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1 Introduction

Cycle bases [2] are not only an interesting characterinatfahe structure of graphs by themselves
but also provide a basis for computational assessmentsafyttie structure of a graph. “Cycle-
space algorithms”, for instance, attempt to construct gt@sall elementary cycles of a graph from
a cycle basi#3 by iteratively computing the symmetric difference of amedmtary cycle and a basis
cycle, subsequently retaining the result if and only if iagain an elementary cycle. If a cycle basis
is robust, this approach is successful [5, 9, 1, 11].

Unfortunately, however, very little is known about robugtle bases beyond a few very special
graph classes: As shown in [5], the boundaries of the facas embedded planar graph form a ro-
bust cycle basis. Corresponding cycle-space algorithengiaen in [14, 5]. Furthermore, complete
graphs have robust bases that are easy to construct dydBit Robust bases for a small class of
cubic graphs are constructed in [11].

There is, at present, neither an efficient algorithm to gosia robust cycle basis for a given
input graph, nor is it known whether robust bases always.eXimajor obstacle for the investigation
of robust cycle bases is the apparent lack of relationshigls ether classes of cycle bases that
have been explored in much more detail in the past [7, 12]. ifigiance, Dixon and Goodman
[4] conjectured that every strictly fundamental cycle basicyclically robust. A counterexample,
however, was given in [13]. A more systematic search for ections [11] showed that robust and
fundamental cycle bases are also unrelated.

In this contribution we first disprove two conjectures onusttcycle bases. We then introduce a
relaxed notion of robustness that is still sufficient for toastruction of efficient cycle space algo-
rithms and show that “quasi-robust” cycle bases can be ngtst for complete bipartite graphs.

2 Preliminaries

Throughout this contribution, le& = (V, E) be a finite undirected simple 2-connected graph. A
(generalized cyclein G is an Eulerian subgraph @, i.e., a subgraph off in which the degree
of every vertex is even. A connected Eulerian subgraph irclwbivery vertex has degréawill be
called anelementary cycle For simplicity, we identify a subsdt’ C FE of edges ofG with the
subgraphG(E’) := (J.cp e, E') of G that it defines. In particular, we identify cycles with their
edge sets. The symmetric difference of two edge Bétand £’ will be denoted byr’ & E”, i.e.,

we putE’ @ E” := (E' UE")\ (E' n E"). It will sometimes be convenient to identify a cycle by
the sequence of vertices traversed in one of the two orientatWe write

C = {.131])2, ToX3, . .. xk_lxk,xkxl} =:[r1,22..., 2] (1)

and use the shorthand = {z, y} to denote edges as pairs of adjacent vertices.

The power sef3(E) can be regarded as a vector space @FR) = {0, 1} with vector addition
@ and the trivial multiplication operatdr- D = D, 0- D = &. Thecycle spac&(G) is the subspace
of (P(E), ®,-) that consists of the cycles ¢f (including the “empty cycle’), see e.g. [2]. As
every 2-connected graggh is connected, the dimensialimgr(2) €(G) of its cycle space coincides
with its cyclomatic number(G) := |E| — |V | + 1, see e.g. [6].

A basisB of €(G) that consists of elementary cycles only isyele basiof G. For every cycle
C, there is a unique subsBt: C B of elementary cycles i8 such thatC = ®C’€Bc C’ holds.
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3 Robust and Quasi-Robust Bases

In the following we build on the discussion in [11], which iaded on [9] but uses a somewhat
different terminology.

Definition 1. A sequences = (Cy, Cq,.. ., Cy) of (not necessarily pairwisely distinct) elementary
J
cycles iswell-arrangedif, for eachj < k, the partial sunt); = @ C; is an elementary cycle.
=1
The sequenc§ is strictly well-arrangedf, for 2 < j <k, C; N Q;_, is a path.
By construction, strictly well-arranged cycle sequenagesrell-arranged, while the converse is

not true [9, 11]. A small example of a sequer®&hich is well-arranged but not strictly is shown
in Figure 1.

LM X

Cy Cs Cr e Conq

Figure 1: Sequencg = (Cy, Cy) which is well-arranged, but not strictly well-arranged.

Definition 2. A cycle basis5 is (strictly) quasi-robustf, for each elementary cyclé € €(G) there
is a (strictly) well-arranged sequence of cycfes= (Cy, Ca, . .., Cy ) With C; € BandCy, = C.
The basisB is (strictly) robustif for each elementary cycl€', the sequencé&- can be chosen so
that the elementary cycles 8- are pairwise disjoint.

Given a graplz, we can associate cycle baisvith an undirected graphiz whose vertices are
the elementary cycles i@ (including the empty elementary cyck). An edge inl'z connects two
elementary cycle€” andC” if and only if C' & C” € B.

Lemma 3. Let B be a cycle basis afi. Then

1. Bis quasi-robust if and only if 5 is connected.

2. Bisrobust if and only if for every elementary cy€lethe length of a shortest path connecting
C with @ equals|B¢|.

Proof. (1) Clear. (2) The path length cannot be smaller than the muifl:| of basis cycles neces-
sary to represent'. If C' can be reached via no more thidt| intermediate cycles, these must be
reached via a well-ordering &> because each basis cyclellp must be used at least once. [
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4 Counterexamples
4.1 Kainen'’s Basis ofK,, ,

Let us denote by, UV, the vertex bipartition of the complete bipartite grafily, ,,. We fix two
verticesp € V; andq € V5 and consider the set of quadrangles

B> = {{pq, py, gz, xy} |z € Vi,y € Va} . @)

Since the edgey appears only in a single quadrangle, we see immediatelydhatis linearly
independent. Furthermor&3? 4| = (|Vi| — 1) x (|Va| — 1) = p(Kmn), i.e., B is basis of
€(Km,»), which we will refer to as Kainen’s basis.

In [9], it was argued thaB” ¢ is robust. Here we give a counterexample.Ag s, consider the
cycleC' as shown in Fig. 2. As indicated in the caption of Fig. 2, itagating setS’lc’8 w.r.t. the
Kainen basis3!® cannot be well-arranged, henBé&?® is not robust. We can make an even stronger
statement: None of the Kainen basedGf; are robust. Choose an arbitrary pair of vertipes V;
andg € V,. Then there is an automorphismof K 5 with 7(p) = 1 andr(g) = 8. More detailed
informations about graph automorphism can be seen e.g.].ifT[& pre-image of”, 7=1(C), is
necessarily again an elementary cycle. The relationshipéfC) and 8?4 is the same as that of
C andB'8, hence the generating setof ! (C') cannot be well-arranged, implying tht:¢ is also
not robust.

Figure 2: Counterexample for Kainen’s assertion. Condliebasis3'® of K5 5 and consider the
cycleC = [1,6,2,7,3,8,4,9,5,10] outlined by the full line. The generating set 6fis Bé’g =
{Cu9,C57,C5.10,Ca6,Ca7,C5 9}, WhereCy,, = [1,8, z,y]. Cs 7 is shown as dashed elementary
cycle. One easily checks that$ C” is not an elementary cycle for eacl’ € B.. Therefore,
there is no well-ordering o8¢, and consequentlg’-® is not robust.

We can extend this negative result to all complete bipagtisghsk,, , with m,n > 5. By
the same symmetry argument, it is always sufficient to cengie Kainen basi& = 8% with
arbitrary fixedo € V; = {0,1,...,m — 1} and0’ € V» = {0,1',...,(n — 1)’'}. Furthermore,
K5 5 is an induced subgraph &f,, ,, for all m,n > 5. If 0 and0’ are vertices of5 5 C Ky, n,
then the Kainen basis @f,, ,, contains that of the induced ard; 5. The elementary cyclé’ of
Fig. 2 is also an elementary cyclef, ,, and its basis decompositidf w.r.t. the Kainen basis of
K...n consists of the same basis elementary cycles aspn HenceBc cannot be well-arranged
onK,, , forn,m > 5.

Despite the counterexample above, we will show below thaétds assertion is true for small
graphs.



Preprint 5
Lemma 4. The Kainen basis ok, ,, withm < 4 andn < 5 is strictly robust.

Proof. There is nothing to show fag, m < 2 sinceK; ; andK; » have no cycles an&, » = C;
consist of a single cycle. The longest cycleddn, ,, has lengtl2 min{m, n}, i.e, we only need to
consider cycles of length, 6, and8. In the following, we show that for each type of cycle there
is a well-arranged order of their Kainen basis elements. ¢dmeectness can be checked by direct
computation in each case.

Cycles of length4.

1. C containgd0’. ThenC € K and there is nothing to show.

2. C contains exactly one of the vertice®r 0’. W.l.o.g.,0 € C. ThenC = (0,7, 4, '] =
Cj.+ @ Cj j and hencdc = {C;;/, C; ;} is strictly well-arranged.

3. C contains neithed nor0’. All such elementary cycles are of the foth= [é, 4/, j, j'].
Its strictly well-arranged sequenceSs = (C;.i+, Cj i/, Ci j, Ci i, C).

Cycles of length6.

1. C contains the edgé)’. Such elementary cycles have the fafh= [0,0', 4,7, 7, j']. Its
strictly well-arranged sequenceSs: = (C; j/, Cjir, Ci i, C).

2. C includes the “fixed verticesd and (0’ but not the edg®0’. Such elementary cy-
cles have the forn® = [0,4,4,0, 4, 5']. Its strictly well-arranged sequenceSs =
(Ciﬂ'/ s CjJ/, C)

3. C contains exactly one of the verticesor 0’. W.l.o.g.,0 € C. Such elementary cy-
cles have the forn®® = [0,4,4, j/, j, k¥]. Its strictly well-arranged sequenceSs =
(Cj,k/, Cj’j/ s Ci’j/, Cm‘/, C)

4. C contains neithed nor0’. Such elementary cycles have the foatm= [i, ¢, 4, j/, k, k']
Its strictly well-arranged sequenceSds = (C; +, C} i, Ck j', Cr ks, Ci iy Ciir , C).

Cycles of lengths.
In our treatment these elementary cycles can only occif4a and K, 5. The case that’
contains neithed nor0’ therefore does not appear.

1. C contain9)0’. All such elementary cycleS are of the fornC' = [0,0, 4,4/, 7,5, k, k'].
Its strictly well-arranged sequenceSs = (Cji+, Cj i/, Ck,js, Crir, Ci i, C).

2. C'includes) € V4 and0’ € V5 but not the edge0’. In this case we have two distinguish
two kinds of elementary cycles! = [0,4',¢,0', 7,5, k, k'] orD = [0,4,4, 4,5, 0', k, K'].
The corresponding respective strictly well-arranged segeas are
SC = (Ck:,k"y Ck’j/, CjJ‘/, Cm‘/, C) andSD = (Cm‘/, Cl‘,j/, CjJ/, Ck:,k:/a D)

3. C contains exactly one of the verticesor 0. W.l.o.g.,0 € C. All such elementary
cycles are of the for@ = [0,4', 4,5, 4, k', k,U’]. Its strictly well-arranged sequence is
Sc = (Crv, Cropr,Cinr, Cj iy, Cijr, Ciir, C).
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4.2 The Cartesian ProductK,G

In this subsection we will disprove a conjecture for cyclsdsmof Cartesian product graphs. The
vertex set of the Cartesian produeflH of two graphs7 andH is the set{(g,h) | g € V(G),h €
V(H)} that is the Cartesian product of the vertex sets of the factwo vertice<g;, k1), (g2, h2)

are adjacent ilGOH if g1go € F(G) andhy = hy orif g1 = g andhi1he € E(H). For more
detailed informations we refer the interested reader to [8]

In [9] it is conjectured that robust cycle bases can be caotd for Cartesian product graphs of
the formTOG, whereT' is a tree, provided a robust baiss already known fofz. More precisely,
the basisR’ consisting of the known robust bagisfor a singleG-fiber together with all quadrangles
of the formelf, e € E(T), f € E(G) has been proposed.

In the following we consider the planar graphshown in Figure 3.

P -

Figure 3: Planar grapliy. The Cartesian produdt>[1G consists of two copies aff in which
corresponding vertices are connected by an edge. We corbielementary cycl€ which is
partially contained in both the upper copy Gf(thick edges) and in the lower copy 6f (dashed
edges). The elementary cydléchanges from upper to lower edges alon§ a&fiber wherever a
singledashed and singlethick edge meet, i.e. not on vertice2 and3.

The Cartesian produdt’>,0G has 18 vertices and 45 edges, i/ K20G) = 28. The basis
R’ consists of the faces of the facial basis and all quadrargfléise form K>Of, f € E(G).
As mentioned in the introduction, any facial basis of a ptagraph is robust [5], and hence also
guasi-robust.

Now consider the elementary cydéindicated in Fig. 3. For each triangle € R, D ® C'is
not an elementary cycle because we always obtain at leastastex of degred. The same is true
for any quadranglé = K, x f with f € G. Again we obtain at least one vertex with degree larger
than2 in all cases. Thus the elementary cy€lecannot be constructed from any elementary cycle
in K>00G by adding an element of the ba$$. Thus the cycle basi’ is not quasi-robust.

As robust implies quasi-robusk’ is in particular also not a robust basis, disproving Kaisen’
conjecture.
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5 Quasi-Robust Basis fork,, ,,

Theorem 5. The Kainen basi¥’ of K, ,, is quasi-robust for alkn, n.

Proof We first show that each cycl€ in K,,, can be obtained from an elementary cycle that
includes the “fixed edgel0’ by adding a single basis elemdnte K.

Case 1C includes the “fixed verticed) € V; and0’ € V5 but not the edgé0’.
Claim. Thereis aD € K such thatU& D is an elementary cycle containing’ satisfying|C' & D| =
C].

Proof. We choose a cycl€' through0 and0’ that does not include the edge’. W.l.o.g. we
can label the vertices as such that [0,1/,1,...,7,r,0/,r+1,(r+1),...,s,s’]. Nowwe
chooseD = [0,0',r + 1,1] € K and comput&€ & D = [0,0",r,7/,...,2", 1,1/, r+ 1,(r +
1),...,s,s',0], which we can also interpret as the closed p@thv’, ,»’, P) whereP is a
path in K, , which (1) connect$ andr’, (2) does not includ®’, r, and (3) has maximum
vertex degree 2. Thu§ @ D is an elementary cycle. We have added the two edgés
andl’(r + 1) and removed the edg@d’ and(0’(r + 1), hence the length of the cyc is
preserved. O

Case 2 contain exactly one of the verticésor 0.
Claim. There is aD € K such thaC @ D is an elementary cycle containing the ed§ésatisfying
|C @ D|=|C|.

Proof. W.l.o.g. we assume théat containg), i.e.,[0, 4, k, P, j'], whereP is a path connecting
kandj’. SetD = [0,0', k,4']. ThenC @ D is an elementary cycle of lengtty| that contains
00'. O

Case 3 contains neithed nor(’'.
Claim. Thereis aD € K such thatC & D is an elementary cycle containing’ of length|C| + 2.

Proof. Leti andi’ be any two adjacent vertices6f TheD = [0,0',4,i'] € K andC @ D is
again a elementary cycle. Since we add three edge and deletdength is|C| + 2. O

Now we show that each elementary cycle through the @dgean be obtained in two steps from a
strictly shorter elementary cycle with the same property.

Claim. Let C be an elementary cycle of lengffi| > 6 including the edg®@0’. Then there are basis
cyclesD, E € K such thaC @ D is an elementary cycle of lengtt'@ D| = |C|—2andC® DG E

is an elementary cycle of lengi’ ® D @ E| = |C| — 2 that includes the edd#®)’.

Proof. We can writeC'in the formC = [0,0’, 4, j/, P], whereP is a path of lengthP| > 2in
K, that (1) connect8 and;’, (2) does not include the edgé/, and (3) has maximum vertex
degree two. Choosin® = [0,0',4,5'] € K we immediately computé& & D = [0, 5/, P].
Obviously,D is an elementary cycle of lengtt| — 2. SinceP has length at leag, we can
re-write this in the formC' @ D = [0,4', P] = [0,5', k, k', Q], whereQ is a path of length
|P| — 2 > 0 connecting:’ and0. Now we choose a second basis cyEle= [0,0', k, j'] € K
and obtailC ® D@ E = [0,0', k, k', Q]. This is again an elementary cycle, contains the edge
00’ and has lengthC| — 2. O

Starting from an arbitrary elementary cycleffy, ,,, we obtain in at most one step a cycle that
runs through)0’. Then we can reduce its length by two in a pair of steps, theaefiving at a cycle
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of length4 through00’ in not more thalC| — 1 operations. Since all quadrangles contairlifgare
by construction elements @, we can reduce every elementary cy€léo & in no more tharjC|
steps in such a way that all intermediates are also elenyecyates. Reversing the order, we have
thus constructed a well-arranged sub-sequet{c®) of elements ofC that generate§'.  Q.E.D.

Lemma 6. The Kainen basi& of K, ,, is not strictly quasi-robust for alin, n > 5.

Proof. In order to construct a counterexample, we again choose la ¢yof length 10 through
0 and 0’ that does not include the edgé’. W.l.o.g. we can label the vertices as such that
[0,17,3,3/,1,0',2,4’,4,2']. From Theorem 5 follows that there is a well arranged secpi8acof
the Kainen basis elements. L&t = (..., D,C) be any such sequence for the particular chosen
elementary cycl&. First notice that any second last elemé&ne Sc must include the edgey’
and0’, both included inC, otherwiseC & D would not be an elementary cycle and thtis =
(..., D,C) would not be well-arranged. Therefore we have exactly f@ases:D1 1/, D2 o/, D1 o
andD, 1. By symmetry we can reduce these caseBtp andD; ;.

First notice thatD; ;; cannot be the second last elementSef, sinceC & D; ;; crumbles down
into two elementary cycles.

Thus we only have to consider the casg;.. By direct computing we get the elementary cycle
Q = C @ D, and thus we can observe tha} ;- is a possibly prober element 8. But on
the other hand we can observe tiian D, ;, = {{0,0'}, {¢,j'}} consisting of two pathes. Thus
none of the well-arranged sequencgs can be strictly well-arranged, from what the assumption
follows. O

6 Concluding Remarks

A major obstacle in the analysis of robust cycle bases isrtbagenerally applicable “tools” are
known, a difficulty that is confounded by observation thdtustness properties are unrelated to
other, better-studied, properties of cycle bases suchratafuentality or minimality [11]. By relax-
ing the definition to quasi-robustness we abandon the reapgint that a cycle must be constructed
from the basis elements in its linear representation onhjis Buys us a generic strategy for con-
structive proofs to establish quasi-robust: It sufficeshovsthat every elementary cycle can be
reduced byp-addition of basis elements to another elementary ogtlthat is “closer to"@ w.r.t.

to some (partial) ordering of elementary cycles (in our eplensimply by length). As an example,
we directly prove the following corollary of the robustnessult in [5]:

Lemma 7. The facial basis of planar grap&f' is quasi-robust.

Proof. All elementary cycles of7 are closed intersection-free curves in the plane. Defingt@apa
order on the elementary cycles such thak C’ if C' # ' lies inside ofC’, and sez < C for all
elementary cycles. Givefl, there is a planar facé such thatC & F' < C is again an elementary
cycle. Since there are only finitely many elementary cy@esry elementary cycle can be reduced
too. O

In addition to this technical simplification, quasi-robesss is of interest in its own right in the
context of sampling algorithms on the cycle space: qudsistness is necessary and sufficient for
ergodicity of the Markov chains considered in [10].

We have briefly touched upon the “strict” variants of robestand quasi-robustness. It stands
to reason that the additional geometric constraint — iefetisn of elementary cycles with a basis
a cycle in a single path — further complicates constructir@ofs. Again, strict quasi-robustness
seems much easier to handle than strict robustness.
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