practise, however, the ap-
plication of this idea has remained a hard and tedious task, mostly because
of the difficulties in obtaining a correct structural annotation. If good struc-
ture annotations were readily available, we could simply employ one of the
alignment tools that explicitly incorporate secondary structure information
[8, 9, 10, 11, 12, 13, 14, 15].

For short RNAs (length / 100nt), secondary structures can be computed
with satisfactory accuracy based on experimentally measured thermodynamic
parameters [16, 17]. In contrast, for large RNAs, such as SSU and LSU ribo-
somal RNAs, the accuracy of thermodynamic predictions is insufficient. This
is in part due to inaccuracies in the “nearest neighbor model” and its pa-
rameters [18, 19], and in part because the RNA and protein components of
the ribosome are tightly packed and thus mutually influence their folds. The
functional rRNA structures, therefore, cannot be expected to be identical with
the structures of isolated rRNAs – which is what the thermodynamic folding
algorithms compute. The RNAalifold approach shows that the accuracy of
biological structure predictions can be increased to acceptable levels by using
the consensus structures of a set of closely related sequences and by explicitly
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taking information on base-pair covariation into account [20, 21]. Designed
for relatively closely related sequences, RNAalifold unfortunately requires a
sequence alignment as input.

RNAsalsa is designed to overcome this limitation by combining the predic-
tion of consensus structures of closely related sequences with prior knowl-
edge that constrains the set of acceptable structures. Consensus structures
for groups of related sequences are used to generate high quality alignments
by funneling structure information into the alignment scoring function. Thus,
RNAsalsa uses both structure information for adjusting and refining the se-
quence alignment and sequence information contained in the alignment to
refine the structure predictions. We designed RNAsalsa primarily for phyloge-
netic applications. In this context, RNA secondary structure is of importance
at two levels: First, changes in secondary structures can be useful phylogenetic
markers in their own right [22]. Clearly, accurate structure predictions are a
necessary pre-requisite to utilize structural differences in this way. Secondly,
knowledge about conserved secondary structures allows the use of more de-
tailed models of RNA sequence evolution. In this contribution we focus on the
latter aspect.

The rationale of RNA-specific substitution models [23, 24, 25, 26, 27, 28] is
rooted in the effect of covariation in paired sites of rRNA sequences. Slightly
deleterious substitutions at one side of a helix, which would disrupt the struc-
ture, are frequently compensated by a second substitution at the pairing site,
restoring the pairing ability [29]. This leads to a strong correlation of paired po-
sitions within rRNA sequences. The corresponding alignment columns, there-
fore, do not display independent phylogenetic information. Since paired sites
are strongly correlated but treated as independent, phylogenetic information
is scored twice, leading to unjustified high support for some trees and erro-
neously low support for alternative trees [30, 31].

RNAsalsa is written in C. The source code and pre-compiled executables for
various platforms, as well as a detailed manual providing some guidelines for
practical use may be downloaded from http://www.rnasalsa.zfmk.de/ and
http://www.bioinf.uni-leipzig.de/Software/RNAsalsa.

2 Materials and Methods

Workflow and algorithms

RNAsalsa implements a workflow that makes use of several well-established al-
gorithms for both RNA secondary structure prediction and structure enhanced
alignment (Fig. 1).
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Fig. 1. The algorithmic concepts throughout the workflow of RNAsalsa as a graphi-
cal representation. See main text for details and the supplements for an alternative
representation.

The starting point for RNAsalsa is an initial alignment A
0 of a collection

{x1, . . . , xN} of homologous RNA sequences (produced e.g. simply by clustalw)
and an a priori known secondary structure constraint σ for a single sequence
x0 which is contained in the alignment A

0. The sequence x0 and its struc-
tural model are used only to initialize the structure prediction and alignment
process.

In the first step, RNAsalsa checks the consistency of the initial alignment A
0

and the initial constraint σ0: for each base pair in σ0, we check whether the
corresponding aligned positions of a sufficient number of sequences in A

0 can
also pair. If so, we retain the base pair, otherwise it is removed from the
constraint. The resulting “relaxed” constraint

σ = filter(σ0|A) (1)

can be seen as base-pair-wise filtering of the initial constraint σ0 that removes
pairs from σ0 that are largely inconsistent with the initial alignment. Pro-
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jecting the relaxed constraint σ separately onto each aligned sequence (i.e.,
retaining only the canonical base pairs of σ that can be formed by a given
input sequence xi), then produces initial structure constraints separately for
each sequence:

σi = projection(σ, xi|A) (2)

Up to this point, the result heavily depends upon the initial alignment. It
may not cover the input sequences uniformly, in particular it will often be
concentrated on the well-conserved (and therefore properly aligned) regions.

In the second step, RNAsalsa utilizes the improved accuracy of the predicted
consensus structures. To this end, we construct a collection of pairwise se-
quence alignments A

ij from the input sequences xi and xj . These can be
constructed in different ways, either by dynamic programming alignment, or
by projecting the corresponding sub-alignment of A

0. For details we refer to
the RNAsalsa manual. For each of the pairwise alignments, we compute the
consensus minimum free energy structures

τ ij = RNAalifold(Aij|σi ∩ σj). (3)

using the base pairs common to the projected structures σi and σj, resp., as
constraint. This step uses the Vienna RNA Package library functions under-
lying RNAalifold [20] to perform the constrained folding computations. For
each sequence xi, the collection of structures {τ ij , i 6= j} taken together de-
fines a set of base pairs on xi that are both thermodynamically plausible and
conserved in at least one other sequence of the input set. From this set of
pairs, we select a single secondary structure

τ i = majority({τ ij , j 6= i}). (4)

for sequence xi using a majority voting procedure. RNAsalsa currently imple-
ments a simple greedy procedure that selects the most frequent base pairs first
and rejects pairs that would cross previously selected ones to avoid the forma-
tion of pseudoknotted structures. Alternatively, one could also use Nussinov’s
Maximum Circular Matching algorithm [32] to retrieve a maximum weight
sub-set of non-intersecting pairs. The base pairs of τ i, which by construction
typically contain most of the initial constraint-derived pairs σi, are now used
as a constraint for computing the final secondary structure prediction

ψi = RNAfold(xi|τ i), (5)

for each sequence xi.

The purpose of the entire – rather complex and computationally expensive –
procedure is to use as much information as possible in guiding the last step,
the computation of the secondary structure models ψi for each input sequence.
This guiding information is derived from two sources: the initial constraint σ
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and the ensemble of plausible base pairs generated from all pairwise align-
ments.

In the next step, the sequence-structure pairs (xi, ψi) are realigned. To this end
RNAsalsa uses a hierarchical progressive alignment based on pairwise dynamic
programming alignments with affine gap costs [33]. The scoring function ex-
plicitly incorporates the secondary structure annotation: the (mis)match score
s(xi, yj) of position i from sequence x with position j from sequence y is de-
fined as follows:

s(xi, yj) = b0sm(xi, yj) +

b1sn(xπ(i), yπ(j)) + csp(xi, yj) (6)

where xπ(i) and yπ(j) denotes the pairing partners of xi and yj in their respective
secondary structures. The coefficient b0 = 1 if both xi and yj are paired
nucleotides. The coefficient b1 is set to 1 if x and y share sufficient structural
conservation to a certain extent that overcame the precedent filtering steps
and if xπ(i) and yπ(j) are located either both upstream or both downstream
of xi and yj, respectively. Otherwise the structural contribution is ignored,
b1 = 0. Finally, if one xi or yj are unpaired, then b0 = b1 = 0 and c = 1.
In regions without structural information we therefore use a pure nucleic acid
sequence score sp, while in structured regions, the modified scoring functions
sm and sn are used. For instance, within trusted structural regions A-G is
scored as a match because both may pair with U, while it is not in regions
without sufficiently trusted structural information. Default scoring tables are
listed in the manual and supplemental material. The final result is a global
re-alignment B of the input sequences which respects all secondary structure
information obtained in the previous steps.

The individual folds ψi and the alignment B are used to derive a consensus
structure

ω = consensus({ψi}|B) (7)

Since we now have the trusted alignment B, we can again employ a simple
voting strategy: we start from the set of all base pairs that appear sufficiently
often in superposition of the ψi. Again we use a greedy strategy to avoid
conflicting base pairs (note that no conflicts can arise if we consider only base
pairs that occur at least N/2 times).

Several parameters can be adjusted in the process. In particular, the stringency
of the initial filtering of base pairs, equ.(1), and the two majority voting pro-
cedures, equ.(4) and equ.(7) can be adjusted by the user to the peculiarities of
the data sets. In each case, a threshold for the minimum number of consistent
pairs can be specified. Some guidelines for practical use can be found in the
RNAsalsa manual.
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Fig. 2. Accuracy of structure prediction. Fraction of correctly predicted helices
(green bars, left) compared to the mammalian 16S rRNA consensus models [34].
RNAsalsa significantly outperforms MXSCARNA and RNAalifold (default parameter
settings; 3-sample test for equality of proportions without continuity correction;
χ2 = 19.96, df = 2, p < 0.0001). On the right: Average tree-edit distance [35]
between predicted individual structures and the mammalian 16S rRNA reference
model. RNAsalsa predictions conform the consensus model much better (paired
sampled t-Test; t = 33.46, df = 1, p < 0.0001; N = 26.)

3 Results

3.1 Secondary structure prediction

Performance of RNAsalsa’s structure predictions was evaluated in comparison
with three other relevant methods: MXSCARNA [15] computes pairing probabil-
ities and considers potential stem information in the subsequent alignment
process, RNAfold [17] produces individual secondary structures of RNA se-
quences, and RNAalifold [20] generates the consensus structure for a given
input alignment. We compared RNAfold predictions with RNAsalsa’s individ-
ual predictions ψi (equ. 5), while the MXSCARNA and RNAalifold results are
compared with RNAsalsa’s final consensus structure ω. See Fig. 2.

The RNAsalsa secondary structure model for the mammalian 16S rRNA se-
quences is highly congruent to the Bos taurus reference model proposed by
[34], see the supplements for an illustrating graphical representation. In par-
ticular, 44 of the 52 helices within the conserved core of the structure are
correctly predicted. The remaining discrepancy is likely not a weakness of
RNAsalsa but reflects a greater variability of mammalian 16S rRNA struc-
tures than present in the data set originally used to construct the reference
model, Fig. 2 (left). MXSCARNA and RNAalifold capture only 27 and 23 helices,
resp. In contrast to RNAsalsa, they failed to detect in particular long range
interactions. Furthermore, RNAsalsa’s predictions of the individual structures
match the reference model much better than unconstrained thermodynamic
folds by RNAfold, Fig. 2 (right). Single fold data are provided as supplements.
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3.2 Structure-aware RNA sequence alignments

The impact of secondary structures on the alignments as well as the overall
performance was investigated by comparison with two commonly used se-
quence alignment methods, the classical ClustalW [36] and the more modern
MAFFT [37] approach, and with the structural alignment method MXSCARNA.

As a benchmark system we generated a reference alignment by simulation of
tree evolution using rnasim. We then compared the reference alignments with
the results of each alignment algorithm to estimate alignment quality. The
rnasim software and an input example representing small tRNAs have been
downloaded from http://kim.bio.upenn.edu/software/rnasim.shtml. As
a second example, we used 28S rRNA from Saccharomyces cerevisiae as a root
sequence for simulated evolution. Following the procedure of [38, 39] we cal-
culated the Structure Conservation Index, Total Column Score, and Sum of
Pairs Score as implemented in the baliscore software [38]. The Sum of Pairs
Score is an accuracy metric for a multiple alignment relative to a reference
alignment, based on the number of correctly aligned residue pairs summed
over all pairs of sequences. It can equivalently be viewed as a similarity metric
between two multiple alignments. This metric is used by the BaliBase bench-
mark. The Structural Conservation Index is a measure for alignment quality
regarding RNA sequences and emphasizes secondary structure. It values the
algorithms ability to reconstruct conservative consensus folds and is the most
important measure for RNA alignments because it respects compensatory or
consistent sequence variation. The Structure Conservation Index (SCI) will
be high if the sequences fold together equally well as if folded individually. On
the other hand, SCI will be low if no consensus fold can be found [40]. The
Total Column Score represents the rate of alignment columns that could be
reconstructed by the alignment program compared to the reference tree. All
programs were used with default settings except for the tree branch length
scaling factor in rnasim which was set to 100000. RNAsalsa always performed
best in SCI and was second to Mxscarna in TC and SPS with small molecules
only. With 28S rRNA RNAsalsa performed best w.r.t. all measures. Table 3.2
summarizes the benchmark results.

3.3 Exemplary applications in phylogeny reconstruction

In order to demonstrate the usefulness of RNAsalsa in phylogenetic appli-
cations, we consider two distinct datasets in detail. For each alignment, we
performed phylogenetic analyses using a likelihood based approach and com-
pared the results with the published analyses of the data set. After individually
aligning the LSU and SSU sequences, the alignments were concatenated. Then
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Table 1
Benchmark results for different alignment programs for tRNA and 28S rRNA

tRNAs LSU rRNA

Method1
SPS TC SCI SPS TC SCI

2

RNAsalsa 0.92 0.69 0.92 0.57 0.11 0.18

Mafft 0.89 0.65 0.80 0.55 0.05 0.11

ClustalW 0.84 0.51 0.38 0.55 0.06 0.13

Mxscarna 0.94 0.77 0.88 n.a. n.a. n.a.3

1 All algorithms were started with default setups.
2 All applied score values approach 1 as the alignments become identical with the reference.
3 We could not get results using Mxscarna with LSU rRNA.

Aliscore [41], a new method to identify ambiguously aligned regions in mul-
tiple sequence alignments, was used to extract the informative parts of the
alignment. Maximum likelihood (ML) analysis was performed using a GTR
model with gamma distribution (for further details see the supplements.
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Fig. 3. Bayesian tree inferred from the combined mammalian 12S rRNA and 16S
rRNA. (A) Analysis with GTR + Γ model in simple DNA mode. (B) Analysis
with GTR + Γ model in RNA mode for paired positions and DNA mode for loop
regions. Numbers indicate Bayesian posterior probabilities. The scale bar denotes
the estimated number of substitutions per site.

Primates

Tree reconstruction results of the mammalian data are shown in Fig. 3 and 4.
We focus here on the phylogeny of primates and, in particular, on the exact
phylogenetic position of one of the most basal primates, the tarsier. To this
end, we re-evaluate a dataset specifically compiled for this purpose [42].

Molecular studies on mitochondrial and nuclear DNA data of primates have so
far lead to incongruent results. Nuclear DNA data favour haplorrhines, i.e. the
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grouping of anthropoids and tarsier [43]. This hypothesis has gained strong
support by the discovery of haplorrhine-specific SINES [44, 45]. Mitochondrial
data, in contrast, mostly support the prosimian hypothesis that postulates a
sister group relationships of Tarsius and strepsirrhines [46, 47, 42].

The Maximum Likelihood analysis based on the RNAsalsa alignment shows
well supported monophyletic primates, Fig. 4. In contrast, primates do not
appear monophyletic in analyses that use other alignments. The MAFFT align-
ment does not provide any phylogenetic signal to display relationships between
anthropoids, the strepsirrhine representative Nycticebus, Tarsius, and all re-
maining mammalian groups. ClustalW analysis groups Tupaia, a scandentian
representative, within primates as sister taxon to Tarsius, both forming the
sister clade to Nycticebus and anthropoids. In the MXSCARNA analysis, primates
appear paraphyletic with nested Rodentia.

Within primates, Tarsius appears as sister taxon to anthropoids in the RNAsalsa
alignments, although with weak bootstrap support. This is also the case for the
MAFFT alignment, albeit on the background of largely unresolved mammals.
The MXSCARNA alignment leads to well supported Haplorrhines.

Although the placement of the tarsier is only weakly corroborated in the
RNAsalsa analysis, these results show that the inclusion of good secondary
structure models into the alignment procedure can make a significant differ-
ence for phylogeny reconstruction. RNAsalsa performs better than both purely
sequence-based alignment approaches and sequence-structure alignments that
are based directly on thermodynamic structure predictions.

The non-monophyletic appearance of primates with nested Scandentia and
Rodentia in the MAFFT, ClustalW, and MXSCARNA analyses resp., must be in-
terpreted as erroneous. A few studies based on mitochondrial genes propose
paraphyletic primates with nested Dermoptera [47, 48], but this observation
has been explained as an effect of base composition bias in the mitochondrial
markers [49]. Scandentia or even Rodentia never appeared within primates to
our knowledge.

An analysis of the whole mitochondrial genome of mammals revealed that
heterogeneous substitution rates among different mammalian groups lead to
misleading phylogenetic signals in mitochondrial genes [42]. Their support
for the prosimian hypothesis is thus likely an artefact. RNAsalsa apparently
corrects this effect and leads to phylogenies from mitochondrial RNAs that
are congruent with the results for nuclear genes.

We compared RNA-specific substitution models with simpler DNA models to
determine to what extent they influence topology and/or node support of phy-
logenetic trees. Unfortunately, RNA substitution models are not implemented
in any of the available Maximum Likelihood software. They can, however, be
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used in Bayesian inference software. We therefore used MrBayes (version 3.1.2)
[50] with a variant of the Schoeniger & von Haeseler model [23] to account for
character covariance.

A            B                                C       D

Ornithorhynchus

Didelphis

Rattus

Mus100

Dasypus

Artibeus

Pteropus

Sus

Bos

Balaenoptera42

99

99

Equus

Felis

Canis

Phoca

Halichoerus100

94

100

87

81

Tupaia

Nycticebus

Tarsius

Cebus

Papio

Macaca100

Hylobates

Pongo

Pan

Homo

Gorilla49

89

99

100

100

100

47

94

60

96

85

80

100

Ornithorhynchus

Didelphis

Rattus

Mus100

Dasypus

Tupaia

19

Bos

Balaenoptera

Sus

48

Equus

Artibeus

Pteropus88

71

Felis

Canis

Phoca

Halichoerus100

93

100

50

99

95

Nycticebus

27

Tarsius

Cebus

Papio

Macaca100

Hylobates

Pongo

Pan

Homo

Gorilla60

89

99

100

100

100

58

7

29

100

Ornithorhynchus

Didelphis

Rattus

Mus100

Dasypus

Pteropus

Artibeus99

Sus

Balaenoptera

Bos

89

98

Equus

Felis

Canis

Phoca

Halichoerus100

98

100

88

66

95

Tarsius

Tupaia

81

Nycticebus

Cebus

Papio

Macaca100

Hylobates

Pongo

Pan

Homo

Gorilla38

94

100

100

100

100

90

91

51

75

100

0.10.10.1

Ornithorhynchus

Didelphis

Dasypus

Tupaia

Sus

Bos

Balaenoptera

94

Pteropus

Artibeus96

Equus

Felis

Canis

Phoca

Halichoerus100

93

100

60

26

100

Nycticebus

Mus

Rattus100

Tarsius

Cebus

Papio

Macaca100

Hylobates

Pongo

Homo

Gorilla

Pan62

89

99

100

100

100

84

17

52

95

36

55

100

0.1

Fig. 4. Phylogenies inferred from combined analyses of the mammalian 12S rRNA
and 16S rRNA. Sequences are aligned with (A) RNAsalsa, (B) MAFFT, (C) ClustalW
and (D) MXSCARNA. Tree reconstruction is based on Maximum Likelihood analyses
with GTR+Γ model. Numbers indicate Bootstrap support values (1000 replicates).
The scale bar denotes the estimated number of substitutions per site.

Bayesian inference results of the mammalian data set are shown in Fig. 3. Ap-
plication of simple DNA models led to a paraphyletic appearance of primates.
Tupaia is a sister taxon to the strepsirrhine Nycticebus, both forming the first
branching clade within the paraphyletic primates. In contrast, the application
of mixed RNA/DNA models shows monophyletic primates with at least mod-
erate nodal support. In both analyses, Tarsius appears highly supported as
the sister taxon to anthropoids, forming monophyletic haplorrhines. Again,
the monophyly of primates in the mixed model analysis can be interpreted as
a hint that this approach performs better than the application of simple DNA
models. These results corroborate the previously proposed superiority of the
mixed model approach over simple DNA models [31].

Echinoderms

Our second example tackles the question of inter-class relationships in Echino-
dermata, Fig. 5. This phylum is composed of five extant classes, the Crinoidea
(sea lilies), Ophiuroidea (brittle stars), Asteroidea (starfishes), Holothuroidea
(sea cucumbers) and Echinoidea (sea urchins). Monophyly in these five classes
is well founded. The relationships between the five classes remain subject of
ongoing discussion, however.

Several contradicting hypotheses of inter-class phylogeny in Echinodermata
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have been raised in the past, based on morphological and molecular data.
Nevertheless, there is some consensus regarding major aspects of echinoderm
phylogeny [51, 52, 53]. Crinoids are mostly seen as the most basal split within
Echinodermata, forming the sister group to the four remaining classes (Eleuthero-
zoa). Furthermore, there is strong support for a sister group relationship of
echinoids and holothurians (Echinozoa). Debates on the phylogenetic position
of the stellate forms (starfishes and brittle stars) recently ended up in two com-
peting hypotheses: are the ophiurids alone sister group to Echinozoa [54, 55]
or do asteroids and ophiuroids form a clade (Asterozoa), which is then the
sister taxon to Echinozoa [53]?

Likelihood analyses based on different alignment methods are congruent only
in parts of the resulting phylogenies. The sea lily species Florometra is the
first split within monophyletic Echinodermata and the two sea urchins Arbacia
and Strongylocentrotus correctly appear monophyletic with highest bootstrap
support.

There are however, striking differences in many other aspects. The RNAsalsa

alignment shows monophyletic Echinozoa with Cucumaria as sister taxon to
the two echinoids. The starfish Asterias appears as sister taxon to the brittle
star Ophioderma. These monophyletic Asterozoa are the sister clade to Echi-
nozoa. All mentioned relationships gain highest bootstrap support. The MAFFT
alignment also show monophyletic Asterozoa but with lesser support. Further-
more, there is no phylogenetic signal to resolve relationships between Aster-
ozoa, Echinoidea and Holothuroidea. The ClustalW analysis does not show
monophyletic Asterozoa and Echinozoa. Instead, there is a closer relationship
between echinoids and Asterias. Within Eleutherozoa, the ophiuriod Ophio-
derma is the first split, followed by Cucumaria and the Asterias+Echinoidea
clade.

The results of the MXSCARNA analyses are comparable with those of RNAsalsa.
Eleutherozoa, Echinozoa and Asterozoa are monophyletic, the latter ones with
lesser support than in the RNAsalsa analyses. Compared to the previous stud-
ies on echinoderm phylogeny, the results of the structural alignment methods
must be seen as more reasonable. In particular, based on monophyletic Echino-
zoa their superiority over the two exclusively sequence-based alignment meth-
ods is pointed out. Both of those fail to recover monophyletic Echinozoa and
the ClustalW alignment erroneously shows Asterias as sister taxon to the sea
urchins.

Overall, we find that structure-aware alignments yield more plausible re-
sults than purely sequence-based alignments. RNA-specific substitution mod-
els yield better results with the RNAsalsa alignments (which incorporate some
prior knowledge on the structure) than structural alignments which are based
entirely on unconstrained thermodynamic folding.
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Fig. 5. Phylogenies inferred from analyses of the echinoderm 28S rRNA. Sequences
are aligned with (A) RNAsalsa, (B) MAFFT, (C) ClustalW and (D) MXSCARNA. Tree
reconstruction is based on Maximum Likelihood analyses with GTR + Γ model.
Numbers indicate Bootstrap support values (1000 replicates). The scale bar denotes
the estimated number of substitutions per site.

4 Discussion

Maximum Likelihood analyses and Bayesian inference both revealed a remark-
able influence of rRNA secondary structure consideration on both the sequence
alignment and on the subsequent tree reconstruction. This phenomenon is well
known in molecular systematics and has already led to the development of
RNA-specific substitution models. The application of these models, however,
is confined to a few studies [3, 5, 30, 31, 56, 57], mostly because of the lack of
an efficient way to construct good secondary structure models and alignments
for newly sequenced rRNAs.

RNAsalsa has been designed specifically to overcome this barrier. It is a tool
for simultaneously computing high-quality structure annotation and structure-
aware sequence alignments of large RNA molecules. While it can also be useful
for other tasks, its primary domain of application is phylogenetic inference.
Here the relatively large computational cost of the structure prediction (com-
pared to other, less accurate tools) is of little concern, since it is dwarfed by
the demands of subsequent ML or Bayesian computations. Extensive tests,
and two real-world applications, demonstrate that RNAsalsa can lead to sig-
nificant improvements in reconstructed phylogenies, positively affecting both
tree stability and tree topology. These improvements can be traced back to
two sources: first more accurate alignments improve the phylogenetic signal;
second, more exact automatically generated consensus structures enhance the
benefit of RNA-specific substitution models. As our examples show, both types
of improvements can offset the problems incurred by unequal substitution rates
and long branches.

The modular structure of RNAsalsa lends itself to incorporating further im-
provements. For example, it is likely beneficial to use a Sankoff-style algorithm
such as foldalign [58] or locarna [13] to construct the pairwise alignments
A

ij and/or the final alignment B and its consensus structure ω. The current
version of RNAsalsa consistently generates alignments and consensus struc-
tures of acceptable quality (compared to the extremely tedious manual cura-
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tion of such data). It is therefore suitable for routine applications in molecular
phylogenetics based on structured RNAs, in particular ribosomal RNAs.
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