
Preprint manuscript No.
(will be inserted by the editor)

Andreas R. Gruber∗, Dorota Koper-Emde∗, Manja Marz∗, Hakim Tafer∗,
Stephan Bernhart, Gregor Obernosterer, Axel Mosig, Ivo L. Hofacker,
Peter F. Stadler, Bernd-Joachim Benecke

Invertebrate 7SK snRNAs

July 13, 2007

Abstract 7SK RNA is a highly abundant non-coding RNA
in mammalian cells whose function in transcriptional regu-
lation has only recently been elucidated. Despite its highly
conserved sequence throughout vertebrates, all attempts to
discover 7SK RNA homologs in invertebrates species have
failed so far. Here we report on a combined experimental
and computational survey that succeeded in discovering 7SK
RNAs in most of the major deuterostome clades and in two
protostome phyla: molluscs and annelids. Despite major ef-
forts, no candidates were found in any of the many available
ecdysozoan genomes, however. The additional sequence data
confirm the evolutionary conservation and hence functional
importance of the previously described 3’ and 5’ stem-loop

A. Gruber, H. Tafer, S. Bernhart, I.L. Hofacker, P.F. Stadler
Institute for Theoretical Chemistry, University of Vienna,
Währingerstrasse 17, A-1090 Wien, Austria
E-mail:{agruber,htafer,berni,ivo}@tbi.univie.ac.at

D. Koper-Emde, B.-J. Benecke
Biochemistry NC6/132, Ruhr-University Bochum, Germany
E-mail: bernd.benecke@rub.de

M. Marz, S. Bernhart, Peter F. Stadler
Bioinformatics Group, Department of Computer Science, andIn-
terdisciplinary Center of Bioinformatics, University of Leipzig,
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motifs, and provide evidence for a third structurally well-
conserved domain.
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1 Introduction

The 7SK snRNA is a highly abundant noncoding RNA in
vertebrate cells. The Pol III transcript with a length of about
330nt [14,20] is highly conserved in vertebrates [9]. Due to
its abundance it has been known since the 1960s. Its func-
tion as a transcriptional regulator, however, has only recently
been discovered. 7SK mediates the inhibition of the general
transcription elongation factor P-TEFb by the HEXIM1 pro-
tein and thereby represses transcript elongation by Pol II [16,
2,6,22]. Furthermore, 7SK RNA suppresses the deaminase
activity of APOBEC3C and sequesters this enzyme in the
nucleolus [10].

Two distinct secondary structure elements are highly con-
served throughout vertebrates [6]: a 5’-terminal hairpin struc-
ture that binds both HEXIM1 and P-TEFb, and a 3’-terminal
hairpin that interacts with P-TEFb only. In contrast to the
nearly perfect sequence conservation in jawed vertebrates,
the 7SK RNA from the lampreyLampetra fluviatilisdiffered
in more than 30% of its nucleotide positions from its mam-
malian counterpart [9]. The highest sequence conservation
is observed in the 5’ and 3’ hairpin regions. The sequence
conservation seems to decline rapidly outside the gnathos-
tomes. In [9], some of us also reported on an unsuccessful
attempt to finding 7SK RNA in hagfish and lancet and sug-
gested that the 7SK RNA might be a vertebrate innovation.
In this contribution we combine improved cloning strategies
with systematic computational homology searches to detect
highly divergent 7SK RNAs in invertebrate animals.
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2 Materials and Methods

2.1 Cloning and Sequencing of 7SK RNAs

Total cellular RNA was isolated from frozen tissue minced
with scissors and homogenized in buffer containing guani-
dinium thiocyanate [4]. Northern blots were performed with
5 µg of purified RNA separated in 2%-agarose gels con-
taining 0.67 M formaldehyde. After transfer to nylon mem-
branes (Hybond-N, Amersham), immobilized RNA was hy-
bridized with labelled antisense RNA probes generated by
T7 transcription of inversely cloned cDNA fragments of the
previously identified 7SK RNA ofLampetra fluviatilis[9].
Hybridization with labelled antisense RNA (2×106 cpm/ml)
was in: 50% formamide; 0.1% SDS;5×Denhardt’s reagent;
10 µg/ml each of yeast tRNA and denatured salmon sperm
DNA; 5× SET (150 mM NaCl, 20 mM Tris-HCl, pH 7.9, 1
mM EDTA).

Cloning of new 7SK cDNAs was based on RT-PCR re-
actions. In a first step 4µg of total RNA were reverse tran-
scribed using the Omniscript RT-Kit (Qiagen) with a primer
complementary to the 3’-end of 7SK RNA. An aliquot of
that assay was taken for PCR with the same 3’-primer and
a specific upstream primer. The successful combination for
MyxineandBranchiostomaamplification were nucleotides
54-72 as upstream primer and nucleotides 197-215 as down-
stream primer, both of the human 7SK DNA sequence. For
Helix, the same upstream primer, yet in combination with
a Lamprey downstream primer (corresponding to position
299-316) was successful. Candidate fragments were cloned,
sequenced and taken to deduce gene-specific “nested” primers
for rapid amplification of cDNA ends (RACE) experiments
[7], as described earlier [9]. Briefly, for the 3’-ends cellu-
lar RNA was first polyadenylated and reverse transcription
started with with oligo(dT) carrying at its 5’-side an oligonu-
cleotide sequence suitable for subsequent PCR with two “nes-
ted” gene-specific primers. The 5’-ends were obtained by re-
verse transcription with a specific primer and oligonucleotide
ligation (T4-RNA ligase) to the 3’-end of first-strand cD-
NAs. As before, PCR amplification was achieved with nested
gene-specific primers.

2.2 Computational Homology Search

Homology search was performed as a stepwise procedure.
In the first stage, we started with the sequence of the func-
tional human 7SK sequence (X05490, X04236 [26,19,14,
25]) and performed ablast search against the genome as-
semblies available inensembl (version 42). In this way, we
identified candidates in other vertebrate genomes, including
the following, previously published sequences:Mus muscu-
lus (M63671 [17]), Rattus norvegicus(K02909 [23]), Tak-
ifugu rubripes(AJ890104, [21,6]), Tetraodon nigroviridis
(AJ890103, [6]), Danio rerio (AJ890102, [6]), andGallus
gallus (AJ890104, [6]). In addition we searched the shot-
gun traces of a selection of unfinished mammalian genomes

Homo/1-331 CACATCCAAATGAGGCGCTGCATGTGGCAGTCTGCCTTTCTTT
Pan/1-331 CACATCCAAATGAGGCGCTGCATGTGGCAGTTTGCCTTTCTTT
Callithrix/1-331 CACATCCAAATGAGGCGCTGCATGTGGCAGTCTGCCTTCCTTT
Microcebus/1-337 CACATCCAAATGAGGCGCTGCACGTGGCAGTCTGCCTTCCTTT
Spermophilus/1-331 CACATCCAAATGAGGCGCTGCACGTGGCAGTCTGCCTTTCTTT
Dipodomys/1-331 CACATCCAAATGAGGCGCTGCGCGGGGCAGTCTGCCTTTCTTT
Cavia/1-330 CACATCCAAATGAGGCGCTGCACGTGGCAGTTTGCCTTTCTTT
Ochotona/1-331 CACATCCAAATGAGGCGCTGCATGTGGCAGTCTGCCTTTGTTT
Dasypus/1-331 CACATCCAAATGAGGCACTGCACGTGGCAGTCTGCCTTTCTTT
Gallus/1-329 CACATCCAAGTGAGGCACTGCATGGGGCAGTCTGCCATTGTTT
Anolis/1-341 CACATCCAAGTCAGGCGCTGCACGGGGCAGTCTGCCATTCTTT
Xenopus/1-330 CACATCCAAGTGTGGCGCTGCATGTGGCAGTGTGCCTTTCTTT
Oryzias/1-300 CACATCCAACTGCGGCGCTGCACGTGGCAGTCTGCCTTCCTTT
Fugu/1-300 CACATCCAATTGCGGCGCTGCACGTGGCAGTCTGCCTTACTTT
Tetraodon/1-300 CACATCCAATTGCGGCGCTGCACGTGGCAGTCTGCCTTCCTTT
Danio/1-300 CACATCCAAATGAGGCACTGCATGTGGCAGTCTGCCTTTCTTT
Lampetra/1-321 CACATCCAGATC-GGCACTGCACGTGGCAGTCTGCCTGT-TTT
Petromyzon/1-321 CACATCCAGATC-GGCGCTGCACGTGGCAGTTCGCCTGT-TTT
CONSENSUS CACAUCCAAAUGaGGCRCUGCAYGKGGCAGUCUGCCUUUcUUU
STRUCTURE .............<<<<<<<<.....>>>>>..>>>.......
FRAGREP .............***.....*****.......***.......

Fig. 1 Alignment and consensus sequence and structure of the 3’ hair-
pin of vertebrate 7SK RNAs.

as well as all unfinished non-mammalian animals. Beyond
jawed vertebrates, this initialblast search recovered a sin-
gle candidate in the genome of the lampreyPetromyzon
marinus, which turned out the be very closely related to
the published sequence of theLampetra fluviatilis7SK RNA
[9]. The match to a single shotgun trace (1047111637562)
from the nematodeBrugia malayiwas disregarded since it
exactly matched the human sequence and hence is certainly
a contamination.

We then created a multiple sequence alignment and used
aln2pattern to extract a search pattern for thefragrep2
tool [18]. This tool searches fragmented approximate se-
quence patterns in genomic DNA sequences. The construc-
tion of the sequence patterns was guided by the functional
interpretation of the structural domains of the 7SK in [6].

First efforts focused on the 3’-terminal hairpin structure,
Fig. 1. Both the loop motive and the GGC-GCC stem have
been shown to be crucial for P-TEFb binding and have just
little or no sequence variation. Search patterns forfragrep
are specified as partial sequence patterns (using IUPAC no-
tation), annotated by the minimal and maximal number of
unspecified nucleotides separating the sequence motifs and
the maximal number of mismatches and in/dels that are ac-
ceptable in each of the sequence motifs. The initial search
pattern for the 3’ hairpin is indicated in the last line of Fig. 1.

By manual filtering we selected candidate sequences from
Ciona intestinalisand Ciona savignyi, which showed also
high sequence conservation in the part of the 5’-terminal
hairpin structure responsible for HEXIM1 and P-TEFb bind-
ing [6]. We then extended our pattern to search for highly
conserved regions in both the 5’ and 3’ hairpin structures.
The pattern was refined in an iterative way every time a new
candidate sequences was found. The final search pattern is
given in Fig. 2
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6
0 0 GAUCGC 0 0
4 16 GGC 0 0
1 2 GAUCUG 0 0

150 250 UCCA 0 0
0 5 GGC 0 0
0 19 GCC 0 0

Fig. 2 Final fragrep search pattern for 7SK RNAs, specifying 6 se-
quence motifs, their minimal and maximal separation and thenumber
of acceptable substitutions and in/dels. Here exact matches of the short
motifs are required.

2.3 Computational Identification of Putative 7SK
Promoters

It is well known that the promoters of RNA Polymerase III
transcribed 7SK, U6, and U6atac snRNA contain three com-
mon elements: theproximal sequence element(PSE) about
50nt upstream of the gene, a TATA box-like element and dis-
tal enhancer elements [25,5]. The PSE of the pol-III snRNAs
is very similar to that on the snRNA transcribed by Poly-
merase II (U1, U2, U4, U5, U11, U12, U4atac).

In order to distinguish functional 7SK genes from pseu-
dogenes we investigated their upstream regions for snRNA-
specific promoter elements. Since these sequence motifs can
vary significantly [11] between species, we searched the ge-
nomes also for the spliceosomal snRNAs, extracted 100nt
upstream regions, and usedmeme (version 3.5.4) [1] to iden-
tify the PSE consensus separately for each species. For the
study reported here we used the applet available fromhttp:
//meme.nbcr.net/downloads/ with default options and
parameters-nmotifs 5 -minw 10 -maxw 30. The PSE pat-
terns obtained in this way were then used to identify those
7SK candidates that have an snRNA-like PSE. The results of
the homology search for the spliceosomal RNA genes will
be reported elsewhere [15].

2.4 Structural Alignments

A structural alignment of the vertebrate sequences based on
the experimentally determined structure for the human 7SK
snRNA [14,25] was constructed manually using the RALEE
mode [8] for theemacs editor. The model was iteratively
improved upon addition of new candidate sequences during
analysis with the help of consensus structure predictions us-
ing RNAalifold [12].

The 5’ stem sequence of the basal deuterostomes and
lophotrocozoa diverged too much from the vertebrate con-
sensus, so that they cannot be aligned based on sequence
similarity alone. We therefore used the absolutely conserved
GATC-GATC stem in the center of this region as a anchor
since it defined both sequence and structure constraints. The
alignment was then edited so as to maximize the number of
base pairs in the consensus structure.

7SK

U6

U6

7SK

MaHs Gd Xl Dr Lf Mg Bl Pl Dm Ce Hp

(A)

(B)

Fig. 3 Northern blot of cellular RNA from 12 different organisms
using (A) 3’- and (B) 5’-terminal 7SK antisense RNA for hybridiza-
tion. Hs Homo sapiens, Gd Gallus domesticus, Xl Xenopus laevis, Dr
Danio rerio, Ma Mustelus asterias, Lf Lampetra fluviatilis, Mg Myx-
ine glutinosa, Bl Branchistoma lanceolatum, Pl Paracentrotus lividus,
Dm Drosophila melanogaster, Ce Caenorhabditis elegans, Hp Helix
pomatis.
For normalization among samples, a labelled full length antisense U6
snRNA has been included in both hybridizations. In the upperpanel,
weaker U6 signals are observed throughout. This is due to there-
hybridization of the stripped blot. In both rounds, U6 antisense RNA
hybridizes to the same target sequences whereas the two 7SK probes
bind to different areas of the 7SK RNA. The broad smear observed
with sea urchin RNA is due to cross contamination of the 7SK anti-
sense probe with ribosomal RNA and degradation products thereof.

3 Results

3.1 Northern Blot Verification of 7SK Sequences

Numerous attempts to identify 7SK RNA in invertebrate phy-
la have remained unsuccessful in the past. Neither RT-PCR
experiments with mammalian primers nor northern blot anal-
ysis with oligonucleotide-primed cDNA probes were suc-
cessful [9]. Therefore, we decided to increase northern blot
sensitivity by using radioactively labelled antisense RNA
probes. For this, the two most conserved (in comparison with
the human sequence) regions of the lamprey (Lampetra flu-
viatilis) 7SK RNA gene [9] were subcloned in inverted ori-
entation under control of the T7 RNA polymerase promoter.
Thus, these two clones allowed the synthesisin vitro of la-
belled transcripts with very high specific activity. The re-
sulting two antisense RNA probes were complementary to
regions 1-94(A) and 283-316(B) of lamprey 7SK RNA, re-
spectively.

A northern blot obtained with cellular RNA of six verte-
brate and six invertebrate organisms was consecutively hy-
bridized with the aforementioned probes, Fig. 3. As is evi-
dent from the left section of Fig. 3, all vertebrate phyla ana-
lyzed (man to lamprey) showed a clear hybridization signal
with both the 3-terminal (upper panel) and the 5-terminal
(lower panel) 7SK antisense RNA. In contrast, only hagfish
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(Myxine glutinosa) and two of the five invertebrates in the
r.h.s. section were found positive with respect to the 7SK
antisense probes: amphioxus (Branchiostoma lanceolatum)
and snail (Helix pomatia). Even longer exposure did not
give a hint to any 7SK hybridization signal of either of the
two probes with sea urchin (Paracentrotus lividus), fruitfly
(Drosophila melanogaster) or nematode (Caenorhabditis el-
egans) RNA.

3.2 cDNA Cloning of Novel 7SK RNAs

Cloning of invertebrate 7SK cDNA was performed by RT-
PCR and primers deduced from the most conserved elements
of vertebrate 7SK RNA. Routinely, about ten different primer
combinations had to be tested. In many cases, PCR frag-
ments with the expected lengths were obtained. After sub-
cloning and sequencing, however, most fragments were found
to represent pieces of ribosomal DNA. Only a single pre-
viously unidentified sequence was amplified from hagfish
RNA. Two identical sequences, yet differing in length, were
obtained from amphioxus. A single new clone was obtained
from snail. These clones showed a limited but significant se-
quence homology with the corresponding central sections of
the vertebrate 7SK DNA. Therefore, the 3- and 5-flanking
sequences of those clones were amplified by RACE experi-
ments. After subcloning and sequencing composite 7SK RNA
sequences were obtained forMyxine glutinosa(329 nt),Bran-
chiostoma lanceolatum(304 nt), andHelix pomatia(303 nt).

These three 7SK RNA clones revealed sequence homol-
ogy with lamprey 7SK DNA in the range between 44% (snail)
and 59% (hagfish). The identification of several interspersed
elements (7 to 11 nucleotides in length) with a perfect match
to the vertebrate 7SK RNA sequence strongly supported the
notion that 7SK cDNA has been successfully cloned from
two basal chordates (hagfish and amphioxus) and a single
non-deteuterostome invertebrate. In addition, report here se-
quences forGadus morrhuaandMustelus asterias. All se-
quences have been deposited in GenBank, accession num-
bers******-******. Multiple sequence alignments can be
found in an electronic supplement available athttp://www.
bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/
07-021/.

3.3 Homology Search

3.3.1 Vertebrates

Within vertebrates, homology search turned out to be rather
straightforward. Simpleblastn searches were sufficient. In
eutherians, however, it is a problem to identify the func-
tional 7SK gene among a larger number 7SK-derived pseu-
dogenes. In fact, searching ENSEMBL v.44 with anE-value
cutoff of 10−4 return more than 100 hits in all eutherian
genomes. In contrast, there are only 31 hits inMonodelphis

domesticaand 11 hits in the chicken genome. The current as-
sembly of the genome ofXenopus tropicalisfeatures two ad-
jacent copies. These are identical also in an extended flank-
ing sequence, indicating a recent segmental duplication of
the locus or an assembly artifact, see e.g. [3]. In each of the
five sequenced teleost fishes, only a single copy of the 7SK is
present. Threeblast hits were found in thepre-ensembl
release of the sea lamprey genome. Only a single one, lo-
cated on Contig17254, matches the published sequence from
Lampetra fluviatilisover its full length.

In three vertebrate species, however, we failed to find a
complete 7SK gene. Only a single partial hit was recovered
from the low-coverage genome elphant sharkCallorhynchus
milli . All goodblast hits of the chicken 7SK sequence against
the availableTaeniopygia guttatashotgun reads seem to be-
long to a single locus. The corresponding sequence very
well matches the chicken sequence but shows a 398nt in-
sert, which we interpret as an artifact. To our surprise, only
a singleblastn hit was found in the Platypus genome. The
corresponding sequence significantly deviates from the ver-
tebrate consensus in both the first∼ 8 nt and in the last
∼ 100nt, and it is not located in a region that is syntenic
to the functional 7SK genes in other vertebrates. Thisblast
hit thus is most likely a pseudogene. Since the locus around
the platypus ICK homolog is incompletely assembled, it is
reasonable to assume that we fail to find the platypus 7SK
due to missing data, not because platypus has lost its func-
tional 7SK RNA.

The functional 7SK genes can be recognized by the char-
acteristic PSE sequence in their promotor regions, see Fig.4.
Furthermore, their genomic location between the Glutathione
S-Transferase Alpha GTA4 on the 5’ side and Serine/Threo-
nine protein kinase ICK on the 3’ side is conserved through-
out vertebrates. We remark that inXenopusno GTA4 ho-
molog is annotated.

3.3.2 Basal Deuterostomes

While the vertebrate 7SK RNA are very well conserved at
sequence level [9],blast searches soon reached their limits
outside of this clade. A weak blast hit of the human query
sequence in theBranchiostoma floridaegenome was easily
verified by comparison with the experimentally determined
Branchiostoma lanceolatum7SK RNA sequence. In total,
we find six nearly identical 7SK candidates on five different
scaffolds. These sequences are also nearly identical at least
100nt upstream of the 7SK. It is unclear whether there are
really multiple functional copies of 7SK RNA dispersed in
the amphioxus genome.

Beyond amphioxus, three further candidates were found
by means offragrep only: two closely related sequences
from the urochordatesCiona intestinalisand Ciona savi-
gnyi, and a single candidate from the hemichordateSac-
coglossus kowalevskii. In the C. intestinalisgenome there
is only a single 7SK locus. In contrast, the current assembly
of C. savignyifeatures four nearly identical copies within
8kb on reftig107.
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Fig. 4 Conservation of the the 7SK promoter region of the 7SK candidates located between GTA4 and ICK genes. In all mammals, boththe
“proximal sequence element” (PSE) and the TATA-box are easily recognizable.

The PSE of basal deuterostomes, 63-48nt upstream of
7SK, is well conserved with the one of U6 snRNA for all in-
vestigated organisms. The TATA-box is located 32-25nt up-
stream. An exception isCiona intestinalis, which has an in-
sertion of 15nt between TATA-box and 7SK, and a 9nt dele-
tion between the PSE and TATA. TheCiona species shows
no TATA-box conservation with other snRNAs, nevertheless
there is a slightly modified TATA box.Branchiostomahas a
canonical TATA-box.

Despite significant efforts we did not find credible can-
didates in the genome of the sea urchinStrongylocentrotus
purpuratus. The three best candidates in this case lack the
3’ hairpin structure. In addition, the 5’ hairpin region can
hardly be aligned with other deuterostome 7SK sequences.
Our search also failed for the shotgun traces of the urochor-
dateOikopleura dioica. In this case we found a good candi-
date for the 3’ stem-loop structure, but the 300nt upstream
of this hit do not match other 7SK sequences. We suspect
that these negative result might in these cases be the result
of the incomplete genomic data .

3.3.3 Protostome 7SK RNAs

Thefragrep search was successful in three protostome ge-
nomes: the molluscLottia giganteaand the two annelids
Capitella capitellaandHelobdella robusta. All three sequen-
ces are easily recognizable as homologs of the 7SK sequence
that was cloned from the escargotHelix pomatia. In addi-
tion, a partial sequence fromAplysia californicawas found
byblast using the experimentally determined escargot 7SK
sequence as query.

The PSE ofAplysia californicais located 67nt-41nt up-
stream of 7SK snRNA, the sequence motif TGTATAGA
matches the typical TATA-box sequence 35nt-28nt upstream.
In Lottia giganteawe find CTTATATA (position -31 to -24)
and the PSE 15nt upstream of the TATA box. InCapitellawe

find TATACA at positions -27 to -21 and a possible PSE, al-
though it does not match well with the upstream sequence of
the U6 snRNA in this species. The single shotgun read from
Helobdella robustadoes not show a recognizable TATA-box
region but an alignable PSE region. It is not clear whether
this sequence is a functional gene or a 7SK-derived pseudo-
gene.

Despite extensive efforts, on the other hand, no 7SK can-
didate was found in any of the many available insect and ne-
matode genomes. A search in the genomes of the two platy-
helminthsSchmidtea mediterraneaand Schistosoma man-
sonialso remained unsuccessful. Among protostomes, thus,
the 7SK RNA can be found only among lophotrochozoans.

Given the lack of success on ecdysozoan genomes and
the four highly derived lophotrochozoan sequences we were
not surprised that searches in the genomes of diploblastic an-
imals and in the choanoflagellateMonosiga brevicolliswere
also not successful.

3.4 Refined Structural Models of 7SK RNAs

The conservered structural features of the 7SK sequences
are summarized in Figure 5. Three structural elements are
common to all known 7SK RNAs: the 5’stem, the 3’stem,
and a short hairpin structure (Stem A) that should probably
be considered as part of the 5’ structure. Vertebrate 7SK in
addition share Stem B.

The secondary structures for the 5’ and 3’ stems were
proposed already in previous publications. Wassarman and
Steitz [25] derived a model for the human 7SK snRNA based
on chemical probing data. Egloffet al. [6] used site-directed
mutategenesis to demonstrate that both the 5’ and 3’ stems
are functionally relevant. The structural model in Fig. 5 is
derived from a sequence alignment that takes into account
both sequence covariation and thermodynamic considera-
tions. Our consensus model is in agreement with the pre-
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Tetrapoda CCCTCCCGAAGCTGCGC----------GCTCGG-TCG
Teleostei CCCTCCCGAAGCYCRGC----------GCTCGG-TGG
Mustelus CCCTCCCGAAGCTCAGC----------GCTCGG-TCG
Lampetra CCCTCCCGATGCTCTGC----------GCTCGG-TGG
Myxine CCTCGCCGATGCCCCGC----------GCTCGGATCG
Branchiostoma CTCTCCCGACGCCTCGC----------GCTCGG-TCG
Ciona intest. ---TCCCGATGCTTGCG---------CGCTCGG-TTG
Ciona savignyi ----CCCGATGCCATGC----------GCTCGG-TCG
Saccoglossus CTCTCCCGATGCTTAGC----------GCTCGG-TCG
Lottia -TCTCCCGCTGCCTCGTC---------GCACGG-TAG
Helix ---TCCCGCTGCACCCCCGGGGA---CGCACGG-TCG
Aplysia AGCTCTCGATGCACTGGCGGGTC----GCACGG-TCG
Capitella AGGCGCCGATGCACCCGTCGAGGGCCCGCTCGG-CCG
Helobdella GCAACGGCATGCACTTCCACCTGTC--GCTGGC-CAG
STRUCTURE -----<<<<-<<--------------->>>>>>----

Mammalia TCCAAATGAGGCGCTGC-ATGTG-GCAGTCTGCCTTTCTTT
Gallus TCCAAGTGAGGCACTGC-ATGGG-GCAGTCTGCCATTGTTT
Anolis TCCAAGTCAGGCGCTGC-ACGGG-GCAGTCTGCCATTCTTT
Xenopus TCCAAGTGTGGCGCTGC-ATGTG-GCAGTGTGCCTTTCTTT
Oryzias TCCAACTGCGGCGCTGC-ACGTG-GCAGTCTGCCTTCCTTT
Gasterosteus TCCAAATGAGGCGCTGC-ACGTG-GCAGTCTGCCTTCCTTT
Fugu TCCAATTGCGGCGCTGC-ACGTG-GCAGTCTGCCTTACTTT
Tetraodon TCCAATTGCGGCGCTGC-ACGTG-GCAGTCTGCCTTCCTTT
Danio TCCAAATGAGGCACTGC-ATGTG-GCAGTCTGCCTTTCTTT
Gadus TCCAAATGAGGCGCTGC-ACGTG-GCAGTCTGCCGTAATTT
Mustelus TCCAAGTCAGGCACTGC-ACGTG-GCAGTCTGCCGTTCTTT
Lampetra TCCAGATC-GGCACTGC-ACGTG-GCAGTCTGCCTGT-TTT
Petromyzon TCCAGATC-GGCGCTGC-ACGTG-GCAGTTCGCCTGT-TTT
Myxine TCCAAC-ACGGCGCTGC-ACGTG-GCAGTTTGCCTT--GTT
Ciona_int TCCATA-TAGGCACTGC-ACGGG-GCAGTATGCCTTCATTT
Ciona_sav TCCATA-TAGGCACTGC-ACGGG-GCAGTATGCCTTCATTT
Branchiostoma_l TCCAAT-ACGGCGCTGCCACGCGGGCAGCCTGCCAT---TT
Branchiostoma_f TCCAAT-ACGGCGCTGCCACGCAGGCGGCCTGCCATT-TTT
Saccoglossus TCCATC-ATGGCGCTGCCTTG-GGGTAGCTTGCCTTCACTT
Lottia TCCAAT-ACGGCACTAC-AAGTG-GTAGTTTGCCTTCCTTT
Helix TCCATTGGAGGCATTAC-ACGTG-GTAATCTGCCTTTCTTT
Capitella TCCACA-CTGGCACCGC-ATGTG-GTGGTATGCCATTGTTT
STRUCTURE ---------<<<<<<<<<----->>>>>>-->>>-------
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Fig. 5 Common structural elements of 7SK snRNAs. The top panel schematically compares the location of upstream elements and RNA sec-
ondary features. While the structure of the 3’stem is commonto all 7SK snRNAs (except for the elongation of the stem by a GCpair in
BranchiostomaandSaccoglossus), there are substantial clade-specific variations in the 5’stem. A common structure, stem B, in the “middle
region”, on the other hand, can be found only in vertebrates.With the expection of marginal differences in the small region marked in the verte-
brate 5’stem, our consensus model is in complete agreement with previously published structures of vertebrate 7SK snRNAs [25,6]. Conserved
nucleotides in stems are shown in red; ochre color (and circles in the 3’stem, resp.) indicate consistent and compensatory mutations.

viously published structures with a marginal exception: In
[6] the regions marked in Fig. 5 is shown as an interior loop,
while [25] shows only the terminal A-U as part of the inte-
rior loop.

The 5’ stem models for both basal deuterostoma and for
the lophotrochozoa are different in size sequence and struc-
ture. The only common ground between all three models
is the GATC-GATC structure/sequence pattern at the begin-
ning of the top-most stem.

The vertebrate specific Stem B, which is not necessary
for P-TEFb binding [6], also fits very well with both ex-
perimental models, again with a small difference affecting
a small interior loop. It does not appear to have a counter-
part in basal deuterostomes and protostomes.

The central region of the 3’stem is structurally conserved
in all 7SK RNAs, the only exception being an extension of
the most central stem by a single GC pair inBranchios-
tomaandSaccoglossus. The 3’ stem-loop structure can be
extended by five additional base pairs in vertebrates and to a

lesser extent also in the other 7SK snRNAs. The exact pair-
ing pattern in this extended region does not seem to be very
well conserved, however.

The small Stem A feature, finally, is highly conserved
also in sequence across all known 7SK snRNA, although the
size of the loop region is variable in the lophotrochozoan
sequences. So far, no specific function has been reported for
this region.

4 Discussion

Using both computational and “wet-lab” approaches we have
shown that 7SK is phylogenetically much older than previ-
ously thought. While previously examples were known only
from vertebrates, we found 7SK RNAs in most major deuteros-
tome clades (chephalochordata, urochordata, and hemichor-
data) and in two lophotrochozoan clades (mollusca and an-
nelida), Fig. 6.
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Fig. 6 Phylogenetic distribution of 7SK sequences.bold font: clades
in which multiple genomes were searched with consistent results.Sans
serif font: assembled genomes,italics font: shotgun traces, roman
font: no genomic sequence available, but positive experimental results.
Black bullets (•) indicate that a completebona fide7SK sequence was
found, white bullets (◦) mark species where we found a partial 7SK
sequence. The phylogenetic tree follows the recent review [24].

Assuming that the commonly accepted sistergroup rela-
tionship of Protostomia and Deuterostomia is indeed correct,
our findings imply that the 7SK originated at latest in the bi-
laterian ancestor. In contrast, we found no trace of a 7SK
RNA candidate in either platyhelminthes or in any of the
numerous ecdysozoan species for which genomic data are
available.

The analysis of sequences and secondary structures re-
vealed a striking difference between vertebrate and inver-
tebrate sequences. While vertebrate 7SK RNAs are highly
conserved in both sequence and structure, the molecule is
highly variable in the other clades. Consensus structure mod-
els derived using a combination of thermodynamic folding
and evaluation of compensatory mutations reveal three struc-
tural motifs that are conserved throughout all known 7SK
sequences. The central domain (Stem B), however is present
in vertebrates only, while elsewhere this region is so variable
that our attempts to construct plausible alignments failed.

The monophyly of the Ecdysozoa is, among other ar-
guments, also supported [24] by the shared secondary ab-
sence of large numbers of genes in euarthropods and ne-
matodes [13]. There is no functionally described HEXIM1
ortholog in insects, although the current release of the EN-
SEMBL (v.44) homology annotation lists HEXIM homologs
in Drosophila melanogaster(CG3508),Aedes aegyptii
(AAEL013291), andAnopheles gambiae(AGAP002875).
None of these sequences is at present associated with any
functional annotation, however. It is conceivable, therefore,
that an ancestral 7SK gene has been secondarily lost in this
clade. Alternatively, the 7SK sequence might have diverged
so far that it is not recognizable with currently available
bioinformatics approaches.
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