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16-18, D-04107 Leipzig, Germany

Konstantin Klemm
Bioinformatics Group, Department of Computer Science, University of Leipzig, Ḧartelstrasse
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Abstract

We investigate here some aspects of cycle bases of undirected graphs that allow the iterative
construction of all elementary elementary cycles. We introduce the concept of quasi-robust bases
that generalize the notion of robust bases and demonstrate that a certain class of bases of complete

bipartite graphKm,n with m, n ≥ 5 is quasi-robust but not robust. We furthermore disprove a
conjecture for cycle bases of Cartesian product graphs.
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1 Introduction

Cycle bases [2] are not only an interesting characterization of the structure of graphs by themselves
but also provide a basis for computational assessments of the cycle structure of a graph. “Cycle-
space algorithms”, for instance, attempt to construct the set of all elementary cycles of a graph from
a cycle basisB by iteratively computing the symmetric difference of an elementary cycle and a basis
cycle, subsequently retaining the result if and only if it isagain an elementary cycle. If a cycle basis
is robust, this approach is successful [5, 9, 1, 11].

Unfortunately, however, very little is known about robust cycle bases beyond a few very special
graph classes: As shown in [5], the boundaries of the faces ofan embedded planar graph form a ro-
bust cycle basis. Corresponding cycle-space algorithms are given in [14, 5]. Furthermore, complete
graphs have robust bases that are easy to construct explicitly [9]. Robust bases for a small class of
cubic graphs are constructed in [11].

There is, at present, neither an efficient algorithm to construct a robust cycle basis for a given
input graph, nor is it known whether robust bases always exist. A major obstacle for the investigation
of robust cycle bases is the apparent lack of relationships with other classes of cycle bases that
have been explored in much more detail in the past [7, 12]. Forinstance, Dixon and Goodman
[4] conjectured that every strictly fundamental cycle basis is cyclically robust. A counterexample,
however, was given in [13]. A more systematic search for connections [11] showed that robust and
fundamental cycle bases are also unrelated.

In this contribution we first disprove two conjectures on robust cycle bases. We then introduce a
relaxed notion of robustness that is still sufficient for theconstruction of efficient cycle space algo-
rithms and show that “quasi-robust” cycle bases can be constructed for complete bipartite graphs.

2 Preliminaries

Throughout this contribution, letG = (V, E) be a finite undirected simple 2-connected graph. A
(generalized) cycle in G is an Eulerian subgraph ofG, i.e., a subgraph ofG in which the degree
of every vertex is even. A connected Eulerian subgraph in which every vertex has degree2 will be
called anelementary cycle. For simplicity, we identify a subsetE′ ⊆ E of edges ofG with the
subgraphG(E′) := (

⋃

e∈E′ e, E′) of G that it defines. In particular, we identify cycles with their
edge sets. The symmetric difference of two edge setsE′ andE′′ will be denoted byE′ ⊕ E′′, i.e.,
we putE′ ⊕ E′′ := (E′ ∪ E′′) \ (E′ ∩ E′′). It will sometimes be convenient to identify a cycle by
the sequence of vertices traversed in one of the two orientations. We write

C =
{

x1x2, x2x3, . . . xk−1xk, xkx1

}

=: [x1, x2 . . . , xk] (1)

and use the shorthandxy = {x, y} to denote edges as pairs of adjacent vertices.

The power setP(E) can be regarded as a vector space overGF(2) = {0, 1} with vector addition
⊕ and the trivial multiplication operator1 ·D = D, 0 ·D = ∅. Thecycle spaceC(G) is the subspace
of (P(E),⊕, ·) that consists of the cycles ofG (including the “empty cycle”∅), see e.g. [2]. As
every 2-connected graphG is connected, the dimensiondimGF(2) C(G) of its cycle space coincides
with its cyclomatic numberµ(G) := |E| − |V | + 1, see e.g. [6].

A basisB of C(G) that consists of elementary cycles only is acycle basisof G. For every cycle
C, there is a unique subsetBC ⊆ B of elementary cycles inB such thatC =

⊕

C′∈BC
C′ holds.



Preprint 3

3 Robust and Quasi-Robust Bases

In the following we build on the discussion in [11], which is based on [9] but uses a somewhat
different terminology.

Definition 1. A sequenceS = (C1, C2, . . . , Ck) of (not necessarily pairwisely distinct) elementary

cycles iswell-arrangedif, for eachj ≤ k, the partial sumQj =

j
⊕

i=1

Ci is an elementary cycle.

The sequenceS is strictly well-arrangedif, for 2 ≤ j ≤ k, Cj ∩ Qj−1 is a path.

By construction, strictly well-arranged cycle sequences are well-arranged, while the converse is
not true [9, 11]. A small example of a sequenceS which is well–arranged but not strictly is shown
in Figure 1.
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C1 C2 C1 ⊕ C2 C2 ∩ Q1

Figure 1: SequenceS = (C1, C2) which is well-arranged, but not strictly well-arranged.

Definition 2. A cycle basisB is (strictly) quasi-robustif, for each elementary cycleC ∈ C(G) there
is a (strictly) well-arranged sequence of cyclesSC = (C1, C2, . . . , CkC

) with Ci ∈ B andCkC
= C.

The basisB is (strictly) robustif for each elementary cycleC, the sequenceSC can be chosen so
that the elementary cycles inSC are pairwise disjoint.

Given a graphG, we can associate cycle basisB with an undirected graphΓB whose vertices are
the elementary cycles inG (including the empty elementary cycle∅). An edge inΓB connects two
elementary cyclesC′ andC′′ if and only if C′ ⊕ C′′ ∈ B.

Lemma 3. LetB be a cycle basis ofG. Then

1. B is quasi-robust if and only ifΓB is connected.

2. B is robust if and only if for every elementary cycleC, the length of a shortest path connecting
C with ∅ equals|BC |.

Proof. (1) Clear. (2) The path length cannot be smaller than the number |BC | of basis cycles neces-
sary to representC. If C can be reached via no more than|BC | intermediate cycles, these must be
reached via a well-ordering ofBC because each basis cycle inBC must be used at least once.
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4 Counterexamples

4.1 Kainen’s Basis ofKm,n

Let us denote byV1∪̇V2 the vertex bipartition of the complete bipartite graphKm,n. We fix two
verticesp ∈ V1 andq ∈ V2 and consider the set of quadrangles

Bp,q =
{

{pq, py, qx, xy} |x ∈ V1, y ∈ V2

}

. (2)

Since the edgexy appears only in a single quadrangle, we see immediately thatBp,q is linearly
independent. Furthermore,|Bp,q| = (|V1| − 1) × (|V2| − 1) = µ(Km,n), i.e., Bp,q is basis of
C(Km,n), which we will refer to as Kainen’s basis.

In [9], it was argued thatBp,q is robust. Here we give a counterexample. InK5,5, consider the
cycleC as shown in Fig. 2. As indicated in the caption of Fig. 2, its generating setB1,8

C w.r.t. the
Kainen basisB1,8 cannot be well-arranged, henceB1,8 is not robust. We can make an even stronger
statement: None of the Kainen bases ofK5,5 are robust. Choose an arbitrary pair of verticesp ∈ V1

andq ∈ V2. Then there is an automorphismπ of K5,5 with π(p) = 1 andπ(q) = 8. More detailed
informations about graph automorphism can be seen e.g. in [3]. The pre-image ofC, π−1(C), is
necessarily again an elementary cycle. The relationship ofπ−1(C) andBp,q is the same as that of
C andB1,8, hence the generating set ofπ−1(C) cannot be well-arranged, implying thatBp,q is also
not robust.

1 2 3 4 5

6 7 8 9 10

Figure 2: Counterexample for Kainen’s assertion. Considerthe basisB1,8 of K5,5 and consider the
cycleC = [1, 6, 2, 7, 3, 8, 4, 9, 5, 10] outlined by the full line. The generating set ofC is B1,8

C =
{C4,9, C3,7, C5,10, C2,6, C2,7, C5,9}, whereCxy = [1, 8, x, y]. C3,7 is shown as dashed elementary
cycle. One easily checks thatC ⊕ C′′ is not an elementary cycle for eachC′′ ∈ BC . Therefore,
there is no well-ordering ofBC , and consequentlyB1,8 is not robust.

We can extend this negative result to all complete bipartitegraphsKm,n with m, n ≥ 5. By
the same symmetry argument, it is always sufficient to consider the Kainen basisK = B0,0′

with
arbitrary fixed0 ∈ V1 = {0, 1, . . . , m − 1} and0′ ∈ V2 = {0′, 1′, . . . , (n − 1)′}. Furthermore,
K5,5 is an induced subgraph ofKm,n for all m, n ≥ 5. If 0 and0′ are vertices ofK5,5 ⊂ Km,n,
then the Kainen basis ofKm,n contains that of the induced andK5,5. The elementary cycleC of
Fig. 2 is also an elementary cycle inKm,n and its basis decompositionBC w.r.t. the Kainen basis of
Km,n consists of the same basis elementary cycles as onK5,5. HenceBC cannot be well-arranged
onKm,n for n, m ≥ 5.

Despite the counterexample above, we will show below that Kainen’s assertion is true for small
graphs.
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Lemma 4. The Kainen basis ofKm,n with m ≤ 4 andn ≤ 5 is strictly robust.

Proof. There is nothing to show forn, m ≤ 2 sinceK1,1 andK1,2 have no cycles andK2,2 = C4

consist of a single cycle. The longest cycles inKm,n has length2 min{m, n}, i.e, we only need to
consider cycles of length4, 6, and8. In the following, we show that for each type of cycle there
is a well-arranged order of their Kainen basis elements. Thecorrectness can be checked by direct
computation in each case.

Cycles of length4.

1. C contains00′. ThenC ∈ K and there is nothing to show.

2. C contains exactly one of the vertices0 or 0′. W.l.o.g.,0 ∈ C. ThenC = [0, i′, j, j′] =
Cj,i′ ⊕ Cj,j′ and henceBC = {Cj,i′ , Cj,j′} is strictly well-arranged.

3. C contains neither0 nor0′. All such elementary cycles are of the formC = [i, i′, j, j′].
Its strictly well-arranged sequence isSC = (Cj,i′ , Cj,j′ , Ci,j′ , Ci,i′ , C).

Cycles of length6.

1. C contains the edge00′. Such elementary cycles have the formC = [0, 0′, i, i′, j, j′]. Its
strictly well-arranged sequence isSC = (Cj,j′ , Cj,i′ , Ci,i′ , C).

2. C includes the “fixed vertices”0 and 0′ but not the edge00′. Such elementary cy-
cles have the formC = [0, i′, i, 0′, j, j′]. Its strictly well-arranged sequence isSC =
(Ci,i′ , Cj,j′ , C).

3. C contains exactly one of the vertices0 or 0′. W.l.o.g.,0 ∈ C. Such elementary cy-
cles have the formC = [0, i′, i, j′, j, k′]. Its strictly well-arranged sequence isSC =
(Cj,k′ , Cj,j′ , Ci,j′ , Ci,i′ , C).

4. C contains neither0 nor0′. Such elementary cycles have the formC = [i, i′, j, j′, k, k′].
Its strictly well-arranged sequence isSC = (Cj,i′ , Cj,j′ , Ck,j′ , Ck,k′ , Ci,k′Ci,i′ , C).

Cycles of length8.
In our treatment these elementary cycles can only occur inK4,4 andK4,5. The case thatC
contains neither0 nor0′ therefore does not appear.

1. C contains00′. All such elementary cyclesC are of the formC = [0, 0′, i, i′, j, j′, k, k′].
Its strictly well-arranged sequence isSC = (Cj,i′ , Cj,j′ , Ck,j′ , Ck,k′ , Ci,i′ , C).

2. C includes0 ∈ V1 and0′ ∈ V2 but not the edge00′. In this case we have two distinguish
two kinds of elementary cycles:C = [0, i′, i, 0′, j, j′, k, k′] orD = [0, i′, i, j, j′, 0′, k, k′].
The corresponding respective strictly well-arranged sequences are
SC = (Ck,k′ , Ck,j′ , Cj,j′ , Ci,i′ , C) andSD = (Ci,i′ , Ci,j′ , Cj,j′ , Ck,k′ , D).

3. C contains exactly one of the vertices0 or 0′. W.l.o.g.,0 ∈ C. All such elementary
cycles are of the formC = [0, i′, i, j′, j, k′, k, l′]. Its strictly well-arranged sequence is
SC = (Ck,l′ , Ck,k′ , Cj,k′ , Cj,j′ , Ci,j′ , Ci,i′ , C).
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4.2 The Cartesian ProductK2�G

In this subsection we will disprove a conjecture for cycle bases of Cartesian product graphs. The
vertex set of the Cartesian productG�H of two graphsG andH is the set{(g, h) | g ∈ V (G), h ∈
V (H)} that is the Cartesian product of the vertex sets of the factors. Two vertices(g1, h1), (g2, h2)
are adjacent inG�H if g1g2 ∈ E(G) andh1 = h2 or if g1 = g2 andh1h2 ∈ E(H). For more
detailed informations we refer the interested reader to [8].

In [9] it is conjectured that robust cycle bases can be constructed for Cartesian product graphs of
the formT�G, whereT is a tree, provided a robust basisR is already known forG. More precisely,
the basisR′ consisting of the known robust basisR for a singleG-fiber together with all quadrangles
of the forme�f , e ∈ E(T ), f ∈ E(G) has been proposed.

In the following we consider the planar graphG shown in Figure 3.

4 2 5

6 7

1 3

9

8

Figure 3: Planar graphG. The Cartesian productK2�G consists of two copies ofG in which
corresponding vertices are connected by an edge. We consider the elementary cycleC which is
partially contained in both the upper copy ofG (thick edges) and in the lower copy ofG (dashed
edges). The elementary cycleC changes from upper to lower edges along aK2-fiber wherever a
singledashed and asinglethick edge meet, i.e. not on vertices1, 2 and3.

The Cartesian productK2�G has 18 vertices and 45 edges, i.e.,µ(K2�G) = 28. The basis
R′ consists of the faces of the facial basis and all quadranglesof the formK2�f , f ∈ E(G).
As mentioned in the introduction, any facial basis of a planar graph is robust [5], and hence also
quasi-robust.

Now consider the elementary cycleC indicated in Fig. 3. For each triangleD ∈ R, D ⊕ C is
not an elementary cycle because we always obtain at least onevertex of degree4. The same is true
for any quadrangleQ = K2 × f with f ∈ G. Again we obtain at least one vertex with degree larger
than2 in all cases. Thus the elementary cycleC cannot be constructed from any elementary cycle
in K2�G by adding an element of the basisR′. Thus the cycle basisR′ is not quasi-robust.

As robust implies quasi-robust,R′ is in particular also not a robust basis, disproving Kainen’s
conjecture.
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5 Quasi-Robust Basis forKm,n

Theorem 5. The Kainen basisK of Km,n is quasi-robust for allm, n.

Proof We first show that each cycleC in Km,n can be obtained from an elementary cycle that
includes the “fixed edge”00′ by adding a single basis elementD ∈ K.

Case 1:C includes the “fixed vertices”0 ∈ V1 and0′ ∈ V2 but not the edge00′.
Claim. There is aD ∈ K such thatC⊕D is an elementary cycle containing00′ satisfying|C⊕D| =
|C|.

Proof. We choose a cycleC through0 and0′ that does not include the edge00′. W.l.o.g. we
can label the vertices as such thatC = [0, 1′, 1, . . . , r′, r, 0′, r+1, (r+1)′, . . . , s, s′]. Now we
chooseD = [0, 0′, r + 1, 1] ∈ K and computeC ⊕ D = [0, 0′, r, r′, . . . , 2′, 1, 1′, r + 1, (r +
1)′, . . . , s, s′, 0], which we can also interpret as the closed path(0, 0′, r, r′, P ) whereP is a
path inKp,q which (1) connects0 andr′, (2) does not include0′, r, and (3) has maximum
vertex degree 2. ThusC ⊕ D is an elementary cycle. We have added the two edges00′

and1′(r + 1) and removed the edges01′ and0′(r + 1), hence the length of the cycleC is
preserved.

Case 2:C contain exactly one of the vertices0 or 0′.
Claim. There is aD ∈ K such thatC ⊕ D is an elementary cycle containing the edge00′ satisfying
|C ⊕ D| = |C|.

Proof. W.l.o.g. we assume thatC contains0, i.e.,[0, i′, k, P, j′], whereP is a path connecting
k andj′. SetD = [0, 0′, k, i′]. ThenC ⊕D is an elementary cycle of length|C| that contains
00′.

Case 3:C contains neither0 nor0′.
Claim. There is aD ∈ K such thatC ⊕ D is an elementary cycle containing00′ of length|C| + 2.

Proof. Let i andi′ be any two adjacent vertices ofC. TheD = [0, 0′, i, i′] ∈ K andC ⊕D is
again a elementary cycle. Since we add three edge and delete1, its length is|C| + 2.

Now we show that each elementary cycle through the edge00′ can be obtained in two steps from a
strictly shorter elementary cycle with the same property.
Claim. Let C be an elementary cycle of length|C| ≥ 6 including the edge00′. Then there are basis
cyclesD, E ∈ K such thatC⊕D is an elementary cycle of length|C⊕D| = |C|−2 andC⊕D⊕E

is an elementary cycle of length|C ⊕ D ⊕ E| = |C| − 2 that includes the edge00′.

Proof. We can writeC in the formC = [0, 0′, j, j′, P ], whereP is a path of length|P | ≥ 2 in
Km,n that (1) connects0 andj′, (2) does not include the edge0′j, and (3) has maximum vertex
degree two. ChoosingD = [0, 0′, j, j′] ∈ K we immediately computeC ⊕ D = [0, j′, P ].
Obviously,D is an elementary cycle of length|C| − 2. SinceP has length at least2, we can
re-write this in the formC ⊕ D = [0, j′, P ] = [0, j′, k, k′, Q], whereQ is a path of length
|P | − 2 ≥ 0 connectingk′ and0. Now we choose a second basis cycleE = [0, 0′, k, j′] ∈ K
and obtainC ⊕D⊕E = [0, 0′, k, k′, Q]. This is again an elementary cycle, contains the edge
00′ and has length|C| − 2.

Starting from an arbitrary elementary cycle inKm,n, we obtain in at most one step a cycle that
runs through00′. Then we can reduce its length by two in a pair of steps, thereby arriving at a cycle
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of length4 through00′ in not more than|C|−1 operations. Since all quadrangles containing00′ are
by construction elements ofK, we can reduce every elementary cycleC to ∅ in no more than|C|
steps in such a way that all intermediates are also elementary cycles. Reversing the order, we have
thus constructed a well-arranged sub-sequenceS(C) of elements ofK that generatesC. Q.E.D.

Lemma 6. The Kainen basisK of Km,n is not strictly quasi-robust for allm, n ≥ 5.

Proof. In order to construct a counterexample, we again choose a cycle C of length10 through
0 and0′ that does not include the edge00′. W.l.o.g. we can label the vertices as such thatC =
[0, 1′, 3, 3′, 1, 0′, 2, 4′, 4, 2′]. From Theorem 5 follows that there is a well arranged sequenceSC of
the Kainen basis elements. LetSC = (. . . , D, C) be any such sequence for the particular chosen
elementary cycleC. First notice that any second last elementD ∈ SC must include the edges0j′

and0′i, both included inC, otherwiseC ⊕ D would not be an elementary cycle and thusSC =
(. . . , D, C) would not be well-arranged. Therefore we have exactly four cases:D1,1′ , D2,2′ , D1,2′

andD2,1′ . By symmetry we can reduce these cases toDi,i′ andDi,j′ .
First notice thatDi,i′ cannot be the second last element ofSC , sinceC ⊕ Di,i′ crumbles down

into two elementary cycles.
Thus we only have to consider the caseDi,j′ . By direct computing we get the elementary cycle

Q = C ⊕ Di,j′ and thus we can observe thatDi,j′ is a possibly prober element ofSC . But on
the other hand we can observe thatQ ∩ Di,j′ = {{0, 0′}, {i, j′}} consisting of two pathes. Thus
none of the well-arranged sequencesSC can be strictly well-arranged, from what the assumption
follows.

6 Concluding Remarks

A major obstacle in the analysis of robust cycle bases is thatno generally applicable “tools” are
known, a difficulty that is confounded by observation that robustness properties are unrelated to
other, better-studied, properties of cycle bases such as fundamentality or minimality [11]. By relax-
ing the definition to quasi-robustness we abandon the requirement that a cycle must be constructed
from the basis elements in its linear representation only. This buys us a generic strategy for con-
structive proofs to establish quasi-robust: It suffices to show that every elementary cycle can be
reduced by⊕-addition of basis elements to another elementary cycleC′ that is “closer to”∅ w.r.t.
to some (partial) ordering of elementary cycles (in our example simply by length). As an example,
we directly prove the following corollary of the robustnessresult in [5]:

Lemma 7. The facial basis of planar graphG is quasi-robust.

Proof. All elementary cycles ofG are closed intersection-free curves in the plane. Define a partial
order on the elementary cycles such thatC ≺ C′ if C 6= C′ lies inside ofC′, and set∅ ≺ C for all
elementary cycles. GivenC, there is a planar faceF such thatC ⊕ F ≺ C is again an elementary
cycle. Since there are only finitely many elementary cycles,every elementary cycle can be reduced
to ∅.

In addition to this technical simplification, quasi-robustness is of interest in its own right in the
context of sampling algorithms on the cycle space: quasi-robustness is necessary and sufficient for
ergodicity of the Markov chains considered in [10].

We have briefly touched upon the “strict” variants of robustness and quasi-robustness. It stands
to reason that the additional geometric constraint — intersection of elementary cycles with a basis
a cycle in a single path — further complicates constructive proofs. Again, strict quasi-robustness
seems much easier to handle than strict robustness.
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[5] U. Doğrusöz and M. Krishnamoorthy: Enumerating all cycles of a planar graph.J. Parallel Algor. Appl.
10 (1996) 21–36.

[6] L. Euler: Elementa doctrinae solidorum.Novi Comm. Acad. Sci. Imp. Petropol.4 (1752) 109–140. (Latin).

[7] D. Hartvigsen and R. Mardon: Cycle bases from orderings and coverings.Discr. Math.94 (1991) 81–94.
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