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Abstract

We analyze here the evolutionary consequences of selectionwith delay in a population genetics context. In the
classical works on evolutionary dynamics, an individual produces off-springs in direct proportion to its fitness, a
process in which mutations may occur. In the present scenario of delayed selection, individuals that acquire deleterious
mutations can still reproduce unharmed for several generations. During this time delay, the damage passed on to off-
springs can potentially be repaired by subsequent compensatory mutations. In the absence of such a repair, the
individual becomes sterile. Here we study the population-genetic effects of such a time delay by means of both
numerical simulations and theoretical modeling. The results show that delayed selection lowers the error threshold,
endangering the survival of the population. Surprisingly,however, no traces of this delay effect are encountered in
the sequence diversity of the population. These conclusions suggest that delayed selection is hard to detect in genetic
data and thus could be a wide-spread but rarely detected phenomenon.
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1. Introduction

Darwinian evolution is the interplay of the produc-
tion of variation and subsequent selection. Due to the
complexity of biological organism, selection tends to
act at all times, punishing or rewarding small differ-
ences among individuals. This is not necessarily the
case at the level of (small) genetic subsystems, how-
ever. The intuitive rationale for this claim is that an
“emergency subsystem”, for instance, may not need to
be activated for several generations. While unused and
inactive, it tends to escape the forces of selection and
conceivably, acquire damages. Once conditions change
and it is needed again, however, there are severe (fitness)
penalties if its functionality has not been maintained or
repaired. We expect such “delayed selection” to leave
detectable traces in the genome. Hence we study here
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the dynamical implications of delayed selection in some
detail.

It may come as a surprise that the best studied exam-
ple is a generic component of the eukaryotic replication
machinery, namely the reconstruction of telomere ends.
Mice deficient for the mouse telomerase RNA (mTR-/-)
are fertile and show initially little if any pathologies.
However, they can breed only for about six generations
due to decreased male and female fertility and to an in-
creased embryonic lethality in later generations. Even
late generation (mTR-/-) mice are viable to adulthood,
only showing a decrease in viability in old age (Lee
et al., 1998; Herrera et al., 1999). These effects appear
to be linked to the shortening of the telomeres (Verdun
and Karlseder, 2007). Similar effects can be observed
in cell culture, again establishing a relationship between
viability and telomere length: Terc-deficient embryonic
stem cells show gradual reduction of growth rate after
about 300 divisions, and proliferation virtually stops af-
ter 450 generations (Niida et al., 1998). At the same
time, telomerase RNA exhibits extremely high rates of
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evolution (Xie et al., 2008). The speculation that de-
layed selection may be part of the explanation for the
unexpected evolutionary plasticity of telomerase RNA
motivated this work.

Delayed selection is also likely to occur in species
for which environmental conditions vary periodically
at timescales longer than generation time. A spectac-
ular example is the monarch butterfly (Danaus plex-
ippus) (Urquhart, 1960). The “migratory” generation
migrates from Eastern North America to overwintering
sites in Mexico. This long-lived generation is charac-
terized by reproductive diapause persisting until next
spring, when the butterflies reproduce and start the jour-
ney back north. Another two to three generations of
reproductively competent, short-lived “summer” butter-
flies follow the progressive, northward emergence of
milkweed. Significant differences in gene expression
between summer and migratory butterflies (Zhu et al.,
2008) suggest that some parts of the butterflies genetic
system may be unused over a few generations. Whether
this is indeed the case could be tested directly if charac-
teristic genomic fingerprints of delayed selection can be
detected.

A more subtle context in which delayed selection
may play a role is that of synthetically lethal genes.
A pair (or a larger set) of genes is calledsynthetically
lethal if knocking out the entire set is lethal, while the
knockout of all smaller subsets retains viability (Hart-
man IV et al., 2001; Kaelin Jr, 2005; Le Meur and Gen-
tleman, 2008). Note that synthetically lethal gene pairs
typically share their primary function but cannot be re-
dundant in all their functional aspects. The reason is
that exact redundancy is evolutionarily unstable: it is
quickly resolved by the loss of one copy (Force et al.,
1999). This type of genetic buffering may, however, de-
lay the detrimental effects of functional loss in one part-
ner until a rarely employed secondary function of the
affected gene is required. Again, a recognizable signal
in the genomic DNA would be of utmost interest.

2. RNA-Based Simulations

2.1. A Simple Model of Telomere Damage

The simulation framework used in this contribution is
motivated by the telomerase RNA (TR) system briefly
discussed in the introduction. For simplicity we dis-
tinguished only between fitness-neutral and lethal mu-
tations. Each individual is characterized by its TR
gene and the length of its telomere. Off-springs with
intact TR have full-length telomeres, while telomeres
shrink by a constant amount with each replication step

in which the telomerase is inactive. Individuals whose
telomeres have shrunk to zero are sterile, i.e., their fit-
ness is set to 0.

In order to include a genetic component with a real-
istic genotype-phenotype map, we use RNA secondary
structures to represent phenotypes. In this approach,
each sequences is folded into its minimum energy
secondary structureϕ(s) and then fitness is evaluated
by comparingϕ(s) with a target structureϕ∗, (see e.g.
Fontana et al. 1989; Schuster et al. 1994; Huynen et al.
1996a). Here, we stipulate that only the target sec-
ondary structure is functional. The fitnessf of an in-
dividual with genotypes and telomere lengthk is given
thus by

f (s, k) =















1 if ϕ(s) = ϕ∗ or k > 0

0 if ϕ(s) , ϕ∗ andk = 0
(1)

Since the computational effort for RNA folding com-
putations is cubic in sequence length, vertebrate TR
gene with 300-500nt are too long to practical for our
simulations. Instead of a real TR structures, we defined
an arbitrarily chosen target structure of length 100 to
represent the viable phenotype. RNA secondary struc-
ture predictions are performed using theVienna RNA

Package (Hofacker et al., 1994).
We simulate a population ofN individuals in a flow

reactor under stochastically controlled constant organi-
zation as described in e.g. Fontana et al. (1989). Indi-
viduals replicate proportional to their fitness. During
replication, each letter is mutated with a probabilityµ.
Then the structureϕ(s′) of the offsprings′ is computed.
If ϕ(s′) = ϕ∗, we setk′ = K, otherwisek′ = k′−1, where
K is the number of generations for which a defective TR
is tolerated. In other words, if afterK replications, such
an incorrect fold has not encountered the neutral net-
work, its fitness becomes 0 and thus loses the capacity
of replication.

In the following, we shall discuss the results of the
simulations. Based on these data, we introduce a the-
oretical model associated to the simulation framework,
a model that provides a reasonably-good fit of the sim-
ulations results and also a tool to better understand the
implications of the delayed selection effect.

2.2. Error Threshold

As a first observation, we notice that one of the con-
sequences of the delayed selection is a modified error
threshold. An erroneously replicating haploid popula-
tion shows theerror thresholdphenomenon, by which
the population loses coherence and quickly approaches
a uniform distribution in sequence space as soon as the
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Figure 1:Top Time series of the mean fitness or fraction of reproducing individuals as a function of time in three stochastic runs withN = 1000,
µ = 0.005 and two different values ofK. Below: Survival probability, time average and standard deviationover the time-series of the mean fitness
as a function ofK andµ. Averages are taken over 10 independent simulations running for 100,000 mutations for each combination of parameters.
Average and standard deviation are normalized to their values atK = 2 andµ = 0.001 to facilitate comparison.

mutation rate exceeds a critical value. Originally de-
scribed on single-peak landscapes (Eigen, 1971; Eigen
et al., 1989), an analogous phenomenon can be observed
at the phenotypic level (Forst et al., 1995; Huynen et al.,
1996a; Wilke, 2001). With instantaneous fitness ef-
fects, the critical value ofµ can be estimated from a
µ-dependence of the equilibrium concentration of the
“poor” phenotypes.

The upper panels of Fig. 1 represent the mean fit-
ness (i.e. the fraction of reproducing or fit individu-
als) for several examples of simulations, showing that
the extinction of the population at finite times is largely
driven by an increase of the fluctuations. That is, for
a fixed mutation rateµ, the average fraction of repro-
ducing individuals is the same for various values ofK,
but the standard deviation increasing withK. For large
K, due to these large excursions, the reproducing pop-
ulation may reach a threshold value at which extinction
occurs. The main effect of delayed selection is thus a
strong increase in fluctuations, that causes extinction in
finite populations at mutation rates significantly lower
than the non-delayed selection (K = 1). This can be
seen in the lower panels of Fig. 1 where the extinction

threshold or survival probability (panelb) is illustrated
as resulting from the simulations. A rough estimation of
the survival probability was considered to be the frac-
tion of the simulations that have not gone extinct after
a numberM = 100000 of mutations. From these sim-
ulations, we have also estimated the dependency of the
mean fitness (panelc) and its standard deviation (panel
d). It can be seen that the mean fitness is not influ-
enced by the telomere’s length, while the fluctuations
level (standard deviation) increases with the telomere’s
length. In§3 we shall pinpoint the causes of this prema-
ture extinction by means of a deterministic model.

2.3. Recoveries

The delayed selection has a direct effect on the er-
ror threshold in a negative way through the fluctuations
described above, and in a positive one through the re-
coveries that might originate from damaged but still fit
individuals.

In Fig. 2 we illustrate this effect by plotting the frac-
tion of fit individuals characterized by a certain num-
ber of damage-and-repair cycles. It comes as a surprise
that already after a very short time there are no lineages
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Figure 2: The time-series illustrating the dynamics of repairs in the population (N = 1000, µ = 0.005, K = 10). The different colors represent
waves of increasing number of repairs (up to 25 repairs) thatsweep through the population as time increases. The dashed black line contains the
initial population with no repairs.

whose ancestry has had functional genes. The individu-
als without repairs (dotted black line) quickly disappear,
as the ones with one damage-repair cycle (thick black
line) appear, which in turn will be damaged and repaired
again, transforming into the individuals with two cycles
(red lines), and so on. We see that there is a character-
istic time scale by which individual lineages acquire a
damage and find their way back to the neutral network
through subsequent mutations that repair the damage.
That is, waves of repaired sequences swap the popula-
tion, with newly repaired sequences displacing the old
and less repaired sequences.

By comparing different simulations with identical
(N,K, µ) values, we noticed that the stochastic effects
dominate, i.e., there are dramatic fluctuations in the
times between subsequent damage/repair events entirely
due to stochasticity.

Through the simulations, we have measured the pa-
rameterR defined as the probability that a damaged
telomerase recovers, i.e., the fraction of the replications
with mutation occurringoff the neutral network that give
rise to an offspringon the neutral net. We expect the re-
covery fractionR not to depend on the lengthK − i of
the telomere. From the stochastic simulations we see
that this first approximation is acceptable, as it is illus-
trated in Fig. 3. For three experiments of equalK and
different values ofµ, we have recorded the number of
recoveries and the type of sequences the recovery oc-
curred from. The type of sequence refers to the length
K − i of the telomere and the numberℓ of mutations oc-
curring off the neutral network. Naturally, at least two
off-mutations are needed, one originating the fall off the
neutral network (the damage), and the second providing
the recovery. In the lower panels we include the sum
Ri =

∑

ℓ Riℓ, measuring thus the dependence of the re-
covery fraction on the telomere length alone, irrespec-

tive of the number of off-mutations needed. It can be
seen thatR≡ Ri is roughly independent on the telomere
length, as the recovery mutation can occur with equal
probability during theK−1 replications prior to “death”.

From these simulations it can be seen that a rough es-
timate of this recovery fraction is on the order of 10%
of the mutations occurring off the neutral network. The
repair or recovery of damaged genotypes by compen-
satory mutations thus has a dramatic effect on the long-
time behavior of the population. To estimate the effect
we shall introduce in§3 a model of the population dy-
namics which makes use of this observation of equal
recovery fraction.

In addition, sinceR is defined as a conditional prob-
ability, we also expect that it will not depend strongly
on the mutation rateµ for small values ofµ. The pa-
rameterRwill strongly depend on the size and structure
of the neutral network, and on its embedding the hy-
percube. This is the behavior followed also by the neu-
trality ν referring to the increased buffering, due to neu-
tral networks, of the phenotype (the correct secondary
structure) with respect to genetic mutations (nucleotide
mutations) (Huynen et al., 1996b; Stadler et al., 2001).
The strongest influence on the probability of recovery
R is exerted by the distance of the mutant individual
from the neutral network. As we shall see also in the
modeling approach, an appropriate measure of the re-
covery rate or probability is defined throughλ = pR,
with p from eq. (4). This rate defines the probability
that a replication leads to recovery. Considering a wide
interval ofµ-values, we expectλ(µ) to have an optimum
for a certain value ofµc ≡ µ. Forµ ≪ µc, the recovery
probability is low as, once off the network, a new muta-
tion is improbable to occur (p is small) in the nextK −1
replications. Forµ ≫ µc, once off the neutral net, sev-
eral nucleotides can mutate in a replication event, and
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Figure 3: Distribution of recoveriesRiℓ measured as a function of the telomere lengthK − i and the number of off-network mutationsℓ. Simulation
runs useN = 1000 andK = 10, and different mutation rates (a)µ = 0.001, (b)µ = 0.003, (c)µ = 0.005. The lower panels showRi =

∑

ℓ Riℓ,
illustrating a reasonable independence on the telomere length, supporting the model from Fig. 5. Upper panels have beendrawn using Dislin
Scientific Plotting Software.

thus destroy the repair. In addition, this regime of rel-
atively largeµ is limited by the extinction threshold, as
we have seen that large fluctuations can lead the system
into extinction.

In the context of these considerations, we have mea-
sured the recovery rate from the simulations. Based
on the definitions introduced above, we monitored the
temporal evolution of the number of repairs and that of
replications with mutations occurring for sequences that
are off the neutral network. The parameterR, the ratio of
these two quantities, stabilizes after a transient period.
We show these post-transient values from simulations
for variousµ andK in the upper panel of Fig. 4. Due
to stochasticity, simulations of identical (N,K, µ) may
lead to slightly different values ofR. The dependence
on µ is evident, as well as onK, with the former being
more pronounced than the latter. in the lower panel, as
commented above, an optimum valueµc is apparent for
which λ, the recovery probability, has a maximum. It
is interesting though that lowerK implies higher recov-
ery probability. This can be explained by the structure
of the neutral networks of RNA secondary structures.
These are dense and fairly homogeneous only within
the set of sequences that are compatible with the tar-
get structure (Schuster et al., 1994; Gruener et al., 1996;

Sumedha et al., 2007; Jorg et al., 2008). Mutations that
destroy compatibility (i.e., those that violate the base
pairing rule), however, may lead away from the neu-
tral network of the functional structure. Two or more
incompatible substitutions therefore lead to regions in
sequence space from where recovery in a single step is
impossible.

3. Deterministic Model

3.1. Replication Kinetics

Since we are interested in the basic effects of de-
layed selection, we neglect the influence of complex
genetics and restrict ourselves to the simplest case of a
population of haploid individuals. Naturally, this leads
us to a variant of Eigen’s Quasispecies Model (Eigen,
1971; Eigen et al., 1989). While certain issues, such
as the influence of delay on the Error Threshold, could
be studied in an even simpler setting, we explicitly in-
clude the redundancy of the genotype-phenotype map-
ping (Schuster et al., 1994). For simplicity, we only
model the loss of fertility of individuals whose telom-
eres have disappeared. The population is structured into
K + 1 distinct groups of sequences characterized by a
certain telomere length between 0 andK (Fig.5). We
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index these classes by the amount of telomere loss, so
that x0 denotes the fraction of all sequences that fold
into the correct secondary structure, whilexK is the frac-
tion of sterile individuals. With each replication event,
the telomere length decreases by 1 if the telomerase is
not functional.

With sequence lengthL, per-nucleotide mutation rate
µ and a probabilityν that an offspring retains a func-
tional telomerase (the density of the neutral network
(Huynen et al., 1996a; Ofria and Adami, 1999; Wilke,
2001; Reidys and Stadler, 2001)), the probability with
which a viable sequence gives birth to an offspring that
also resides on the neutral network is

Q = [1 − µ(1− ν)]L ≈ exp−Lµ(1−ν) (2)

Once outside the neutral network, when a sequence
Xi , i ∈ [1,K−1] replicates, it can either become a mem-
ber of xi+1 if it does not recover the correct fold, or be-
come a member ofx0, if it does. More precisely, the

Figure 5: The schematic representation of the model, withλ ≡ pR
in the equations below. The constant populationN =

∑K
i=0 Ni , and

xi ≡ Ni/N characterized by a telomerase length of (K − i).

replication occurs through (see also Fig. 5)

X0
Q
−→ X0 (3a)

X0
1−Q
−−−→ X1 (3b)

Xi
1−p
−−−→ Xi+1, i ∈ [1,K − 1] (3c)

Xi
p(1−R)
−−−−−→ Xi+1, i ∈ [1,K − 1] (3d)

Xi
pR
−−→ X0, , i ∈ [1,K − 1] (3e)

with the eqs. (3c) and (3d) distinguishing between
replication with or without mutation. Herep is the prob-
ability of replication with mutation and is defined as

p = 1− (1− µ)L. (4)

Notice that we have considered the approximation
discussed in the previous section for whichR is indepen-
dent on the telomere length of the sequence, as Fig. 3
justifies. Under the assumptions detailed above, it is
now straightforward to derive the temporal evolution of
xi :

ẋ0 = pR
K−1
∑

i=1

xi + Qx0 −Φx0

ẋ1 = (1− Q)x0 − Φx1

ẋi = (1− pR)xi−1 −Φxi , i ∈ [2,K],

whereΦ is a dilution flux that keeps the sum of relative
frequencies constant,

∑

i xi = 1. As usual,Φ equals the
net production of off-springs. Since the fitness is 1 by
definition for all reproducing phenotypes and 0 for the
sterile ones, we observe that

Φ =

K−1
∑

i=0

xi = 1− xK

directly measures the fraction of reproducing individ-
uals in the population. Employing the shorthandq ≡
1 − Q, the final form of the equations describing the
evolution of the population is thus

ẋ0 = pR(1− xK) − x0(q+ pR− xK) (5a)

ẋ1 = qx0 − (1− xK)x1 (5b)

ẋi = (1− pR)xi−1 − (1− xK)xi , i ∈ [2,K] (5c)

3.2. Equilibria

The fixed points ¯xi can be expressed in terms of the
relative frequency of the ¯xK of the sterile individuals.
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Figure 6: The schematic representation ofF(y) defined in eq. (9), with
y ≡ 1 − x̄K . This function is defined only fory ∈ [a, 1], as it results
from the condition ¯xK ≥ 0 in eq. (7). The representation also indicates
y1 to be a fixed point. See below the discussion ony2. Remember that
y = 0 implies extinction.

We have either the trivial solution ( ¯xK = 1; x̄i = 0,
i < K), or we obtain, for ( ¯xi > 0, i ≤ K),

x̄0 =
pR(1− x̄K)
q+ pR− x̄K

(6a)

x̄1 =
q

1− x̄K
x̄0 (6b)

x̄i =
1− pR
1− x̄K

x̄i−1, i ∈ [2,K], (6c)

with the last equation providing the condition

x̄K =
qpR

q+ pR− x̄K

(

1− pR
1− x̄K

)K−1

(7)

This can be rearranged as

x̄K [q+ pR− x̄K ](1 − x̄K)K−1 = qpR(1− pR)K−1 (8)

Since the r.h.s. is positive forµ > 0, we can immediately
conclude that ¯xK , 0. Moreover, in order to clarify
the solutions of this equation, we shall rewrite it in the
variabley ≡ 1− x̄K :

F(y) = −yK+1 + (1+ a)yK − ayK−1 − b = 0, (9)

with new parametersa ≡ 1 − q − pR > 0 (as it is ex-
pected thatQ > pR) andb ≡ qpR(1− pR)K−1 > 0. The
behavior of this function is sketched in Fig. 6. Notice
that the functionF, as the system from eq. (5), is valid
for K ≥ 2. For the classical case of non-delayed selec-
tion, K = 1, the two fixed points are the trivial one (or
extinction), (x̄0, x̄1) = (0, 1), and the coexistence fixed
point, (x̄0, x̄1) = (Q, 1−Q), with the former being unsta-
ble, and the latter being stable (forµ lower than the error
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Figure 7: The functionF(y) from eq.(9) evaluated using the average
values of the recovery fractionR from Fig. 4a. (Upper panel) A fixed
value ofµ = 0.003 has been chosen, and the functionF drawn for
K ∈ {7, 8, 9, 10}. (Lower panel) A fixed value ofK = 10, was chosen,
and the function was calculated for 10 values inµ ∈ [0.0005 : 0.005].
As expected, the rooty1 of F is more sensitive toµ than toK.

threshold). In thisK = 1 case, the above notation gives
the stable fixed point asy = Q. Returning to the gen-
eral case ofK > 1, the stable fixed point remains in the
neighborhood ofy1 ≈ Q, with y1 from Fig. 6. Due to the
existence of recoveries, one hasy1 ' Q. For example,
for K = 2, one hasy1 = 0.5[Q +

√

Q2 + 4pR(1− Q)].
The second root,y2 from Fig. 6 does not satisfy the
simplex conditions,

∑

x̄i = 1, and it is thus not a fixed
point of the system in eqs. (5). More precisely, consid-
ering x̄K = 1− y2 ≈ 0, together with the approximation
1− pR≈ 1, one has

∑

x̄i = pR(1+ Kq)/(q+ pR) < 1.
A numerical verification has been performed too using
the values from Fig. 4. For completeness, we remark
that for the even-K cases, the functionF(y) has another
root in the negative quadrant,y < 0, which again is not
a physically accessible fixed point for our system, as it
does not satisfy ¯xi ≥ 0 for all i ∈ [0,K].

In addition, using estimates of the recovery fraction
R from simulations with various parameter settings, we
have calculatedF numerically. The position ofy1 ' Q
is nearly independent ofK (Fig. 7a), with a pronounced
dependence onµ (Fig. 7b). Analytically, for smallµ, the
Taylor expansion leads toq ∼ Lµ(1−ν) (from eq. 2) and
p ∼ Lµ (from eq. 4), implying ¯xK ∝ Lµ. By settingx̄k =

ξµ +O(µ2) and expanding all quantities in eq.(8) to first
order inµ, one gets the following quadratic equation for
ξ which indeed does not depend onK:

ξ[(1 − ν + R)L − ξ] = (1− ν)L2R, (10)
7
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Figure 8: Decay of the steady state concentration, ¯x0, as a function of
µ for K = 1, and the fit to estimate the neutralityν.

The roots of eq. (10) areξ1 = L(1− ν) andξ2 = LR. It
can be seen thatξ1 can be recovered also from the case
K = 1 for which x̄1 = q ≈ L(1−ν)µ (from eq. 2). For the
reproductive but damaged species we observe, by the
same arguments employed above, that their dependence
on µ, for smallµ, also follows x̄i ∝ µ for all i, again
independent ofK.

In order to computeF(y) in Fig. 7, the knowledge of
Q was required from eq. (2), which in turn relies on an
estimate for the neutralityν. The latter can be deter-
mined from the caseK = 1, considering the approxima-
tion x̄0 = Q ∼ exp[−Lµ(1− ν)] (Wilke, 2001) (Fig. 8).

The value of ¯xK can be computed numerically using
a simple root-finder to solve eq. (9). The values of ¯xi ,
i , K are then obtained by rewriting eqs. (6b-6c) as

x̄i =

(

1− x̄K

1− pR

)K−i

x̄K , i ∈ [K − 1, 1] (11a)

x̄0 =

(

1− x̄K

1− pR

)K−1 x̄K(1− x̄K)
q

(11b)

This shows that, even though ¯xK is approximatelyK-
independent, as discussed above (Fig. 7 and Fig. 9), the
spread of population in theK reproducing-groups isK-
dependent. In other words, the unfit ( ¯xK) and conse-
quently, the fit (

∑K−1
i=0 x̄i = 1− x̄K) levels are independent

on K. But the longer the telomere (i.e., the larger the
value ofK), the wider is the spread or thedilution of the
population within the fit individuals, owing to the (K− i)
exponent. AsK increases, ¯x0 may reach values danger-
ously close to 0. We have used the data from Fig. 4 to
evaluate ¯x0 according to eq. (11b), and in so doing, illus-
trate the dependence ¯x0(K, µ). The results are included
in the lower panel of Fig. 9. The decrease of ¯x0 with
K implies that the survival of the species counts exclu-
sively on the probability of recovery. This dilution thus
drives extinction at large delays (largeK) in a finite pop-
ulation. In other words, in a finite population, delayed
selection has the effect of lowering the error threshold.

0 0.005 0.01 0.015 0.02 0.025
µ

0.3

0.5

0.7

1

1 
- 

x K

0 0.001 0.002 0.003 0.004 0.005
µ

0.1

1

x 0 K

Figure 9: (Upper panel) The average fitness or fractionΦ = 1− xK of
reproducing sequences in the population is shown forK ∈ {2, 4, 6,8}.
It illustrates that ¯xK is independent ofK in very good approximation.
(Lower panel) The value of ¯x0 estimated through eqs. (11) and based
on the recovery probabilities from Fig. 4 with the symbols referring
to different values ofK ∈ [4, 10]. The straight line results from Fig. 8.

An example of simulation and comparison with the
model appears in Fig. 10. Following the reasoning dis-
cussed above, the associated values ¯xi from eqs. (11)
have been calculated and are shown in Fig. 10 as con-
tinuous lines. It can be seen that the mean-field model
provides a good fit to the simulations.

3.3. Genetic diversity

It is plausible to assume that lineages with many re-
coveries in their history and/or recently recovered indi-
viduals will preferentially be located at the fringes of
the population. Thus they should have a large influence
on the sequence evolution. Since the damage/recovery
mechanism is capable of bridging gaps in the neutral
network, it is tempting to conjecture that this mecha-
nism will also lead to an increased speed of evolution,
i.e., an increase in the substitution rate given the same
underlying mutation rateµ.

In order to address this issue, we follow the ideas of
Huynen et al. (1996b) and investigate the Hamming dis-
tance distribution in the population. For each sequence
s ∈ P, let sj the nucleotide at positionj. For each nu-
cleotideα ∈ {A,U,G,C} and j ∈ [1, L] we consider the
fraction

π j(α) =
1
N

∑

s∈P

δsj ,α (12)
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Figure 10: The model from Fig. 5 and the associated eqs. (5) have been superposed on the stochastic experiments. More precisely, (upper left panel)
the recovery rateR is estimated from this simulation (N = 1000, K = 10, µ = 0.005) as the ratio of the number of recoveries per mutations off the
neutral network (replications with mutation for individuals from xi with i ∈ [1, K − 1]): R = 0.002359. Subsequently, the rooty1 = 0.7549543
of the functionF(y) from eq. (9) is obtained, having calculateda = 0.754369 andb = 0.00019. In this way, the values of ¯xi are found through
eqs. (11).
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of sequences in the populationP that have nucleotide
α at position j. The profile, or center of mass, of
the population is the 4× L dimensional vector~π =
(

(π j(α))α∈{A,U,G,C}
)L

j=1
. The diversity of the population

is conveniently measured by the distribution of pairwise
Hamming distancesdH(s′, s′′), or the distances of the
individual sequences to the center of mass. A conve-
nient distance measure between two profiles is

∆2(~π′, ~π′′) =
L

∑

j=1

∑

α∈{A,U,G,C}

(

π′j(α) − π
′′
j (α)

)2
(13)

Note any individual sequences can also be represented
by a profile vector~πs with entriesπ j(α) = δsj ,α. In
particular, we have∆2(~πs′ , ~πs′′) = 2dH(s′, s′′) (see ap-
pendix). The profile distance, eq.(13), can thus be seen
as straightforward generalization of the Hamming dis-
tance.

The speed of evolution can be measured in terms of
the mean square displacement of the population over
time. More precisely, the motion of the center of mass
is captured by thediffusion constant

D = lim
δτ→0

1
τ

〈

∆2 (

~π(t + τ), ~π(t)
)

〉

t
(14)

where〈 . 〉t denotes the average over timet and simula-
tion runs. The diffusion constantD is a convenient way
of estimating the substitution rate directly from simu-
lated populations (Huynen et al., 1996a; Stadler, 2002;
Stephan-Otto Attolini and Stadler, 2006), which is inde-
pendent of the particular rules of the selection/mutation
process.

Note that the definitions ofD above depends on the
ability to explicitly compute the center of mass~π of a
populationP . Conceptually this means that we need to
be able to treat the individual memberss ∈ P as vec-
tors. In the absence of insertions and deletions this is
of course straightforward. In the general case, it seems
non-trivial to find a good vector-space representation.
One possibility would be to construct an alignment of
the population and to allow gap characters in eq.(12).
The need to compare populations at different times in
eq.(14) complicates the issue, requiring at least align-
ments of pairs of populations. In contrast, a distance
measure between the individuals of the population is
sufficient to quantify e.g. the diversity in the population.
This begs the question whether eq.(14) can be general-
ized to a more general setting. In the appendix we show
how this can be achieved by introducing an equivalent
measure of diffusion throughD̃.

Finally, to answer the question whether the delayed
selection could leave a fingerprint in the population di-
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D
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K
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N = 500

~

~

Figure 11: Measuring diffusion throughD̃ (see appendix). Ten exper-
iments have been performed for each (N, K) case, and two values of
µ = 10−5 (circles) andµ = 3 × 10−5 (squares). Two tank capacities
are used for verification:N = 100 (upper panel) andN = 500 (lower

panel). The diffusion was measured asD̃ = 〈D〉±
√

1
n

∑

(Di−〈D〉)2
n−1 , with

Di , the mean value of thei th experiment.

versity, we have measured the diffusion coefficientD̃ for
various cases of mutation rate. First, we do not expect
to see any consequence of the delayed selection when
the mutation rate is low enough to impede recoveries.
Without recoveries, the enrichment of the population
does not occur. We have verified this statement by per-
forming simulations for two values of mutation rate and
population number (Fig. 11). Formally, we expect the
recoveries to beR ∝ Kp2 ≈ KL2µ2, where the expo-
nent in the latter statement refers to the two mutations
needed to fall off and return to the neutral network, re-
spectively. For theµ values employed in the examples
from Fig. 11, recoveries are negligible and no differen-
tial diffusion is observed for different time delays. Just
for verification, the population number does not affect
the diffusion coefficient.

For mutation rates that allow a significant number of
recoveries, we expect to see that recoveries lead to a
higher evolutionary rate identified by a higher diversity,
and thus a higher diffusion coefficient. The diffusion co-
efficient D̃ was measured for: only the replicating (vi-
able) sequences (l.h.s panel of Fig. 12), and only the un-
damaged sequences (on the neutral network) (r.h.s panel
of Fig. 12). Even though no increased diffusion is ob-
served for the viable individuals, a slight effect can be
observed for the neutral network. It illustrates the ex-
pectation that, at significant mutation rates (high, but
not too high; see Fig. 4), a more efficient exploration
of the neutral network is provided by the delayed selec-
tion. When measured at the level of the entire viable
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Figure 12: Measuring diffusion throughD̃. As in Fig.11, ten experiments have been performed for eachK-case (hereN = 1000), and two values of
µ = 10−3 (circles) andµ = 3× 10−3 (squares). (l.h.s panel) The diffusion was measured only from the replicating (viable) sequences. (r.h.s panel)
From the same experiments in the lhs panel, only the sequences of maximum telomere length (sequences on the neutral network) were extracted
and used for measuring the diffusion.

population (l.h.s panel), this slight increase is lost in the
accumulation of damaged individuals.

These results show that the delayed selection leaves
no unequivocal traces of its presence in terms of popula-
tion diversity. We conclude therefore that even massive
delays in the effect of selection do not appreciably affect
substitution rates.

4. Discussion

We have investigated here the impact of delayed se-
lection effects in a very simple setting inspired by eu-
karyotic telomere damage, in which selection discrim-
inates only between viable and non-viable individuals.
In other words, individuals carrying damaged genomes
are oblivious of this fact for several generations. At least
intuitively, this setup should emphasize the effects of de-
layed selection as much as possible compared to more
realistic scenarios in which genetic damage is associ-
ated also with some instantaneous fitness effects.

The model is investigated in two settings: stochas-
tic computer simulations based on neutral networks of
RNA secondary structures, and a deterministic infinite-
population-size model. The RNA-based simulations
show that damage-and-recovery is a frequent phe-
nomenon for a wide range of mutation rate values. In
particular, after a relatively short time, all individualsin
the population derive from ancestors that have sustained
damage and have subsequently recovered through com-
pensatory mutations. We have demonstrated, further-
more, that it is sufficient to estimate a few parameters,
namely the recovery ratesRand the degree of neutrality
ν to parametrize the deterministic ODE model in such
a way that it reproduces the phenomena observed in the
stochastic simulation.

For simplicity, the deterministic system was set up as
a flow reactor under constant organization like Eigen’s
Quasispecies Model. In this system, we observe a single
stable equilibrium in whichx0, the fraction of undam-
aged individuals, andxK , the fraction of sterile mem-
bers, strike a balance that depends primarily on the mu-
tation rateµ. For large values ofµ, x0 becomes very
small and thus fluctuations can easily wipe out the un-
damaged part of the population. This behavior roughly
corresponds to the error threshold. Therefore, the main
effect of delayed selection is to reduce the critical muta-
tion rate. In other words, as one may have expected, ge-
netic components evolving under delayed selection have
an increased risk of being lost.

To our surprise, however, delayed selection does not
appear to have a measurable effect on the substitution
rates observed at population level. Delayed selection,
therefore does not easily reveal itself in genomic DNA
sequences. For one, this begs the question whether there
are more subtle effects on substitution rates. If they ex-
ist, they will presumably depend on the specifics of the
selection pressures of the particular protein or RNA in
question. On the other hand, the apparently small im-
pact of delayed selection at the sequence level could
hide that this is indeed a rather frequent phenomenon.
The well-known observation that deletion of a highly
conserved gene often has no appreciable phenotype at
least under laboratory conditions could be related to our
topic.

In conclusion, we have approached a question that
has not been addressed so far in neither modeling
nor simulating framework, by studying the scenario in
which the selection of the fittest is delayed for several
generations. Such a scenario occurs in very unrelated
topics, from telomere damage-repair system to plant
breeding. By this study we have thus laid the grounds
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of further explorations of the consequences of such a
scenario.
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Appendix

Measuring Diffusion in Metric Spaces

Let A = {~x1, . . . , ~xnA} and B = {~y1, . . . , ~ynB} be
two finite sets of vectors in some vector spaceV.
As an example, in the present case, the sequence
AACGT can be written in the base{A,G,C,T} as
1000 1000 0010 0100 0001.

a vector in Our goal is to express the mean square
displacement

∆2 = ∆2(A, B) =















1
nA

∑

i∈A

~xi −
1
nB

∑

i∈B

~yi















2

(15)

of the centers of gravity ofA andB in terms of distances
between their elements. In a Euclidean vector space, we
have canonical distances given byd2

i j = (~xi − ~x j)2 for

i, j ∈ A, d2
i j = (~yi − ~y j)2 for i, j ∈ B, andd2

i j = (~xi − ~y j)2

for i ∈ A and j ∈ B. It is convenient to introduce the
following quantities, which can be computed in terms
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of pairwise distances:

VA =
1

n2
A

∑

i∈A

∑

j∈A

(~xi − ~x j)2 =
1

n2
A

∑

i∈A

∑

j∈A

d2
i j

VB =
1

n2
B

∑

i∈B

∑

j∈B

(~yi − ~y j)
2 =

1

n2
B

∑

i∈B

∑

j∈B

d2
i j

W =
1

nAnB

∑

i∈A

∑

j∈B

(~xi − ~y j)2 =
1

nAnB

∑

i∈A

∑

j∈B

d2
i j

(16)

In the following we will prove the identity

∆2 =W− VA/2− VB/2 (17)

which shows that the mean square displacement can be
expressed in terms of pairwise distances.

First observe that
(∑

i∈A ~xi
)2
=

∑

i, j∈A ~xi ~x j and hence

n2
AVA = 2nA

∑

i∈A

~xi
2
− 2

∑

i, j∈A

~xi ~xj = 2nA

∑

i∈A

~xi
2
− 2















∑

i∈A

~xi















2

An analogous expression holds forVB. Next we rewrite
the definition of∆2 in the form

∆2 =
1

n2
An2

B
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+ n2
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− 2nAnB
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j∈B
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and use this expression to compute

n2
An2

BW− n2
An2

B∆
2

= nAn2
B
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i∈A
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+ nBn2
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=
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B

2
n2

AVA +
n2

A

2
n2

BVB

Eq.(17) now follows immediately.
Returning to the definition of RNA sequences as vec-

tors, eq. (15) coincides with eq. (13) which employs a
different notation for the population profiles. And thus,
the distance between two vectors as included in eq. (16)
can be written as

d2(~x, ~y) =

n
∑

j=1

∑

α∈{A,U,G,C}

(

x j,α − y j,α

)2

= 2 dH(~x, ~y)

wheredH(~x, ~y) is the Hamming distance between the
two sequences.

The importance of eq.(17) is twofold. First, it implies
that the diffusion coefficient

D̃ ≡ lim
τ→0

∆2(At+τ,At)
τ

(18)

is a metric quantity at heart that does not necessarily
require the explicit computation of the “centers of grav-
ity” of the populations at the different time points. Sec-
ondly, it suggests eq. (17) to be thedefinitionof ∆2 in
situations whereV is not given explicitly, or where we
only have a metric structure at our disposal. Eq.(17)
thus is of practical use, since pairwise distances of se-
quences in related populations can be computed ef-
ficiently, while the construction of good multiple se-
quence alignments may be quite tedious.
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