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ABSTRACT

MicroRNAs are a group of small, ~21nt long, riboregulators
inhibiting gene expression at a posttranscriptional level. Their most
distinctive structural feature is the foldback hairpin of their precursor
pre-miRNAs. Even though each pre-miRNA deposited in miRBase
has its secondary structure already predicted, little is known about
the patterns of structural conservation among pre-miRNAs. We
address this issue by clustering the human pre-miRNA sequences
based on pairwise, sequence and secondary structure alignment
using FOLDALIGN, followed by global multiple alignment of obtained
clusters by WAR. As a result, the common secondary structure was
successfully determined for four FOLDALIGN clusters: the RF00027
structural family of the Rfam database and three clusters with
previously undescribed consensus structures.
Contact: gorodkin@genome.ku.dk

1 INTRODUCTION

MicroRNAs (miRNAs) are a group of small, 21-23nt long, non-

protein coding RNAs, which negatively influence gene exgimes
at the post-transcriptional level (reviewed in Maroney|gt2006).
Recent research has provided growing evidence of the prdfmle

Dicer. Mature, 21-23nt long miRs enter the miRNA-inducdersie
complex (MiRISC), which then inhibit expression of targdRNAs
by either cleaving the mRNA or preventing translation (egwed in
Maroney et al., 2006; Kato and Slack, 2008).

MicroRNAs have been grouped into families based on sequence
conservation of the hairpin sequences deposited in miRBase
(Griffiths-Jones et al., 2006) using a manually curated BLAS
clustering, and some pre-miRNAs have been grouped together
in 46 different families by Rfam (Griffiths-Jones et al., 200
based on sequence and structure. A systematic investigafio
the structural variability of pre-miRNAs, however, is ktdcking
despite the enormous growth in miRNA-related literaturin@ow
and Gorodkin, 2007).

We present here a systematic study of combined sequence and
structure similarities among human pre-miRNAS ushag . DALIGN
(Havgaard et al., 2007) with the aim of identifying clusters
that correspond to additional miRNA families with well-defd
sequence and structure conservation beyond the mature AniRN
There are at least two mechanisms that may have lead to &caapi
clustering of miRNA structures. Since structural evolaotisusually
slower than sequence evolution (Schuster et al., 1994)ctanal
clusters can reveal common ancestry of families whose segsge
have already diverged beyond recognition. On the other ,hand

of miRNAs in cancer, stem cell, and various diseases (rexdew
in Zhang et al., 2006; Kato and Slack, 2008). Target preaficti
studies demonstrate that miRNAs might be involved in retinda

the expression of as much as one third of the human gene seis(Le

there is evidence that the processing of pre-miRNAs is fipally
regulated; reviewed by Schmittgen (2008). These difféaént
processes potentially may have caused selection of distnc

et al., 2005).

The biogenesis of miRNAs begins with transcription by RNA

polymerase II. The product, the primary miRNA (pri-miRNAS,
processed by the RNase IDrosha to a precursor miRNA (pre-
miRNA). Pre-miRNAs have distinctive fold-back hairpinisttures

with an estimated average length of about 70nt. Pre-miRNAs a
transported to the cytoplasm where they are cleaved by RNlase

*to whom correspondence should be addressed

structural features that are involved in discriminatingulatory
interactions. The analysis of the structural differenceswien
plant and animal pre-microRNA stem-loops has already plexvi
some insights into the mechanisms of microRNA biogenesis
(Rabani et al., 2008). A detailed structural classificadbmiRNA
precursors thus not only helps fill the gap in the information
provided by Rfam and miRBase, respectively, but also may
provide insights into the intricacies of miRNA processin
Drosophila, Argonaute protein association is mediated by the
secondary structure of the miRNA precursor (Forstemanal.et
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2007; Tomari et al., 2007). Whether secondary structueafects

of all miRNAs in the subtree relative to the minimum free gyeof the

Argonaute loading in mammals remains to be discovered (#®ete consensus secondary structure of this subtree. (For dedetiscription of

et al., 2007; Farazi et al., 2008).

this method see the Supp. Mat.).

In order to cluster human pre-miRNAs based on sequence and To evaluate the agreement of these clusters with the miR@as#iths-

structure, we extracted all experimentally verified matmiBNAs
in human from miRBase, version 10.0 (Griffiths-Jones eR&l06),
added the flanking regions to include the hairpin structanel, ran

Jones et al., 2006) and Rfam (Griffiths-Jones et al., 20G®sdlcation is
quantified by the Matthews correlation coefficient (MCC). défine true
positives (TP) as those pairs of miRNAs that are clustergetieer both
by our clustering and the reference while true negativestefudifferently in

FOLDALIGN (Havgaard et al., 2007) on all pairwise combinations. poh approaches. A pair is a false positive (FP) if clustéogéther by us but

This resulted in a score for all pre-miRNA pairs based on seqge

appears separately in the reference. Conversely, a fadgivee pair (FN) is

and structure. TheseLDALIGN scores were used to cluster the pre- clustered together in the reference but separated in ouoagp. The MCC
miRNAs using the R environment package (lhaka and Gentlemarnis a value between-1 (perfect correlation) ane-1 (perfect anticorrelation),

1996) Pvclust (Suzuki and Shimodaira, 2006). In order tekltlee
stability of the clustering, we also employed a differenprayach
to extract relevant clusters from the hierarchical clustee adapted
from theDuda rule (Duda et al., 2001).

with 0 indicating uncorrelated (random) data (Matthews, 1975).

3 RESULTS AND DISCUSSION
We obtained 42 Pvclust clusters with > 0.95, containing 220

Since the FOLDALIGN clusters are based on sequence andmiRNAs. The correlation with Rfam and miRBase was quite good

structure conservation, all clusters containing at legse4miRNAs
were extracted and the WAR webserver (Torarinsson and kérhg
2008) was used to perform multiple alignments to see if arthef
clusters had clear and well defined secondary structure.

2 METHODS

The pre-miRNAs deposited in miRBase 10.0 differ in lengthe Teason is
that there is little experimental evidence on pre-miRNAa& ends so that
precursor sequences are taken from genomic context witkiriigusequences
that give pre-miRNA a length from 60 to about 120 nt. To eliatén the
impact of varying flanks on the alignments, we re-extractedpre-miRNA
sequences from their genomic context with uniform flank tesg More
specifically, we extracted experimentally verified matuiRNAs from pre-
miRNAs containing only a single mature sequence. If the neatniRNA

with MCCs of 0.76 and 0.74 for Rfam and miRBase, respectively
Of these 220 miRNAs, 148 miRNAs were present in only ten
clusters of more than three members.

The adapted Duda rule resulted in a partition of all human
427 miRNAs into 60 clusters. Each of the Pvclust clusters was
completely contained in a single Duda cluster. The clustefsed
by the adapted Duda rule have lower values for MCCs (0.46dtr b
Rfam and miRBase), because they comprise the entire clster
not just the most highly significant clusters. It should ofise be
kept in mind that Rfam and miRBase contains miRNAs from many
organisms whereas we only cluster human pre-miRNAs, herce w
only compare to human sequences in Rfam and miRBase.

The tenFOLDALIGN clusters withp > 0.95 and containing
more than three miRNAs were selected and subjected to reultip
alignment and structure prediction to study if there wasraroon

was in the5’ stemloop precursor arm, we added 20 nts upstream and 8@vell defined secondary structure underlying the clusteriigbal
nts downstream from the mature miRNAend, otherwise we added 20 nts multiple alignment was performed using the webserver WAR

downstream and 80 nts upstream from the mature miRNénd.

Local alignments were computed usiRQLDALIGN (Havgaard et al.,
2007), a variant of the Sankoff algorithm (Sankoff, 1985),hick
simultaneously uses sequence and structure informatiencampared all-
against-all pairs of the 427 extracted human miRNAs. Theltieg scores
where then clustered using the R statistical environmenkame Pvclust
(Suzuki and Shimodaira, 2006) (see Supp. Méir details). In Pvclust, for
each cluster in hierarchical clusteringyvalues are calculated via multiscale
bootstrap re-sampling. The agglomerative method, aveliagage, was
used and 10,000 bootstrap replications were run, withivelaample size
were set from 0.5 to 1.4, incrementing in steps of 0.1.

For a cluster with probability > 0.95, the hypothesis that “the cluster
does not exist” is rejected with significance le@ed5; roughly speaking, we
can think that these clusters not only “seem to exist” dueatoing error,
but may stably be observed if we increase the number of olisenSuzuki
and Hayashizaki, 2004). Using tipepick function of Pvclust, we extracted
all clusters withp > 0.95.

In addition to extracting highly significant clusters by Rt we retrieved
a complete partition of the hierarchical cluster-tree idistinct subtrees by
applying an adaption of theDuda rule’ (Duda et al., 2001). A complete
partition of the cluster-tree yields a wider range of eviiefor biologically
relevant structural clusters of human miRNAs. The hieragdttluster-tree
is traversed starting from the leaves towards the rootnigstach internal
node whether the two subtrees defined by this node define tatnati
clusters or are believed to be members of the same clustisrd€hision is
based on evaluating the sum of squared errors of the minimesrehergies

1 http://genone. ku. dk/ resour ces/ mi rcl ust

(Torarinsson and Lindgreen, 2008), which uses seven differ
programs to perform multiple alignment and secondary sirac
predictions of the given sequences.

We are quite strict and define good clusters as those clusters
where at least 3 of the seven programs in WAR agreed well dm bot
the multiple alignment and the corresponding predictedrsgary
structures, as shown in the consensus heatmap generatedRy W
(see Supp. Mat.). It may therefore be the case that we emigheo
reject good clusters for which one or more of the programdipred
stable structures because of a lack of agreement between the
programs. Out of the ten clusters, four clusters, contgiri0
miRNAs, satisfied these stringent criteria, Figure 1. Thizse
clusters were also the clusters with the highest averagaigai
sequence identity, which in general was very low for the tasters.
Details, such as size of the clusters and overlap with mile Basl
Rfam for all ten clusters are compiled in table 1.

Three of the clustersA, C, andl, corresponded quite well to
known miRBase families. Clustel is listed in Rfam, annotated
with the same secondary structure as predicted by the WAR
consensus. Clustess andl, on the other hand, are not contained
in Rfam, hence it was previously unknown whether they share
a common secondary structure as well as having a conserved
sequence. Among the 25 members of clu$tet3 belong to the
miRBase family mir-154. On these data, we also performed a
pure sequence based clustering using SSearch (Pearsdt), 199
which clustered 22 of the 25 members together. Indeed, ezlust
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Table 1. Overview of the ten Foldalign/Pvclust clusters subjectedlobal multiple alignment on web server WAR. In parentheke ID and
size of the corresponding Duda cluster is given. We list memstiip in Rfam and miRBase families as well as the averagerisaiidentity (API),
the quality of the cluster, and (in parenthesis) the numbpragrams (out of seven) from which the consensus struetasedetermined.

Cluster A (8) B (41) C (18) D (38) E (36)

Cluster size 26 (31) 23 (63) 9 (19) 4 (6) 8(9)

API 0.79 0.23 0.59 0.33 0.29

Rfam families not present not present 7 in RF00027 not present RF00245;258
miRBase families 26 in mir-515 mir-548, -32, -122 9in let-7 4 various mir-192; 2 various
Consensus structure | Well defined (4) Not found Well defined (5) Not found Not found
Cluster F(12) G (28) H (18) 1 (6) J (60)

Cluster size 10 (10) 20 (20) 5(19) 25 (25) 18 (26)

API 0.62 0.22 0.25 0.56 0.26

Rfam families not present not present not present not present not present
miRBase families mir-506, -509, -892 mir-392, -374, 8 various 4 various nbk1368,-329,-379  mir-941, -744, -484
Consensus structure | Well defined (7) Borderline Not found Well defined (3) Not faln

were small and of extremely low sequence similarity. Wedweli
that most if not all of them are spurious results. The bestabude
clusters missing from Pvclust, 15 and 34, have a well-defia&
consensus. Cluster 15 contains the mir-103 and mir-107li&sni
which are obvious paralogs. Further details on all clustectuding
their WAR results, are available in the Supp. Mat.

For each of the three novel clusters with well defined consens
alignment and structuré\( F, andl; C was previously known) we
constructed a covariance model usiogbuild from the Infernal
package (Nawrocki and Eddy, 2007). Flanking ends which were
not part of the common predicted structure were removedréefo
running cmbuild. Together with the search engine Infernal, these
covariance models provide a very sensitive and discrinviaat
tool for homology search that is much more specific than other
computational approaches for miRNA discovery. Using RaveN
Fig. 1. The consensus secondary structure, as predicted by the WAKWeinberg and Ruzzo, 2006), which is basically a fast HMMelas
consensus, for four selected clusters filter to speed up Infernal, we searched the whole human genom

for new instances of our three clusters at Brvalue cutoff <

107°. In comparison to miRBase, this resulted in 49, 27 and 16

additional members oA, F, andl, respectively, (see Supp. Mat.).
comprises a subclass of tieir-134 “supercluster” on Chr.14, for - one of the additional miRNAs for clustér is also contained in the
which common ancestry has been proposed based on fainteeque corresponding Duda clust8r Within each of these three clusters,
similarities (Hertel et al., 2006). both the known miRNAs and the Infernal-predicted candisiate

ClusterF was neither in miRBase nor Rfam. Itis predicted to have highly spatially clustered, with the vast majority of memiocated

highly similar secondary structure by all seven programsgdod i the same region of the same chromosomes. This lends furthe
agreement with each other. Five of the programs in WAR ptediccredibility to these predictions.

very stable consensus secondary structures for clBstet they do
not completely agree on their predictions, probably affddiy the
very low average pairwise identity, so we do not considesteltB
as a good cluster.

Interestingly, more than half of the new members of cluster
A are close to being located perfectly antisense to the known
members. This does not necessarily imply that these are new
functional miRNAs, although not impossible, but rathestbould

The Duda-rule clustering agreed very well with our goodtltss  jngicate that the pre-miRNA in clusté is of palindromic origin.

A, F andl. Furthermore, it agreed perfectly with, whichwe do |5 plants, a connection between short miniature inveregmbat

not define as a good cluster since the programs in WAR do nofransposable elements (MITEs) and miRNAs has been reported
agree. Still, both FoldalignM and RNASampler predict a ktab (Mette et al., 2002). More recently Piriyapongsa and Jo(@a07)
consensus structure f@, so this cluster is likely valid. The Duda- reported that the human miRNA genes, hsa-mir-548, are atbriv
rule clustering merge@ andH. Upon inspection, we do not believe from the MITE elements, Madel1, which consist of two 37 base
this to be correct because cluster the let-7 family, agrees well pair (bp) terminal inverted repeats that flank 6 bp of interna
with an already defined Rfam cluster, and there do not seera to bsequence. Thus, Madel elements are nearly perfect patiesto
any data that link the members of clusketo the let-7 family either 3,4 when expressed as RNA they form highly stable hairpipdoo

evolutionary or in terms of function. The Duda-rule clustgralso  Fyrthermore, Piriyapongsa and Jordan (2007) discuss aigien
predicts several clusters not predicted by Pvclust. In ggnthese
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whereby full length DNA-type transposable elements thaibde
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