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Abstract

User driven in silico RNA homology search is still a non-trivial task. In part this is
the consequence of a limited precision of the computational tools in spite of recent
exciting progress in this area, and to a certain extent computational costs are still
problematic in practice. An important, and as we argue here, dominating issue is
the dependence on good curated (secondary) structural alignments of the RNAs.
These are often hard to obtain not so much because of an inherent limitation in
the available data, but because they require substantial manual curation, an effort
that is rarely acknowledged. Here, we qualitatively describe a realistic scenario for
the what a “regular user” (i.e., a non-expert in a particular RNA family), can do in
practice, and what kind of results are likely to be achieved. Despite the indisputable
advances in computational RNA biology, the conclusion is discouraging: BLAST still
works better or equally good as other methods unless extensive expert knowledge
on the RNA family is included. Homology search beyond the reach of BLAST hence
is not at all a routine task.
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1 Introduction

The derivation of a secondary structure model is an important part of under-
standing the functional constraints of an RNA. While RNA folding programs
can produce plausible predictions, comparative information is required in gen-
eral to obtain reliable structures and to confirm predictions based on single
sequences. The analysis of patterns of sequence and structure conservation over
larger evolutionary time-scales has been an important source of information,
as it provides insights e.g., into the location of binding sites for proteins. For
large RNAs, in particular ribosomal RNAs, structures are still most reliably
derived using the “phylogenetic method”, i.e., by investigating covariations of
homologous sequence positions. Covariations beyond the helical regions pro-
vide insights into tertiary interactions and allow the discovery of aggregate
motifs [35, 34], such as K-turns [31] or UA-handles [27], that are functionally
important hallmarks of many RNA families.

All this, however, relies on the availability of large sets of homologous repre-
sentatives. The Rfam database collects such information and provides it in a
ready to use fashion [18, 12]. Given this convenient starting point, it should
be straightforward to mine the rapidly growing collection of completely se-
quenced genomes for homologous RNAs — or is it? In fact, most genomes
— with the exception of the vertebrates collected in the ENSEMBL system
[26], the 12 Drosophilids [8, 48], and C. elegans [52] — come with little or
no non-coding RNA annotation. This is in particular also true for almost all
procaryotes with the notable exception of FE. coli, although EBI's Genome
Reviews (http://www.ebi.ac.uk/GenomeReviews/) is now starting to inte-
grate ncRNA annotations for non-eukaryotic genomes to the extent that this
information is available.

Finding homologs of ncRNA genes can be a surprisingly hard problem: Many
ncRNAs are very short (often 100nt or less) [18], they are very poorly con-
served at sequence level (the telomerase RNAs of Saccharomyces and Kluy-
veromyces species cannot even be aligned unambiguously [55], and they may
vary dramatically in length. Programs that are based on exact seed matches
such as blastn in addition suffer from frequent small indels since ncRNAs do
not have to preserve reading frames.

With structural features playing an important role, a series of software tools
have been developed that attempt to utilize the constraints of secondary
structures. We can distinguish two types of such approaches: Tools such as
RNAMotif, rnabob, or Palingol that require the user to explicitly specify a
search pattern in dedicated descriptor languages, and systems such as erpin
and infernal that start from a structure-annotated alignment and infer struc-
tural models. Following a very brief review of the most commonly used tools



in the next couple of paragraphs, we will focus on the inherent limitations of
homology search approaches for ncRNAs, which so far have precluded or at
least hampered comprehensive RNA annotation efforts.

One of the earliest implementations of a descriptor-based search algorithm
was RNAMOT [15], whose language allowed the specification of stems and un-
paired strands with variable lengths and primary sequence constraints. Hits
were automatically scored by stem lengths, nucleotide mismatches and the
number of wobble pairs in stems. rnabob (Sean Eddy 1996, unpubl., http:
//selab.janelia.org/software.html) extended this language and allowed
for specifying a certain number of mis-pairs in a stem and a notation for
permitting arbitrary pairing rules at certain positions in a stem. Palingol
[4] provides a powerful descriptor language which — inspired by functional
programming languages — syntactically differs a lot from its predecessors.
Another descriptor syntax was introduced by PatScan [9], which also allows
matching against position weight matrices. One of the most recent and most
advanced descriptor-based homology search tools is RNAMotif [37], which en-
compasses the capabilities of the earlier programs and also features a pro-
cedural language for evaluating and scoring pattern matches. In practice, a
major drawback of descriptor-based approaches is the need to construct the
search patterns by hand. The Locomotif tool [46] solves many of the technical
issues of specifying a descriptor. Nevertheless, the fundamental issue remains
that a human researcher has to know what to search for in the first place. We
argue here, that this knowledge is in many cases limited even for experienced
experts.

The second class of homology search tools is based on automatic learning of
statistical models given a structure-annotated sequence alignment. The most
commonly used tool, infernal [10, 42|, is based on covariance models and
stochastic context-free grammars. This approach is extremely time-consuming.
RaveNnA [58] was thus developed to provide an efficient pre-filter for infernal
by converting the covariance models into profile HMMs. A different approach
is taken by erpin [14], which transforms a training alignment into a set of
weight matrices for each structural element and then matches this matrix set
on the sequence database. The advantage of these approaches is also their
major disadvantage. The user not only has little effort with generating of the
model, but also little chance to modify the search pattern. A recent evaluation
of several training set-based programs in terms of specificity and sensitivity
has been presented by Freyhult et al. [11].

Anecdotal evidence — in part from our own attempts to identify RNA by
homology — suggests, however, that neither class of tools provides a ready
solution whenever the phylogenetic range of the examples used for training
or constructing the descriptor does not cover the genome to be searched. In
other words, we have a hard time to generalize ncRNA patterns. In some



cases it is even hard to recognize a particular ncRNA. The infernal server
provided by the Rfam, for example, does not recognize the RNAse MRP or
the U17 snoRNA of Trichoplax adhaerens (even though these sequences are
neither particularly derived nor are they outside the phylogenetic range of the
training set [25]). Another example are the 7SK snRNA of Ciona intestinalis
and Drosophila melanogaster, both of which were detected by RNAz in two
different studies [40, 48], but neither one was not recognized as a 7SK RNA
by any available tool until a recent systematic analysis of this family [20, 19].
This is an excellent example demonstrating that ncRNAs that are missed even
by extensively curated homology screens can be (re-)discovered in a de novo
screen of related species that are far away from the phylogenetic range of the
seed sequences.

2 User driven homology search

Experienced experts for a particular RNA family can of course construct de-
scriptors that pretty much recover all the known examples of given family. For
several RNA families, however, only a (very) small set of examples is known
and available in the Rfam seed set. How well do ncRNA gene finding methods
generalize for these families? In order to be able to assess how well one can
generalize from a small set of examples, we decided to conduct an experiment
starting from a phylogenetically restricted seed set for several RNA families.
We chose eight ncRNA families representing the different classes, sizes, and
phylogenetic ranges that can be encountered when dealing with ncRNAs. SRP
and RNAse MRP RNAs are long molecules with big structural variation be-
tween clades. SnoRNAs and microRNAs have typical conserved sequence mo-
tifs essential for their function, while Y and vault RNAs are poorly understood
and highly variable.

In order to ensure that no knowledge on the RNA families beyond the ar-
tificially restricted seed sets is included in the search patterns, we replaced
the “expert” by a newly hired PhD student (the first author of this work)
with a computer science/bioinformatics background and some education in
RNA bioinformatics, but without specific knowledge on the RNA families to
be tested. The “expert” was asked to construct RNAMotif descriptors based
on a small seed set, to search a broad range of available metazoan genomes,
to evaluate the candidate hits, and to modify the descriptors using the newly
found putative homologs. Depending on the number of hits produced for the
target genomes, descriptors were modified to be less restrictive or be more re-
strictive. The specificity of a descriptor can be loosened e.g., by allowing more
mismatches in primary sequence constraints, by reducing the minimum length
of a stem, by allowing an increased number of non-standard base-pairs, or by
extending the length ranges of unpaired sequences in bulges and loop regions.



We did not allow the complete loss of entire stems or require the insertion of
specific structural motifs. Note that latter is covered implicitly by the weak-
ening of length constraints. We did allow, however, for the disappearance of
small bulge loops. We decided to perform three iterations in each case.

For comparison, the same seed was used as blastn queries and to train an
erpin model. Additionally we refer to the on-line supplementary material for
a more detailed description of the search procedures (see the URL at the end).
We emphasize that this experiment was not conducted to compare the quality,
performance, and usefulness of the software tools. Instead, our aim was to get
some insight into the intrinsic difficulties of RNA homology search — which
at least in our experience makes this seemingly routine task a demanding and
technically challenging research topic.

Our interest therefore focuses on the “expert’s” ability to create descriptors
that can detect homologous ncRNAs with high sensitivity and specificity, not
on the computational efficiency of the search tools. We therefore used the most
recent software with the most expressive language, RNAMotif, since descriptors
written in other languages can be translated to RNAMotif, but not necessarily
vice versa.

The results of our experiment are summarized in Figure 1. Details including
all sequence data can be found at the supplementary website (see the URL at
the end). Clearly, the phylogenetic range of detected homologs varies substan-
tially between RNA families. The SRP RNA, U5 snRNA, and U3 snoRNA
are quite well conserved at the sequence level already. For these three families,
manually constructed descriptors and erpin perform comparably, although
the descriptors tend to produce a significant number of false positives along
with the true hits in the U5 RNA. The quite complex secondary structure of
SRP RNA prevents RNAMotif and erpin from capturing the family members
in the invertebrates, since the seed set only contained mammalian SRPs. How-
ever, blastn had no problems in finding the SRPs over the full species range
(suppl. tab. 3). Also in the U3 (suppl. tab. 9) and U5 (suppl. tab. 8) fami-
lies, some of the invertebrate sequences could not be recovered with RNAMotif
and erpin, but were recovered with blastn. For the U3 and SRP, we also
screened the invertebrate genomes (except H. magnipapillata) with RaveNnA
using a covariance model derived from the seed alignments. In both families,
all known homologs were retrieved and RaveNnA also captured the C. elegans
U3 snoRNA, which was missed by the other three programs. For most species,
the known homologs are among the top three scoring hits both with RaveNnA
as well as blastn. In the case of RNase MRP RNA (Suppl. Tab. 4) blastn
yields a higher recovery rate than RNAMotif and erpin. It recovers all the
known sequences across diverse invertebrates. Both RNAMotif and erpin gen-
eralize poorly in this family, which is known to contain structural variation
(not to mention pseudoknots). The secondary structure model of the descrip-



tors was not able to capture the structure diversities outside the eutharia.
The mediocre performance of erpin can be explained in retrospect by the
pseudo-knotted structure of RNase MRP RNA, in which exactly the region
around the pseudo-knot is the best conserved and contains the most infor-
mative patterns [45, 60]. Thus we also screened the teleostei and invertebrate
genomes with RaveNnA using a CM model based on our training set and found
that all annotated MRP RNAs were found, except the A. mellifera sequence,
which remains undetected by all four methods. For let-7, all methods pro-
duce similar results (suppl. tab. 6), also the RNAMotif descriptors recovered
almost all family members in most species with high specificity. In the case of
vault RNAs (suppl. tab. 7), and Y RNAs (suppl. tab. 5), on the other hand,
all methods produced many false positives outside the range of the training
data. blastn missed the fugu Y RNA, but found more of the known vault
RNAs compared to the other two methods, although it did not recover the
vault RNA candidates outside the Sarcopterygii which were predicted in [51].
We note in this context that the latest release of ENSEMBL (v. 52) provides
RaveNnA/infernal-based annotations of Y RNAs in most vertebrates. The
vault RNAs, on the other hand, are still limited to Mammalia and Xenopus.
Thus we screened the genomes of C. intestinalis, B. floridae, S. purpuratus,
and the two teleostei with RaveNnA, recovering most of the candidate vault
RNAs from [51].

Comparing the results of the three methods and including RaveNnA scans of
the teleostei and invertebrate genomes for some of the families, we find that
all of the methods have strengths and weaknesses. With blastn we find family
members in all species with some misses, e.g., the C. elegans U3 RNA and
the vault RNAs outside the Sarcopterygii. RaveNnA has the highest sensitivity
even with a very limited training set, but it has the largest computational ef-
forts of the presented methods, requiring high-end computational equipment
for systematic whole genome screens. The erpin results strongly depend on
the search parameters derived from the training set, so that those parame-
ters might not be chosen well enough automatically, explaining the moderate
recovery rate in some cases. The descriptor-based search with RNAMotif did
not generalize well enough to find distant homologs in most of the families.
At the very least several iterations of descriptor modification are required,
and even then the descriptors are far from perfect. The effects of loosening
the constraints in the descriptor are most prominently visible in the U3 snoR-
NAs and U5 snRNAs, where we found most homologs with RNAMotif in the
third iteration. Note, however, that this also incurred a much higher false dis-
covery rate than the previous two iterations. In the case of larger molecules,
n > 100nt, a descriptor covering the full structure is bound to fail, e.g., the
SRP and MRP results. Here, an automatic choice of suitable sub-patterns for
searching would be helpful. On the other hand, the descriptors for those two
families were highly specific and e.g., the noise from all the SRP-derived Alu
repeats was filtered out. See the supplementary material for further discussion
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search patterns. For E2 and let-7, Rfam 8.1 provided only multiple human paralogs

as seed sequences. For SRP, RNase MRP RNA, U3 and vault RNAs, we also run
RaveNnA on the small teleostei and invertebrate genomes, where Erpin did not find
the already annotated sequences. The range of the RaveNnA screens is indicated by
the arrow. False negative results, i.e., the fact that a homolog is known to exist but

was not detected by any method, are marked with a cross. Complete sequences and

Except for Y and vault RNAs, only mammalian sequences were used to construct the
detailed result tables are found at the supplementary website.

Fig. 1. Homology search results. Members of the training set are indicated by boxes:



of the results for each RNA family.

Despite the availability of several computationally efficient specific tools for
RNA homology search, this task is thus still an excruciatingly hard one. Both a
series of systematic analyses of specific RNA families (U7 snRNA [39], Y RNAs
[41], plant enod40 [21], telomerase RNAs [7, 61], spliceosomal snRNAs [38, 36],
7SK RNA [20, 19], nematode Sm Y RNAs [28]) and our little experiment point
at the same main difficulty: neither the “expert user”, based on the examples
at hand, nor the statistical models behind erpin managed to capture the
nature of sequence/structure variation in sufficient detail to outperform the
simple, blind, search for conserved sub-sequences. Even when using covariance
models the problem of structural variation is a non-trivial issue. The bottom
line is that if the structural variation is not part of the training data, one
cannot expect to find it in the candidates produced by genome-wide screens
either.

The limiting factor is the generalization of the search pattern beyond the
phylogenetic range of the training data. We suggest that this is due to our
limited understanding of the structural evolution of ncRNAs — as opposed
to shortcoming of the existing software in incorporating our knowledge. For
instance, Many RNA families exhibit clade-specific insertions and deletions,
and different parts of the molecules can evolve with extremely different rates,
Fig. 2. We have not yet learned, however, which rules govern this type of
variation.

Similar types of structural variation as that of the telomerase RNA have been
observed for other RNA families, such as tmRNA [63], already a decade ago.
The situation is similar for RNase P and MRP RNAs, which also present
extensive structural variations. An extreme case is the the RNaseP RNA of
Candida glabrata with a length of about 700 nt [29]. Pseudoknots present
a serious practical problem in themselves, because the currently used imple-
mentations of Covariance Models do not handle pseudoknots. Rfam therefore
cannot make full use the annotations provided by some well curated structural
alignments, such as those stored in tmRDB [2], although pseudoknot annota-
tions are included in some families.

3 Discussion and Perspectives

A deeper understanding of the evolutionary patterns of structured RNAs,
however, depends on the availability of diverse and detailed sets of examples.
The only practical way to amass the necessary data is to systematically col-
lect and organize the information collected by the research community — an
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Fig. 2. Vertebrate telomerase structures. Top: secondary structures of medaka
(Oryzias latipes, n = 312), human (n = 451), and dogfish shark (Squalus acan-
thias, n = 559). Adapted from [61]. Below: sequence conservation. The panel is
exported from the UCSC genome browser [30], showing the PhastCons [50] conser-
vation track based on the 28 vertebrate MULTIZ alignments [5], as well as a selection
of pairwise alignments with the human locus. Note that outside the mammals only
partial alignments are available in the automatic comparative genomics tracks. In
particular, the homologs in Xenopus and teleost fishes are known in the literature
but not identified in the genome-wide alignments.

effort that of course is ongoing, as exemplified by the long-standing require-
ment to submit sequences to GenBank [3], and by the curation of dedicated
RNA databases such as Rfam [12], MirBase [17], and a plethora of smaller
endeavours specializing on specific families (many of which are included in
the upcoming Database Issue of Nucleic Acids Research). Nevertheless, these
efforts cover only a fraction of the data that are available in principle: many —
in particular procaryotic — small RNA families never entered one of the pub-
lic sequence databases. They remain hidden in supplemental files of research



publications, in practice excluding them from global analyses. Even the avail-
able structural alignments of the ncRNA families, e.g. from Rfam, have been
observed to be non-optimal in some cases [1]. Despite the continuous updates
and improvements, therefore, it is still necessary to critically review the seed
data set for homology search before using them. The systematic annotation
of ncRNAs in newly sequenced genomes is still a non-trivial and sometimes
frustrating task — at least in part because of a lack of comparative data for
homology based approaches.

While the matching of novel ncRNAs to known families already poses big prob-
lems due to structural variation over large phylogenetic distances, many novel
structured RNA candidates can be inferred from covarying patterns in struc-
turally conserved RNAs, as demonstrated e.g. on the ENCODE data [57, 54].
Once a novel ncRNA has been identified by one of these approaches, however,
we are back to the problems of homology-based methods to identify additional
family members. The emerging ability of computational methods to cope with
large-scale clustering based on structural features [59, 24, 53] may be a step
forward to recognizing faint homology signals. Such approaches might supple-
ment or work in conjunction with covariance models. At present, it remains
unclear however, whether our pre-conceptions on the structural variation of
distantly related RNA (which necessarily enter the design of these algorithms)
are close enough to reality to really solve the problem. In fact the problem of
structural variation (not to be confused with structural inserts) exceeds the
ansatz in the Sankoff [49] framework for structural alignment of RNAs. Thus

the structural variation indeed pose novel challenges in constructing efficient
RNA search tools.

While this contribution was under review, a new version of infernal became
available to the public [43]. Tt has an improved support for local alignments
which increases the sensitivity and provides a dramatic improvement in com-
puting time. This new version might make pre-filtering, as inRaveNnA, unnec-
essary. For example, infernal 1.0 trained on our seed alignment identified a
91nt subsequence of the RNAse MRP in the genome of A. mellifera, a homolog
that had remained undetected by all other methods in our experiment.

Nevertheless, the homology search problem cannot be solved with present
technologies in many cases of practical interest. For instance, none of the
experimentally detected telomerase RNA sequences of Candida species [22] is
recognizable by any method, including infernal 1.0, using even the phyloge-
netically most closely related Saccharomyces telomerase RNAs in the training
set.

Several approaches towards de mnovo prediction of structured ncRNAs have

been proposed and they all use different strategies to trade-off between speed
and accuracy. A range of methods, e.g., qrna [47], RNAz [56] and EvoFold

10



[44, 33, 32] employ sliding fixed windows (excised from sequence based align-
ments) in which the RNA structure prediction is carried out. Others are
more expensive and directly perform local structural alignments (with a range
of limitations to lower computational resources), e.g.. FOLDALIGN [24] and
CMfinder [62]|. Dynalign uses a framework of local structural (re-)alignments
in sliding windows over the sequence [23]. In principle, these methods can of
course also be used in homology search. At present, their practical applica-
tion is hampered by the substantial computational costs. For a more detailed
review of the current status of de novo screening we refer to [16].

The need for not only de novo search, but also for homology search is becom-
ing apparent also when considering the strong increase of publications about
particular non-coding RNAs in the recent years (see Supplementary Fig. 1).
With a doubling time of 3-4 years and close to ten thousand publications in
2007, the need for well-curated and well-annotated repositories of such data
has become a pressing problem.

Fortunately, the community value of collecting ncRNA sequences, preferably
in the form of well-curated alignments, has lead to the development of the
RNA Family Database Rfam [18], which has become a central resource for
RNA-related research. Most recently, the RNA community has been encour-
aged to contribute to this effort directly in way that acknowledges the com-
plexity of the task and ensures proper credit for individual annotators [13, 6].
This should help to facilitate the inclusion into public databases of both ex-
perimentally verified and computationally identified RNAs more quickly and
more comprehensively; as we hope, this will also stimulate research into the
structural evolution of RNA and eventually lead to much improved approaches
for RNA gene finding.

Supplementary Material

A website containing additional documents and data is located at http://
www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/08-025.
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