FRANz : Fast reconstruction of wild pedigrees
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Abstract: We present a software package for fast pedigree recoristiuot natural
populations using co-dominant genomic markers such aosatellites and SNPs. If
available, the algorithm makes use of prior informationhsas known relationships
(sub-pedigrees) or the age and sex of individuals. Steaistionfidence is estimated
by a simulation of the sampling process. The parentageenéeris robust even in the
presence of genotyping errors.

1 Introduction

The reconstruction of genealogical relationships amoptpitl species has been an ac-
tive field of research for more than three decades. A welkbiped statistical theory of
paternity inference has been developed in series of astlmjeE.A. Thompson, see e.g.
[Tho76]. The study of parentage in natural populations vestopic of the pioneer-
ing papers by T.R. Meagher [MT86] and T.C. Marshall [MSKR38tently reviewed in
[Blo03, JAO3, Pem08]. The pedigree structure of a sampledividuals is important for a
wide range of ecological, evolutionary and forensic staidigpplications include geneal-
ogy reconstruction (e.g. for wine grape cultivars [VGO@hg estimation of heritabilities
in the wild [THOO], and victim identification [LMXO06].

In order to reconstruct the pedigree of a sample, the pamdngsch individual in the
sample need to be determined. If one has a large amount ofrgemata, the task of
identifying first degree relationships, i.e., parent-pfisg and full-sibs relations, is trivial.
Unfortunately, many datasets in natural populations docoatain enough information
to unambiguously determine the parents. Another probletiasdatasets often contain
only a subset of a population. Thus, one or both parents obaareed individual may be
missing from the dataset. Furthermore, many datasets afeeemf errors.

Most programs support only one or two generation datasés approach to partial pedi-
gree reconstruction in one generation datasets are silgjuthms. Here, genotype data



is used to infer full-sib and half-sib relationships [THO®an04, BWSD 07]. The two
generation parentage inference programs typically takef@pring list, if known their
mothers, and a list of candidate parents or fathers as inliganerate the possible par-
ent combinations. Much less attention has been given ta-gerfteration pedigrees. The
main difference to parentage inference programs is thaeigéneral case not all possible
parentage combinations are valid pedigrees. The task isftre to find the parentage
combinations that define thmaximum likelihood pedigreelf the number of possible
pedigrees is too large too enumerate, heuristics are rageso far, a flexible software
package has not become available that allows the incoiporat prior information in
addition to the genotypes and that is robust in the case of=rit is the purpose of this
contribution to fill this gap.

2 Definitions

We follow the formalism introduced in [SHO6]. A pedigre@ is an acyclic digraph, for
which the vertex seV is the disjoint union of the subsef§ M andU (‘Female’, ‘Male’
and‘Unknown Sex and for each vertex € V satisfies the condition:

(P) if v has positive indegree therhas exactly two incoming arcs, séy, v) and(u’, v),
whereu € FUU andu’ € M U U, orv has one incoming arc.

In selfing species;, = ' is allowed and?? is a multigraph.

Condition (P) formalizes the requirement that the sex ofpients of an individual must
be different if and only if both parents and both sexes arevkno

For an arc(u,v) of & we say that is achild of v andu is aparentof v. The set of
(putative)parentsof v is denoted byV T (v) C V; it may have cardinalit, 1 (only one
parent sampled), dr if N(v)™ = . In this caseyp is called afounder The set of all
valid parent combinations efis denoted by#’(v). Again we include the cases that none
or only one of the parents are presen¥inNote that’Z(v) C V x VUV U {@}. The
Mendelian laws of inheritance amlior informationsuch as sex, age and known mothers
restrict.s# (v).

For each individual, we have to choose one parent combimafio(v) € 5 (v). Not all
such combinations of parents are possible, because thigtnagiuce directed cycles into
the pedigree.7 denotes the set of alialid pedigrees

For a given individual, we denote an observed single-locus genotypeg; land its multi-
locus genotype by, .

3 Background

Consider a triplet of individualsA, B, O with single locus genotypeg,, gg andgc. In
likelihood-based paternity analyses, one compares tleéiHidod of the hypothesis;)



that the three individuals are offspring, mother and fativith the likelihood of the alter-
native hypothesisi{) that the three individuals are unrelated. This comparisaisually
expressed as a log-ratio, tharent-pair LOD scorde.g. [MT86]):

P(ga,95,9c|H) T(galgn.9c) - P(gs) - Plgc)
LoD, 98,00) =108 (g o gela) ~ % Plga) - Plam) - Plac)

The likelihood of () is the probability of observing the three genotypes whedoanly
drawn from a population in Hardy-Weinberg equilibrium. Fploid heterozygotes, the
probability of a genotype with the alleles andas and with the allele frequencigs
andq is P(a1,az2) = 2pq; for homozygotes, we havB(a1,a;) = p?. The Mendelian
transmission probability is denoted By(-). Variations of this equation can be derived
for the cases where only one parent is sampsau{e-parent. OD scores) and for triples
where the relationship of two individuald and B, typically mother and offspring, is
known [MT86, KTMO7].

For each dyad, we can calculate the probability that the hwléviduals have a particular
relationshipR: unrelatedU, parent-offsprindQ, full-sib S, half-sibHS, etc. The usual
way of calculating the likelihoodB (g 4.95|R) uses the so-calld8D coefficient$Blo03].
For unlinked loci, which we assume in the following, the lddans of these likelihoods
and the LOD scores are additive over the loci.

Even high quality datasets contain errors where at leastbele at a given locus does
not match with what we expect from the Mendelian laws. This inwise to exclude a
parent immediately when observing such a mismatch. Therenany reasons for such
mismatches, see [BBBE4] for a review. Genotyping errors occur when the genotype
determined by molecular analysis does not correspond teetiigenotype. For instance,

a common type of genotyping error in microsatellite datasee null alleles, which are
often the result of a mutation in the primer annealing sitan&tic mutations form another
source of mismatches.

The model implemented here defines an error to be the reptatdeshthe true genotype
at a particular locus in an individual with a random genotypias leads to a modification
of the expressions for the LOD score, see [KTMO07], and toexponding modifications
in the IBD likelihood calculations, see [BW98] for details.

4 Methods
4.1 Simulation of the sampling process

To estimate the power of the marker suite, our software pe$ceveral standard tests
and calculations. This alone, however, will not be suffitienestimate the accuracy of
the pedigree reconstruction. A simulation of the sampliracpss is therefore necessary.
Given the population’s allele frequencies and the expettpithg error rate, which are
either estimated using the sample itself or provided by g&r,uwve generate individuals
with known relationships to determine various distribon§o To assess the degree of con-



fidence of the parent-offspring arcs i, we follow [MSKP98] in usingALOD as test
statistic. ALOD is the difference of the LOD scores between the two méstyiparent
combinations (or fathers).

Another important characteristic is the distribution o& thumber of mismatching loci
given the expected error rate for dyads (parent-offspviagusunrelated) as well for
triples (offspring, mother and fatheersusoffspring, mother and unrelated male). This
knowledge allows us to significantly speed up the algorithetause we know when like-
lihood calculations can be terminated. We can furthermané the O(n?) parent-pair
calculation for dyads with more mismatches than maximatjyeeted for a triple. These
parameters are also important because too many allowedatubkes results leads to a
high number of false positive parent-offspring arcs.

Full sibs can distinguished from parent-offspring pairsdzhon the log-likelihood differ-
ences),, = P(G;.G;|FS) — P(G;.G;|P0O) . The distribution ofA,, for true full-sib
dyads and for parent-offspring dyads. We later only consilyads that exceed a criti-
cal value ofA,, as full-sib candidates. If the intersection of their camdédparents in-
cludes at least one parent pair, we finally define this dyadilksibs. If not, then the
dyad could still be a full-sib pair, but with unsampled pdsenin this case, this dyad
could also be a half-sib pair, so we use the distribution efltg-likelihood differences
Aps = P(G,.G;|FS) — P(G,.G;|HS) to distinguish full-sibs from half-sibs. The values
of Ay are generated for true full-sib dyads and true half-sib dyadow, full-sib can-
didates without a common parent pair that exceed a critigllevof Ay, ;, are defined as
full-sibs.

4.2 Calculation of the possible parent-offspring arcs

For every individuab, we calculate the LOD scores with all candidate parentsdivid-

uals we cannot exclude priori as parents, for example because of their age. We discard
pairs (u;, v) or triples (u;, u;,v) with negative multilocus LOD scores from our further
analyses. Hence, for every pair of individuals with positsingle-parent LOD score,
(us,7) is included in the set of valid parent combinatiofs(v), just as well(u;, u;) for
every triple with positive parent-pair LOD score. Unlesskmew that at least one parent

of v is sampled, we include the empty parent g&ir?) in 27 (v).

These parentage likelihoods are the most important stepeirpédigree reconstruction
procedure as they define the set of all possible arcs in thgmeed However, as described
in detail by Meagher and Thompson [TM87], if we cannot exeltdo full-sibs,v; and
vj, as parent and offspring, they in general give a higherilikeld than do true parents.
Thus, for highly probable full-sibs, a reasonable stratisgp use only the intersection
of the candidate parents#’(v;) = J(vj) = (v;) N (vj). The critical values
of A, andAy, that a full-sib dyad must exceed should be high enough toeprtefalse
positives, which may result in an exclusion of the true perenthe next step, the pedigree
reconstruction.



4.3 Pedigree Reconstruction

The likelihood of a pedigree” is computed as the probability of the genotypes given this
pedigree. So the goal is to find the pedigree which maximize$og-likelihood:

Nt

max [(2) = glogm@w*m))

Here, P(-) is the probability of observing the multilocus genoty@e given the parents
N*(v;). For founders §* = (), log P(-) equals the denominator of the multilocus
LOD score. This is equivalent to the assumption that all émrs are unrelated. For
the offspring, these probabilities are the multilocus Maiah transition probabilities in
our error model. So for vertices whef& | = 1, log P(-) is the single-parent when
|NT| = 2 theparent-pairLOD enumerator.

For each individual, we now sort the possible parent contizina by their probability.
The maximal possible score is simply the sum of all mosty¥ikelrent combinations. Our
greedy algorithm works by selecting one verteand then adding the arcs corresponding
to the most likely parent combinatiodi™ € 7 (v). If the arcs introduce a directed cycle
in &, we try the second most likely parent combination and so fomo parent-offspring
relationships are known, this algorithm produces a validigree, because the ‘empty’
parent combination(is a founder) is always i#’(v), which can never introduce a cycle.
We proceed until all vertices are added.

For vertices with known parents, every parent combinatéisat least one arc. A simple
strategy is now to start with vertices wheg”(v)| = 1. Unless the “known” parent-
offspring relationships are wrong, this introduces no a&d cycles. Then we proceed
with the remaining vertices with known parents. If this seds, we add the remaining
vertices without known parents as described above. If naf,tbe final score is not the
maximal score, we use Simulated Annealing [KGV83] for thdigeee reconstruction as
described in [AImO3].

5 Results

Black Tiger Shrimp Penaeus monodon. Our first dataset is a microsatellite dataset of
the black tiger shrimPenaeus monodddBMWO06]. The true pedigree is known from di-
rect observation. The dataset consists of 13 families withiad number of 85 individuals
(of which 59 offspring), genotyped at seven highly polyntacdoci. For ten individuals,
alleles are missing at one locus. The error rate is very latiy @nly one observed mis-
match. Figure 1 are the best pedigrees with and withoustblheuristic (assumed typing
error rate 0f).01) and shows that large full-sib groups greatly enhance thiepeance of
our algorithm. The accuracy of the complete pedigree wittali+sib heuristic is82.0%

in comparison t®9.58% with this heuristic. A recent publication [BWSM7] listed an
accuracy rate of several sibling reconstruction methouaiging from67.8 to 77.97 percent
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Figure 1: Reconstructgeenaeus monodagpedigree. Without (top) and with (below) full-sib calcu-
lation.

on the same dataset.

Simulated Data. We use the statistics of the German population [Off07] towlate the
probabilities of death, (multiple) birth and marriage at\aeg age for males and females.
As initial population we generate 100 unrelated individu&lor the genotypes, we use the
allele frequencies of 64 human microsatellites [JBOS]. In every year, we let all indi-
viduals die, mate or marry according the correspondingatudities. As mating partners
or husbands, we only allow unrelated individuals. Marriedes only mate with each
other. We stop when the desired number of individuals istredc In order to simulate
typing errors, we replace the true allele with a random onell &lleles are simulated in
heterozygote genotypes by replacing the null allele withdther allele ¢;.a,, becomes
a;.a;). Homozygote genotypes are marked as missingi.ea,, becomes.?.

We analyzed the accuracy of our algorithm with differentsaib of the simulated data,
see Figure 2. If the accuracy is not 100%, then either theridthgo failed to find the
maximum likelihood pedigree or there exists a valid pedighat has a higher likelihood
than the true one. Without exceptions, our optimizatiomathm found a pedigree with
at least the log-likelihood of the true pedigree (data notst).

We also evaluated the performance of our full-sib heurdtiectly. As we use this heuris-
tic to reduce the pedigree space, we require a very smadl fasitive rate. The sensitivity
and specificity is plotted in Figure 2.

6 Discussion

We have presented a fast algorithm for the pedigree reaartstn problem. The pub-
licly available implementation is written in the C progratmgplanguage and is platform-
independent. It can be obtained under the &Ahe genealogy of datasets with thousands
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Figure 2: (Left) The accuracy of the reconstructed pediie@lotted as a function of the number
of loci. The values are the median accuracy of ten randomheigeged pedigrees of size 1000,
reconstructed with different combinations of availablmpknowledge. The error bars indicate the
first and third quartile. The dataset has a sampling rate5{1D00 of 2000 individuals sampled)

and has an overall typing error rate @D1. In addition, the first locus comprises one null allele

(pn = 0.05).
(Right) The sensitivity and specificity of the sibling cdktion plotted again as a function of the
number of loci.

of individuals is typically reconstructed in a few minut&ue to the space constraints of
this paper, we can only describe the core functionality efsthftware. Our implementation
is flexible in incorporating additional data like age, semgling locations, sub-pedigrees
and allele frequencies. This was suggested in [AIm03] baitpneviously implemented
in a publicly available software package. The reconstomct highly accurate with only
15-20 polymorphic microsatellite loci (twice as many whee a@ata are not available).

In[AImO03], some remaining challenges in the pedigree retrmiction problem were listed.
These are the assumption that founders are unrelated ea égtimation of allele frequen-
cies, linkage, support for typing errors or mutation, antineetion of the error of the
reconstruction procedure=RANz makes significant progress in the latter two tasks by
combining the simulation procedure and the error modelritesd in [KTMO7] with the
Simulated Annealing algorithm.

The error model was criticized in the literature becauséso$implicity. Other programs
explicitly model special kinds of errors, for example nulekes [WCKO06]. At typical
error rates of %, however, the number of mismatching loci is low and a dedait@deling
seems provide little benefit. More complex error models mayécessary for data with
higher error rates, however.

Extensions of the LOD scores for linked loci when the linkagase is known are pro-
posed in [DRE88]. If the linkage phase and recombinatioasrare known with high
accuracy, the incorporation of this prior information cagn#ficantly enhance the perfor-



mance of the parentage assignments [DRE88]. However, ih casss the linkage phase
is unknown and has to be estimated jointly. Loose linkage sifhall fraction of mark-
ers should not seriously bias multilocus likelihood cadtigns [Mea91]. Tightly linked
loci in contrast, such as neighboring SNPs, can be combinddraated as one single
pseudolocus

Our implementation currently only allows co-dominant nesk In [GMS"00], the orig-
inal LOD scores for co-dominant markers [MT86] were modifieddominant markers,
such asamplified fragment length polymorphisii#g=LPs). Statistics for estimating pair-
wise relationships with dominant markers were proposedre[§Van04].

The pedigree likelihood function is appealing becausesopibperty being additive over
the individuals. This allows very efficient constructiog@alithms and requires no prior
information about the pedigree structure. However, if theamic signal is low, the like-
lihood function will fail to construct the correct pedigresspecially when single-parents
are considered. This is because the expected number ofpfasttve single-parent arcs
becomes large. Age data significantly reduces this effdot. SBme is true for our full-sib
heuristic in particular when large full-sib groups and bafttheir parents are sampled. Pri-
ors about the pedigree structure (the expected inbreediag,mumber of offspring, ...)
might further improve the performance. Information of tkiisd is oftentimes unknowa
priori, however. In fact, these are parameters that one typicallyldviike to infer from
the reconstructed pedigrees.

Our incorporation of full-sib probabilities is a reactianthe concern expressed in [MT86]
that non-excluded full-sibs of the offspring have on averadnigher LOD score than the
true father. To keep the pedigree likelihood function sienphd efficient to calculate,
we use only highly significant full-sibs to reduce the pedegspace. It seems possible
to include more siblings than just the highly significant ®i&o the pedigree likelihood
calculation without the risk of excluding the true pare@mce such “local” factors in the
pedigree likelihood are also not very computationally msigee, we plan to explore this
avenue in future work.

Traditional parentage inference methods such as the orélued in this paper have been
criticized lately [HRBO6]. Pedigrees are used to estimammeters. If the genomic
signal is not strong enough, many different pedigrees vaMehsimilar likelihood scores.
Using only the best pedigree will thus introduce a bias. IRB96], it has been proposed
to estimate the parameters of interest jointly with the gex. This, however, requires
that the population’s mating behaviour fits the implementestiel. FRANz can output
possible parent combinations, not only the ones of the maxittikelihood pedigree, as a
starting point to investigate such a bias [DRE88].

With the rapid progress and decay of cost in high-througkpguencing techniques, it
is just a matter of time until there are whole genomes of cetegbopulations available.
Large amounts of SNP data with high quality genetic maps lvélitherefore available,
at least for some model organisms. The identification of tareith such an amount of
data is a trivial task and the methods are well known [BC97khallenging question is
then how many unobserved generations we can reconstructrbime (see [SHO6] and
[TSO7] for first results). As we cannot expect an eleganttgwmiuto this problem, MCMC



heuristics are promising tools for throwing some light oropgation’s immediate past.
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