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Abstract

We analyze here the evolutionary consequences of selewttbrdelay in a population genetics context. In the
classical works on evolutionary dynamics, an individualduces @-springs in direct proportion to its fitness, a
process in which mutations may occur. In the present saeofdielayed selection, individuals that acquire deletesio
mutations can still reproduce unharmed for several geioaatDuring this time delay, the damage passed orifto o
springs can potentially be repaired by subsequent compagsautations. In the absence of such a repair, the
individual becomes sterile. Here we study the populatienegic €fects of such a time delay by means of both
numerical simulations and theoretical modeling. The tesshow that delayed selection lowers the error threshold,
endangering the survival of the population. Surprisinggwever, no traces of this delajfect are encountered in
the sequence diversity of the population. These conclssaggest that delayed selection is hard to detect in genetic
data and thus could be a wide-spread but rarely detectedptesron.
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1. Introduction the dynamical implications of delayed selection in some
detail.

Darwinian evolution is the interplay of the produc-
tion of variation and subsequent selection. Due to the |t may come as a surprise that the best studied exam-
complexity of biological organism, selection tends to ple is a generic component of the eukaryotic replication
act at all times, punishing or rewarding smallfel- machinery, namely the reconstruction of telomere ends.
ences among individuals. This is not necessarily the Mice deficient for the mouse telomerase RNA (mFR-
case at the level of (small) genetic subsystems, how- are fertile and show initially little if any pathologies.
ever. The intuitive rationale for this claim is that an However, they can breed only for about six generations
“emergency subsystem”, for instance, may not need to due to decreased male and female fertility and to an in-
be activated for several generations. While unused andcreased embryonic lethality in later generations. Even
inactive, it tends to escape the forces of selection and |ate generation (mTR) mice are viable to adulthood,
conceivably, acquire damages. Once conditions changeonly showing a decrease in viability in old age (Lee
anditis needed again, however, there are severe (fitnessgt al., 1998; Herrera et al., 1999). Theskeets appear
penalties if its functionality has not been maintained or to be linked to the shortening of the telomeres (Verdun
repaired. We expect such “delayed selection” to leave and Karlseder, 2007). Similaffects can be observed
detectable traces in the genome. Hence we study herein cell culture, again establishing a relationship between

viability and telomere length: Terc-deficient embryonic

- . . _ stem cells show gradual reduction of growth rate after
or A?gf;gi?%%"j'E?O";‘;étgg;aatr:czgfa‘?gxﬁerca Biomedica Baelo a4t 300 divisions, and proliferation virtually stops af-
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evolution (Xie et al., 2008). The speculation that de- in which the telomerase is inactive. Individuals whose
layed selection may be part of the explanation for the telomeres have shrunk to zero are sterile, i.e., their fit-
unexpected evolutionary plasticity of telomerase RNA ness is set to 0.
motivated this work. In order to include a genetic component with a real-
Delayed selection is also likely to occur in species istic genotype-phenotype map, we use RNA secondary
for which environmental conditions vary periodically structures to represent phenotypes. In this approach,
at timescales longer than generation time. A spectac- each sequencs is folded into its minimum energy
ular example is the monarch butterflipgnaus plex- secondary structure(s) and then fitness is evaluated
ippug (Urquhart, 1960). The “migratory” generation by comparingp(s) with a target structure*, (see e.g.
migrates from Eastern North America to overwintering Fontana et al. 1989; Schuster et al. 1994; Huynen et al.
sites in Mexico. This long-lived generation is charac- 1996a). Here, we stipulate that only the target sec-
terized by reproductive diapause persisting until next ondary structure is functional. The fithe§of an in-
spring, when the butterflies reproduce and start the jour- dividual with genotypes and telomere lengtkis given
ney back north. Another two to three generations of thus by
reproductively competent, short-lived “summer” butter-
flies follow the progressive, northward emergence of
milkweed. Significant dferences in gene expression
between summer and migratory butterflies (Zhu et al., ) ) )
2008) suggest that some parts of the butterflies genetic  SINce the computationaffert for RNA folding com-
system may be unused over a few generations. WhethefPUtations is cubic in sequence length, vertebrate TR
this is indeed the case could be tested directly if charac- 9€N€ With 300-500nt are too long to practical for our

teristic genomic fingerprints of delayed selection can be Simulations. Instead of a real TR structures, we defined
detected. an arbitrarily chosen target structure of length 100 to

A more subtle context in which delayed selection represent the viable phenotype. RNA secondary struc-

may play a role is that of synthetically lethal genes. ture predictions are performed using thienna RNA

A pair (or a larger set) of genes is callsyinthetically ~ ackage (Hofackeretal., 1994). _
lethal if knocking out the entire set is lethal, while the We simulate a population di individuals in a flow

knockout of all smaller subsets retains viability (Hart- reactor under stochastically controlled constant organi-

man IV et al., 2001: Kaelin Jr, 2005: Le Meur and Gen- z_ation as de_scribed in e.g. Fontana_et _al. (1989). I_ndi-
tleman, 2008). Note that synthetically lethal gene pairs Viduals replicate proportional to their fitness. During
typically share their primary function but cannot be re- '€Plication, each letter is mutated with a probability
dundant in all their functional aspects. The reason is Then the structure(s)) of the dfsprings’ is computed.

that exact redundancy is evolutionarily unstable: it is |f ¢(S) =", we sek’ = K, otherwisek’ = k'~1, where
quickly resolved by the loss of one copy (Force et al. K is the number of generations for which a defective TR
1999). This type of genetic Iiering may, however, de- " is tolerated. In other words, if afté replications, such

lay the detrimentalféects of functional loss in one part- @n incorrect fold has not encountered the neutral net-
ner until a rarely employed secondary function of the work, its fitness becomes 0 and thus loses the capacity

affected gene is required. Again, a recognizable signal ©f replication. ,
in the genomic DNA would be of utmost interest. In the following, we shall discuss the results of the
simulations. Based on these data, we introduce a the-

oretical model associated to the simulation framework,

1 ife(s)=¢*ork>0

: . _ 1)
0 if ¢(s) #¢*andk =0

f(S,k)={

2. RNA-Based Simulations a model that provides a reasonably-good fit of the sim-
ulations results and also a tool to better understand the
2.1. A Simple Model of Telomere Damage implications of the delayed selectioffect.

The simulation framework used in this contribution is
motivated by the telomerase RNA (TR) system briefly 2:2. Error Threshold
discussed in the introduction. For simplicity we dis- As a first observation, we notice that one of the con-
tinguished only between fithess-neutral and lethal mu- sequences of the delayed selection is a modified error
tations. Each individual is characterized by its TR threshold. An erroneously replicating haploid popula-
gene and the length of its telomere.ffQprings with tion shows theerror thresholdphenomenon, by which
intact TR have full-length telomeres, while telomeres the population loses coherence and quickly approaches
shrink by a constant amount with each replication step a uniform distribution in sequence space as soon as the
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Figure 1:Top Time series of the mean fithess or fraction of reproducingviddals as a function of time in three stochastic runs Witk 1000,

= 0.005 and two dierent values oK. Below: Survival probability, time average and standard deviatieer the time-series of the mean fitness
as a function oK andu. Averages are taken over 10 independent simulations rgrfioiml00,000 mutations for each combination of parameters.
Average and standard deviation are normalized to theiregaftK = 2 andy = 0.001 to facilitate comparison.

mutation rate exceeds a critical value. Originally de- threshold or survival probability (panb) is illustrated
scribed on single-peak landscapes (Eigen, 1971; Eigenas resulting from the simulations. A rough estimation of
etal., 1989), an analogous phenomenon can be observedhe survival probability was considered to be the frac-
at the phenotypic level (Forst et al., 1995; Huynen et al., tion of the simulations that have not gone extinct after
1996a; Wilke, 2001). With instantaneous fitness ef- a numberM = 100000 of mutations. From these sim-
fects, the critical value oft can be estimated from a ulations, we have also estimated the dependency of the
p-dependence of the equilibrium concentration of the mean fitness (pane) and its standard deviation (panel
“poor” phenotypes. d). It can be seen that the mean fitness is not influ-
The upper panels of Fig. 1 represent the mean fit- enced by the telomere’s Igngth, while_ the fluctuations
ness (i.e. the fraction of reproducing or fit individu- level (standard deV|at|_on) increases with the ;elomere’s
als) for several examples of simulations, showing that '€Ngth. In§3 we shall pinpoint the causes of this prema-
the extinction of the population at finite times is largely {Ure extinction by means of a deterministic model.
driven by an increase of the fluctuations. That is, for
a fixed mutation rate:, the average fraction of repro-
ducing individuals is the same for various valueof The delayed selection has a diretfeet on the er-
but the standard deviation increasing with For large ror threshold in a negative way through the fluctuations
K, due to these large excursions, the reproducing pop-described above, and in a positive one through the re-
ulation may reach a threshold value at which extinction coveries that might originate from damaged but still fit
occurs. The mainfeect of delayed selection is thus a individuals.
strong increase in fluctuations, that causes extinction in  In Fig. 2 we illustrate this fect by plotting the frac-
finite populations at mutation rates significantly lower tion of fit individuals characterized by a certain num-
than the non-delayed selectiok (= 1). This can be ber of damage-and-repair cycles. It comes as a surprise
seen in the lower panels of Fig. 1 where the extinction that already after a very short time there are no lineages
3
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Figure 2: The time-series illustrating the dynamics of nepan the populationl = 100Qu = 0.005 K = 10). The diferent colors represent
waves of increasing number of repairs (up to 25 repairs)dhvaep through the population as time increases. The dashedlime contains the
initial population with no repairs.

whose ancestry has had functional genes. The individu- tive of the number of fi-mutations needed. It can be
als without repairs (dotted black line) quickly disappear, seen thaR = R, is roughly independent on the telomere
as the ones with one damage-repair cycle (thick black length, as the recovery mutation can occur with equal
line) appear, which in turn will be damaged and repaired probability during theK—1 replications prior to “death”.
again, transforming into the individuals with two cycles From these simulations it can be seen that a rough es-
(red lines), and so on. We see that there is a charactertimate of this recovery fraction is on the order of 10%
istic time scale by which individual lineages acquire a of the mutations occurringfbthe neutral network. The
damage and find their way back to the neutral network repair or recovery of damaged genotypes by compen-
through subsequent mutations that repair the damage.satory mutations thus has a dramatieet on the long-
That is, waves of repaired sequences swap the populatime behavior of the population. To estimate thEeet
tion, with newly repaired sequences displacing the old we shall introduce ir§3 a model of the population dy-

and less repaired sequences. namics which makes use of this observation of equal
By comparing diferent simulations with identical recovery fraction.
(N, K, ) values, we noticed that the stochastiteets In addition, sinceR is defined as a conditional prob-

dominate, i.e., there are dramatic fluctuations in the ability, we also expect that it will not depend strongly
times between subsequent damagjeair events entirely  on the mutation ratg for small values ofu. The pa-
due to stochasticity. rameteR will strongly depend on the size and structure
Through the simulations, we have measured the pa- of the neutral network, and on its embedding the hy-
rameterR defined as the probability that a damaged percube. This is the behavior followed also by the neu-
telomerase recovers, i.e., the fraction of the replication trality v referring to the increased fiering, due to neu-
with mutation occurrin@ff the neutral network thatgive  tral networks, of the phenotype (the correct secondary
rise to an @fspringonthe neutral net. We expect the re- structure) with respect to genetic mutations (nucleotide
covery fractionR not to depend on the length — i of mutations) (Huynen et al., 1996b; Stadler et al., 2001).
the telomere. From the stochastic simulations we see The strongest influence on the probability of recovery
that this first approximation is acceptable, as it is illus- R is exerted by the distance of the mutant individual
trated in Fig. 3. For three experiments of eqiahnd from the neutral network. As we shall see also in the
different values ofi, we have recorded the number of modeling approach, an appropriate measure of the re-
recoveries and the type of sequences the recovery oc-covery rate or probability is defined through= pR
curred from. The type of sequence refers to the length with p from eq. (4). This rate defines the probability
K —1i of the telomere and the numbgof mutations oc- that a replication leads to recovery. Considering a wide
curring df the neutral network. Naturally, at least two interval ofu-values, we expect(u) to have an optimum
off-mutations are needed, one originating the féltioe for a certain value ofic = u. Foru < uc, the recovery
neutral network (the damage), and the second providing probability is low as, oncefbthe network, a new muta-
the recovery. In the lower panels we include the sum tion is improbable to occum(is small) in the nexK — 1
R = >, R, measuring thus the dependence of the re- replications. Fou > uc, once df the neutral net, sev-
covery fraction on the telomere length alone, irrespec- eral nucleotides can mutate in a replication event, and
4
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Figure 3: Distribution of recoverieR;; measured as a function of the telomere lertgthi and the number offé-network mutationg. Simulation
runs useN = 1000 andK = 10, and diferent mutation rates (@) = 0.001, (b)u = 0.003, (c)u = 0.005. The lower panels shoR = Y, R,

illustrating a reasonable independence on the telomegtHesupporting the model from Fig. 5. Upper panels have ligawn using Dislin
Scientific Plotting Software.

thus destroy the repair. In addition, this regime of rel- Sumedha et al., 2007; Jorg et al., 2008). Mutations that
atively largeu is limited by the extinction threshold, as  destroy compatibility (i.e., those that violate the base
we have seen that large fluctuations can lead the systenpairing rule), however, may lead away from the neu-
into extinction. tral network of the functional structure. Two or more
incompatible substitutions therefore lead to regions in
sequence space from where recovery in a single step is
impossible.

In the context of these considerations, we have mea-
sured the recovery rate from the simulations. Based
on the definitions introduced above, we monitored the
temporal evolution of the number of repairs and that of
replications with mutations occurring for sequences that 3. Deterministic M odel
are df the neutral network. The parameRithe ratio of o o
these two quantities, stabilizes after a transient period. 3-1- Replication Kinetics
We show these post-transient values from simulations Since we are interested in the basiteets of de-
for variousu andK in the upper panel of Fig. 4. Due layed selection, we neglect the influence of complex
to stochasticity, simulations of identical(K, ) may genetics and restrict ourselves to the simplest case of a
lead to slightly diferent values oR. The dependence population of haploid individuals. Naturally, this leads
onu is evident, as well as oK, with the former being us to a variant of Eigen’s Quasispecies Model (Eigen,
more pronounced than the latter. in the lower panel, as 1971; Eigen et al., 1989). While certain issues, such
commented above, an optimum vajueis apparent for as the influence of delay on the Error Threshold, could
which 4, the recovery probability, has a maximum. It be studied in an even simpler setting, we explicitly in-
is interesting though that lowét implies higher recov-  clude the redundancy of the genotype-phenotype map-
ery probability. This can be explained by the structure ping (Schuster et al., 1994). For simplicity, we only
of the neutral networks of RNA secondary structures. model the loss of fertility of individuals whose telom-
These are dense and fairly homogeneous only within eres have disappeared. The population is structured into
the set of sequences that are compatible with the tar- K + 1 distinct groups of sequences characterized by a
get structure (Schuster et al., 1994; Gruener et al., 1996;certain telomere length between 0 akdFig.5). We
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Figure 4: The recovery rafe (a) andi = pR(b) as they result from 5 Notice that we have considered the approximation

simulation runs of identical parameters. Itillustratesitidependence discussed in the previous section for whitls indepen-
on the mutation ratg andK: K = 10, black circlesK = 9, red trian- .
gles;K = 8, green square${ = 7, blue diamonds. The dependence ,den,t_on the telomere length O,f the Seq_uence' as F!g._ 3
on K becomes more pronounced at higher justifies. Under the assumptions detailed above, it is

now straightforward to derive the temporal evolution of

. X
index these classes by the amount of telomere loss, so

that X, denotes the fraction of all sequences that fold _ K-1

into the correct secondary structure, whilgis the frac- X = pRZ %+ Qx — OXo

tion of sterile individuals. With each replication event, _ i=1

the telomere length decreases by 1 if the telomerase is Xo= (1-Qxo-0x

not functional. X = (1-pRx.1—-dx, ie€[2,K],

With sequence length, per-nucleotide mutation rate _ o )
4 and a probability that an dfspring retains a func- where® is a dilution flux that keeps the sum of relative
tional telomerase (the density of the neutral network fréauencies constang; x = 1. As usual® equals the
(Huynen et al., 1996a; Ofria and Adami, 1999; Wilke, net_ p_rpducuon of ﬁ-spnngs. Since the fitness is 1 by
2001; Reidys and Stadler, 2001)), the probability with def|_n|t|on for all reproducing phenotypes and 0 for the
which a viable sequence gives birth to gfspring that sterile ones, we observe that

also resides on the neutral network is 1
o = Xi=1— Xk

i=0

Once outside the neutral network, when a Sequencedirectly measures the fraction of reproducing individ-

Xi,i € [1, K—-1] replicates, it can either become a mem- uals in the population. Employing the shorthamd:

ber of .. if it does no'F recover the correct f9|d’ or be- 1 - Q, the final form of the equations describing the
come a member ofo, if it does. More precisely, the 1 tion of the population is thus

Q=[1-ul-»]"~exptt) )

fitness = 1 fitness = 0 XO = pRl — XK) — Xo(q + pR— XK) (5a)
o . - . - Xt = g% - (1-X)% (5b)
P e NI N S X i = — i1 — - iy
o Xo X1 X, Xi_1 Xx % = (1-pRx-1-(1-x)x, i€[2K](5c)
Yo A p— A
3.2. Equilibria
Figure 5: The schematic representation of the model, with pR ] ) _ .
in the equations below. The constant populatton= 3K, Ni, and The fixed pointsg can be expressed in terms of the
X = Ni/N characterized by a telomerase lengthkof ). relative frequency of thex of the sterile individuals.
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A r(y) = -1y-(1+a) yiray©ieb)
K even
\/y1
K odd
y=0 y=a

F(0)=-b F(a)=-b F(l)=-b

Figure 6: The schematic representatiori-¢f) defined in eq. (9), with

y = 1 - X¢. This function is defined only foy € [a, 1], as it results
from the conditiorxc > 0 in eq. (7). The representation also indicates
yi1 to be a fixed point. See below the discussioryarRemember that

y = 0 implies extinction.

We have either the trivial solutiomx¢ = 1; x; = 0O,
i < K), or we obtain, forg > 0,i < K),

— _  PR1-X)

% = 4T pR-% (62)

5= oo (6b)

— _ 1-pR_ .

X = 1_—>?KX|71,| € [2,K], (6c)
with the last equation providing the condition

_ gpR 1-pR K1

= _ — 7
“ q+pR—xK(1—xK )

This can be rearranged as

%[q+ pPR- (1 - %) = qpR1- pRF (8)

Since ther.h.s. is positive far> 0, we can immediately
conclude thatxx # 0. Moreover, in order to clarify
the solutions of this equation, we shall rewrite it in the
variabley = 1 — x:

Fiy) =y +@+ay-ay'-b 9)

with new parametera = 1 - q—- pR > 0 (as it is ex-
pected thaQ > pR) andb = qpR1 - pRX~! > 0. The
behavior of this function is sketched in Fig. 6. Notice
that the functiorf, as the system from eq. (5), is valid
for K > 2. For the classical case of non-delayed selec-
tion, K = 1, the two fixed points are the trivial one (or
extinction), Ko, X1) = (0, 1), and the coexistence fixed
point, (Xo, X1) = (Q, 1—Q), with the former being unsta-
ble, and the latter being stable (fofower than the error
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Figure 7: The functior(y) from eq.(9) evaluated using the average
values of the recovery fractidR from Fig. 4a. (Upper panel) A fixed
value ofu = 0.003 has been chosen, and the functiordrawn for

K €{7,8,9,10}. (Lower panel) A fixed value oK = 10, was chosen,
and the function was calculated for 10 valuegia [0.0005 : Q005].

As expected, the rogh of F is more sensitive tg than toK.

threshold). In thiK = 1 case, the above notation gives
the stable fixed point ag = Q. Returning to the gen-
eral case oK > 1, the stable fixed point remains in the
neighborhood of; ~ Q, withy; from Fig. 6. Due to the
existence of recoveries, one hasz Q. For example,
for K = 2, one hay; = 0.5[Q + Q2 + 4pR(1 - Q).
The second rooty, from Fig. 6 does not satisfy the
simplex conditionsy, X; = 1, and it is thus not a fixed
point of the system in egs. (5). More precisely, consid-
eringxk = 1 -y, ~ 0, together with the approximation
1- pR=~ 1, onehas x = pRA1+Kag)/(q+ pR) < 1.
A numerical verification has been performed too using
the values from Fig. 4. For completeness, we remark
that for the everk cases, the functioR(y) has another
root in the negative quadrant,< 0, which again is not
a physically accessible fixed point for our system, as it
does not satisfy; > 0 for alli € [0, K].

In addition, using estimates of the recovery fraction
R from simulations with various parameter settings, we
have calculated numerically. The position of; 2 Q
is nearly independent &€ (Fig. 7a), with a pronounced
dependence gm(Fig. 7b). Analytically, for small, the
Taylor expansion leads tp~ Lu(1-v) (from eq. 2) and
p ~ Lu (from eq. 4), implyingxk o Lu. By settingxy =
&u+ O(u?) and expanding all quantities in eq.(8) to first
order inu, one gets the following quadratic equation for
& which indeed does not depend Kn

dLl-v+RL-¢=(1-VL°R (10)
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same arguments employed above, that their dependence

on u, for smally, also followsx « u for all i, again
independent oK.

In order to computé&-(y) in Fig. 7, the knowledge of
Q was required from eg. (2), which in turn relies on an
estimate for the neutrality. The latter can be deter-
mined from the casK = 1, considering the approxima-
tion Xg = Q ~ exp[-Lu(1 - v)] (Wilke, 2001) (Fig. 8).

The value ofxx can be computed numerically using
a simple root-finder to solve eq. (9). The valuesxof
i # K are then obtained by rewriting egs. (6b-6c¢) as

_ 1-x \“7

Xi (1_ pR) Xk, 1e[K-11] (11a)
1%\ R (1 - k)

e (110)

This shows that, even thougtx is approximatelyK-

Figure 9: (Upper panel) The average fitness or fracfica 1 — xik of
reproducing sequences in the population is showrKfer {2, 4, 6, 8}.
Itillustrates thaixy is independent oK in very good approximation.
(Lower panel) The value ofy estimated through egs. (11) and based
on the recovery probabilities from Fig. 4 with the symbolfereng

to different values oK € [4, 10]. The straight line results from Fig. 8.

An example of simulation and comparison with the
model appears in Fig. 10. Following the reasoning dis-
cussed above, the associated valgeBom egs. (11)
have been calculated and are shown in Fig. 10 as con-
tinuous lines. It can be seen that the mean-field model
provides a good fit to the simulations.

3.3. Genetic diversity
It is plausible to assume that lineages with many re-

independent, as discussed above (Fig. 7 and Fig. 9), thecoveries in their history aridr recently recovered indi-

spread of population in thi€ reproducing-groups ik-
dependent. In other words, the unfi] and conse-
quently, the fit 15t % = 1-X«) levels are independent
on K. But the longer the telomere (i.e., the larger the
value ofK), the wider is the spread or tlddution of the
population within the fit individuals, owing to th& (i)
exponent. AK increasesy, may reach values danger-
ously close to 0. We have used the data from Fig. 4 to
evaluates according to eq. (11b), and in so doing, illus-
trate the dependencg(K, 1). The results are included
in the lower panel of Fig. 9. The decreasexgfwith
K implies that the survival of the species counts exclu-
sively on the probability of recovery. This dilution thus
drives extinction at large delays (larg¢ in a finite pop-
ulation. In other words, in a finite population, delayed
selection has thefkect of lowering the error threshold.

8

viduals will preferentially be located at the fringes of
the population. Thus they should have a large influence
on the sequence evolution. Since the danragevery
mechanism is capable of bridging gaps in the neutral
network, it is tempting to conjecture that this mecha-
nism will also lead to an increased speed of evolution,
i.e., an increase in the substitution rate given the same
underlying mutation ratg.

In order to address this issue, we follow the ideas of
Huynen et al. (1996b) and investigate the Hamming dis-
tance distribution in the population. For each sequence
s € P, let s; the nucleotide at position For each nu-
cleotidea € {A,U,G,C} andj € [1, L] we consider the

fraction 1
7i(@) = 55 D Ot (12)
selP
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Figure 10: The model from Fig. 5 and the associated eqgs. (&) lbeen superposed on the stochastic experiments. Moiisglye¢upper left panel)
the recovery rat® is estimated from this simulatioiN(= 100Q K = 10, x = 0.005) as the ratio of the number of recoveries per mutatidhthe

neutral network (replications with mutation for individsdrom x; with i € [1,K — 1]): R = 0.002359. Subsequently, the rogt = 0.7549543
of the functionF(y) from eq. (9) is obtained, having calculatad= 0.754369 ancb = 0.00019. In this way, the values &f are found through

egs. (11).



of sequences in the populati@nthat have nucleotide 3 i

I |
a at position j. The profile, or center of mass, of 10°%F | 1 1 1 4
the population is the 4 L dimensional vector? = B i ¢ f f i f 1
((ﬂj(a))(yg{AU,G,C})l;:l. The diversity of the population i N =100 1
is conveniently measured by the distribution of pairwise 10" L

|
Hamming distancedy (s, s”), or the distances of the ?
individual sequences to the center of mass. A conve- :
nient distance measure between two profiles is _10°F I 3
5 0 T } f
L i

ISCROED DY (mi(@) - @) (13)

B N
B M-
B O

N =500 |
— 4 | | | | | . |
j=1 a€{AU,G,C} 10 2 4 6 8 10 12 14
Note any individual sequencecan also be represented K
by a profile vectorz® with entrieszj(a) = d5,q- In
particular, we have\?(7°,7%) = 2du(s,s’) (see ap- Figure 11: Measuring €iusion through (see appendix). Ten exper-

pendix). The profile distance, eq.(13), can thus be seeniments Eave been performed for gatNh K) case, and two values of

f P : i, M =107 (circles) andu = 3 x 107 (squares). Two tank capacities
tElS stralghtforward generahzatlon of the Hamming dis are used for verificationN = 100 (upper panel) and = 500 (lower
ance.

; o [120—D)?
The speed of evolution can be measured in terms of ‘;anteh')' The dfusl'on V:T;énh"eas“r?d mt‘ (D) N5 =5t with
the mean square displacement of the population over ~" "¢ Mean value otterexperment.
time. More precisely, the motion of the center of mass

is captured by thdifusion constant . . o~
P y theliji versity, we have measured théfdsion codicientD for

D= lim 1 (Az (R(t +7) ﬁ(t))> (14) various cases of mutation rate. First, we do not expect
67=0 T ' t to see any consequence of the delayed selection when
where( . ); denotes the average over tihand simula- ~ the mutation rate is low enough to impede recoveries.

tion runs. The dfusion constanb is a convenient way Without recoveries, the enrichment of the population
of estimating the substitution rate directly from simu- does not occur. We have verified this statement by per-
lated populations (Huynen et al., 1996a; Stadler, 2002; forming simulations for two values of mutation rate and
Stephan-Otto Attolini and Stadler, 2006), which is inde- Population number (Fig. 11). Formally, we expect the
pendent of the particular rules of the selectinatation recoveries to b&® o« Kp? ~ KL%u?, where the expo-
process. nent in the latter statement refers to the two mutations
Note that the definitions ob above depends on the needed to fall & and return to the neutral network, re-
ability to explicitly compute the center of magsof a ~ SPectively. For the: values employed in the examples
populationP . Conceptually this means that we need to from Fig. 11, recoveries are negligible and nfetien-
be able to treat the individual membess P as vec- tial diffusion is observed for fierent time delays. Just
tors. In the absence of insertions and deletions this is for verification, the population number does néfeat
of course straightforward. In the general case, it seemsthe difusion codicient.
non-trivial to find a good vector-space representation.  For mutation rates that allow a significant number of
One possibility would be to construct an alignment of recoveries, we expect to see that recoveries lead to a
the population and to allow gap characters in eq.(12). higher evolutionary rate identified by a higher diversity,
The need to compare populations affelient times in and thus a higher efusion codicient. The dffusion co-
eq.(14) complicates the issue, requiring at least align- efficient D was measured for: only the replicating (vi-
ments of pairs of populations. In contrast, a distance able) sequences (I.h.s panel of Fig. 12), and only the un-
measure between the individuals of the population is damaged sequences (on the neutral network) (r.h.s panel
suficient to quantify e.g. the diversity in the population. of Fig. 12). Even though no increasedfdsion is ob-
This begs the question whether eq.(14) can be general-served for the viable individuals, a slighffect can be
ized to a more general setting. In the appendix we show observed for the neutral network. It illustrates the ex-
how this can be achieved by introducing an equivalent pectation that, at significant mutation rates (high, but
measure of dfusion througHD. not too high; see Fig. 4), a mordfieient exploration
Finally, to answer the question whether the delayed of the neutral network is provided by the delayed selec-
selection could leave a fingerprint in the population di- tion. When measured at the level of the entire viable
10
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Figure 12: Measuring €fusion througH). As in Fig.11, ten experiments have been performed for &chse (herél = 1000), and two values of
u = 1072 (circles) andu = 3 x 1072 (squares). (I.h.s panel) Theflilision was measured only from the replicating (viable) segee. (r.h.s panel)
From the same experiments in the lhs panel, only the segsi@iceaximum telomere length (sequences on the neutral ngtwere extracted
and used for measuring theffdision.

population (I.h.s panel), this slight increase is lost ia th For simplicity, the deterministic system was set up as
accumulation of damaged individuals. a flow reactor under constant organization like Eigen’s
These results show that the delayed selection leavesQuasispecies Model. In this system, we observe a single
no unequivocal traces of its presence in terms of popula- stable equilibrium in whichk, the fraction of undam-
tion diversity. We conclude therefore that even massive aged individuals, andy, the fraction of sterile mem-
delays in the ffect of selection do not appreciablffect bers, strike a balance that depends primarily on the mu-
substitution rates. tation rateu. For large values ofi, Xo becomes very
small and thus fluctuations can easily wipe out the un-
damaged part of the population. This behavior roughly
4. Discussion corresponds to the error threshold. Therefore, the main
effect of delayed selection is to reduce the critical muta-
We have investigated here the impact of delayed se- tion rate. In other words, as one may have expected, ge-
lection dfects in a very simple setting inspired by eu- netic components evolving under delayed selection have
karyotic telomere damage, in which selection discrim- an increased risk of being lost.
inates only between viable and non-viable individuals.  To our surprise, however, delayed selection does not
In other words, individuals carrying damaged genomes appear to have a measurabféeet on the substitution
are oblivious of this fact for several generations. Atleast rates observed at population level. Delayed selection,
intuitively, this setup should emphasize ttikeets of de- therefore does not easily reveal itself in genomic DNA
layed selection as much as possible compared to moresequences. For one, this begs the question whether there
realistic scenarios in which genetic damage is associ- are more subtlefiects on substitution rates. If they ex-
ated also with some instantaneous fitnefsots. ist, they will presumably depend on the specifics of the
The model is investigated in two settings: stochas- selection pressures of the particular protein or RNA in
tic computer simulations based on neutral networks of question. On the other hand, the apparently small im-
RNA secondary structures, and a deterministic infinite- pact of delayed selection at the sequence level could
population-size model. The RNA-based simulations hide that this is indeed a rather frequent phenomenon.
show that damage-and-recovery is a frequent phe- The well-known observation that deletion of a highly
nomenon for a wide range of mutation rate values. In conserved gene often has no appreciable phenotype at
particular, after a relatively short time, all individuahs least under laboratory conditions could be related to our
the population derive from ancestors that have sustainedtopic.
damage and have subsequently recovered through com- In conclusion, we have approached a question that
pensatory mutations. We have demonstrated, further-has not been addressed so far in neither modeling
more, that it is sfficient to estimate a few parameters, nor simulating framework, by studying the scenario in
namely the recovery ratésand the degree of neutrality  which the selection of the fittest is delayed for several
v to parametrize the deterministic ODE model in such generations. Such a scenario occurs in very unrelated
a way that it reproduces the phenomena observed in thetopics, from telomere damage-repair system to plant
stochastic simulation. breeding. By this study we have thus laid the grounds
11



of further explorations of the consequences of such a Reidys, C. M., Stadler, P. F., 2001. Neutrality in fithesslkmapes.

scenario.
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Appendix

Measuring Djfusion in Metric Spaces

Let A {X1,..., %} and B Vi,...,Yns} be
two finite sets of vectors in some vector spa€e
As an example, in the present case, the sequence
AACGT can be written in the bas@A G,C, T} as
1000 1000 0010 0100 0001.

a vector in Our goal is to express the mean square
displacement

1

Na

2
Dl @

ieB

A2 = A(A,B) = Z

gL
ieA Ng
of the centers of gravity oA andB in terms of distances
between their elements. In a Euclidean vector space, we
have canonical distances given 8y = (X - X)) for
i,jeA, dﬁ = (v —y})?fori, j € B, anddi"} = (X -y))?

fori € Aandj € B. It is convenient to introduce the
following quantities, which can be computed in terms



of pairwise distances:

1 S 1
Vaz 50 QKX =5 ) ) 6
A ieA jeA A ieA jeA
1 R 1
Vo= 50, 0= =50, 0 4 (o)
B icB jeB B icB jeB
1 1
W= 3 > X-yiy=——> >
NaNB ;“ ;{ NaNB ; ];; .
In the following we will prove the identity
A2 =W =V,a/2-Vg/2 (17)

The importance of eq.(17) is twofold. First, it implies
that the dffusion codicient
2
B = fim 2R A
-

7—0

(18)

is a metric quantity at heart that does not necessarily
require the explicit computation of the “centers of grav-
ity” of the populations at the étierent time points. Sec-
ondly, it suggests eq. (17) to be tdefinitionof A2 in
situations wheré/ is not given explicitly, or where we
only have a metric structure at our disposal. Eq.(17)
thus is of practical use, since pairwise distances of se-
guences in related populations can be computed ef-
ficiently, while the construction of good multiple se-

which shows that the mean square displacement can bequence alignments may be quite tedious.

expressed in terms of pairwise distances.
First observe thatYica X)* = Yi.jea X Xj and hence

3

ieA
An analogous expression holds fé&s. Next we rewrite
the definition ofA? in the form

2
A2 = %[ng(z z] +n§(237i
A''B

ieA ieB
and use this expression to compute
D%

D

nBZ%‘Z—

jeB

MVa=2m > X2-2) %% =2m ) X*-2

ieA i,jeA ieA

2
— 2nang Z Z XYi

icA jeB

2 2 2 2 A2
NaNgW — nangA

2 2 2 2 2
:nAnBZK +anAZy'} -ng

ieA jeB
2
S S IR
icA
2
nZBVB

ieA
r]B
2
Eq.(17) now follows immediately.

Returning to the definition of RNA sequences as vec-
tors, eq. (15) coincides with eq. (13) which employs a
different notation for the population profiles. And thus,
the distance between two vectors as included in eq. (16)
can be written as

PN

ieB

2)2
)

K

5

ieB
2
M

2
nyVv,
AA+2

> (e =via)

=1 ac{AUG,C}

2du(XY)

d* (% 9)

wheredy (X, y) is the Hamming distance between the

two sequences.
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