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Regulatory Signals in Genomic Sequences

Sonja J. Prohaska, Axel Mosig, and Peter F. Stadler

Summary. Gene expression is a complex multiple-step process involving mul-
tiple levels of regulation, from transcription, nuclear processing, export, post-
transcriptional modifications, translation, to degradation. Over evolutionary time-
scales, many of the interactions determining the fate of a gene have left traces in
the genomic DNA. Comparative genomics, therefore, promises a rich source of data
on the functional interplay of cellular mechanisms. In this chapter we review a few
aspects of such a research agenda.

1.1 Introduction

Gene expression is the process by which a gene’s information is converted into
a structural or functional gene product. This product is typically a protein, but
might also be an RNA molecule or a complex of RNA and protein. A specific
spatial and temporal distribution of these units within a cell is crucial for their
function. The process of gene expression involves multiple steps, starting with
the DNA in a state that makes the information accessible, transcription (DNA
— RNA) and perhaps translation (RNA — protein), which is then followed by
protein folding, posttranslational modification, and targeting. Once started,
gene expression does not run through unaffected. Every step in the process
is under tight control and actively regulates, or at least modulates, the flow
through each checkpoint. Trapping intermediates at any step of the process
may halt or even abort gene expression. Together, all regulatory effects from
the gene to the functional gene product determine whether a gene product
exceeds its threshold of expression to be effective. Therefore, the state of
expression is not simply on or off.

In recent years it has become apparent that gene expression is a complex
network comprising different, often often inter-twined, regulatory layers. A
few of these mechanisms, such as the binding of transcription factors to the
DNA, leave direct traces in the genomic sequences that can be detected and
deciphered by comparative approaches. In other cases, gene regulation is af-
forded by trans-acting RNAs, first and foremost microRNAs. In this situation,
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one first has to identify the transacting regulator before it becomes possible
to search for the target that it regulates.

From a comparative genomics perspective, on the other hand, we can iden-
tify a plethora of evolutionary conserved DNA sequences that apparently do
not code for proteins. Among these signals are also sizable regions with very
high levels of sequence conservation and no reported function [29, 82, 127, 128].
The question that we at least begin to address in this chapter is how we can
identify evolutionary conserved DNA, and how we can determine the mecha-
nisms that they are involved in. While it is clear that comparative genomics
cannot by itself elucidate the complete complexity of cellular regulation, it
has also become clear in recent year that over evolutionary timescales, this
regulatory network has left trace evidence at the DNA level. This requires,
however, an understanding of the many distinct mechanisms.

Nucleic acid sequence motifs are, with a few examples such as self-splicing
introns and some non-coding RNAs, not catalytically active. Additional pro-
teins or (sometimes) ncRNAs are therefore involved that exert their regulatory
function by binding either to the DNA or to the transcribed RNA at regu-
latory elements. Regulatory mechanisms that alter the components binding
directly or indirectly to the sequence motifs are beyond the scope of this chap-
ter. The generic mechanisms involving the motifs and their accessibility are
listed in Table 1.1.

Changes at the nucleotide sequence level occur either by recombina-
tion/repair processes or covalent modification of single bases. Direct DNA
modifications yield stable or even irreversible gene expression patterns in de-
scending cells. Genomic imprinting reduces gene expression to one parental
allele through DNA methylation. Once established, the methylation pattern
is rather constant and hardly reversible.

Eukaryotic DNA is packed into a compact structure, the chromatin. Every
150 base pairs (bp), the linear DNA molecule is wrapped around a protein
core in 1.65 turns, forming the nucleosome. Regulation at the epigenetic level
concerns modifications of the histone protein core. The pattern of acetylation,
(mono-, di-, and tri-)methylation, phosphorylation and other covalent modifi-
cations at about 40 different amino acids of the five different histone proteins
(H4, H3, H2A, H2B, and H1) is also referred to as the histone code. Histone
modification patterns are able to recruit specific protein complexes just like
binding sites on the DNA or set the chromatin state. Heterochromatin or con-
densed chromatin is in the silent state, while euchromatin or open chromatin
is transcribable mainly due to histone acetylation.

Insulators describe a phenotype rather than a single kind of element with
a fixed mechanism of action. They have the ability to protect genes they
surround from the influence either of outside enhancers or inactivating chro-
matin structures. An important part of the underlying mechanism might be
the formation of insulator bodies. Insulator binding proteins form complexes
that divide the chromatin into looped domains that are functionally isolated
from one another. This could be a step toward regulation by discrete subnu-



Table 1.1. Overview of major regulatory modes in eukaryotic cells

Regulatory mechanism Effect on gene expession Example (organism) Reference
DNA rearrangements selective/irreversible V(D)J-joining (human) 105]
Site-specific recombination selective/reversible mating-type switching (yeast) 26|
DNA amplification enhancing chorion genes (Drosophila) 22]
DNA methylation of CpG dinucleotides silencing/imprinting parent-of-origin-specific silencing (human) 120]
DNA demethylation by DNA repair enhancing glycosylase at polycomb genes (Arabidopsis) 96|
Histone code silencing/enhancing everywhere 81]
Heterochromatin barrier (fixed/flexible) insulator/silencing/enhancing USF binding at HS4 (chicken) 146]
Enhancer blocker insulator/silencing su(Hw) (Drosophila), CTCF (human) 146]
Enhancer promoter contact insulator/silencing/enhancing trithorax at Ubx promoter (Drosophila) 146]
Nuclear matrix attachment region (MAR) insulator/silencing/enhancing lysozyme locus (chicken), tyrosinase locus (mouse) [146]
Subnuclear compartment silencing/enhancing LCR at -globin gene (human) 145]
Gene competition for enhancers silencing/enhancing [B-globin gene (human) 131]
Chromatin remodeling silencing/enhancing SWI/SNF at PHO5 or PHOS8 genes (yeast) 15]
RNA-directed transcriptional gene silencing silencing X chromosome inactivation (human) 7]
Promoters (TF binding sites) basal everywhere 14]
Enhancer (TF binding sites) enhancing everywhere 148]
Silencer/repressor (TF binding sites) silencing Ume6 at URS1-containing promoters (yeast) 148]
Alternative transcription start sites silencing/enhancing IGF-1 (human) 77
Antisense transcripts silencing/enhancing frq gene (Neurospora) 18]
Regulation of elongation phase silencing/enhancing Fkh at CLB2 locus (yeast) 98]
Pre-mRNA processing (nucleus) silencing/enhancing everywhere 68]
Alternative splicing (nucleus) selective/silencing/enhancing sex lethal (Drosophila) 73]
Trans-splicing (nucleus) selective/alteration SL RNA at all genes (Trypanosoma 78]
mRNA editing (nucleus) alteration ADAR at GluR mRNA (human) 6]
Sequestration of mRNA (nucleus) silencing Rrp6 at exosomes (yeast) 117]
Nonsense-mediated mRNA decay (nucleus) silencing pseudogenes 144]
mRNA export silencing/enhancing EJC at spliced mRNAs (Drosophila) 117]
RNA-directed mRNA degradation silencing DCL1 mRNA (Arabidopsis) 80]
Degradation and stability of RNAs (cytoplasm) silencing/enhancing HuR at ARE-containing RNAs (human) 147]
mRNA localization (cytoplasm) silencing/enhancing ASH1 (yeast) 41]
Alternative translation start sites silencing/enhancing IRES 69]
Scanning for translation start sites silencing/enhancing uORF at GCN4 (yeast) 38]
Translation initiation regulators silencing/enhancing CPEB at CPE-containing mRNA (human) [38]
RNA-directed translational gene silencing silencing lin-4 miRNA at lin-14 mRNA (C. elegans) [38]

USF = upstream stimulatory factor, HS4 = hypersensitive site at the LCR of the 8-globin gene, su(Hw) = suppressor of hairy wing protein, CTCF = CCCTC-binding factor, MAR
= nuclear matrix attachment region, LCR = locus control region, SWI/SNF = remodeling complex, PHO5 = repressible acid phosphatase precursor, PHO8 = repressible alkaline
phosphatase precursor, TF = transcription factor, Ume6 = transcriptional regulator, URS1 = Ume6-binding site, frq = frequenin, Fkh = fork head protein, CLB2 = G2/mitotic-
specific cyclin 2, ADAR = double-stranded RNA-specific adenosine deaminase, GluR = glutamate receptor, mRNA = messenger RNA, Rrp6 = exosome complex exonuclease, EJC
= exon-junction complex, DCL1 = Dicer-like 1, HuR = Human-antigen R (stability factor), ARE = AU-rich element, ASH1 = daughter cells HO repressor protein, IRES = internal
ribosomal entry site, uORF = upstream open reading frame, GCN4 = general control protein, CPEB = cytoplasmic polyadenylation element binding protein, CPE = cytoplasmic
polyadenylation element, miRNA = micro RNA.
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clear compartment. For example, actively expressed genes migrate to nuclear
compartments enriched in RNAPol II, so called transcription factories, while
inactive genes loop out. Such agglomerations may serve to raise the local con-
centration of associated components, favouring interactions that might not
otherwise occur.

The promoter is the assembly site for the basal transcription machinery
right next to the transcription start site. Transcription factors (TFs) bind-
ing to enhancers facilitate recruitment of RNA polymerase to the promoter
if physical contact can be established by cofactors. Silencers, on the other
hand, circumvent such an interaction and therefore initiation of transcription.
In general, binding sites for TFs are short (4-12 bp) and occur clustered up-
stream of the promoter sequence. While there are numerous examples where
the context (i.e., order, orientation, distance, presence of certain TFs) of TF
binding sites is functionally relevant, there is an equally large number of ex-
amples where the context is not relevant.

The following elongation of transcription and all regulatory steps at the
RNA level that take place in the nucleus are coupled to a large extent. For
example, nuclear export of RNAs is linked to the subnuclear compartment
of transcription, transcription elongation, mRNA processing (splicing), and
mRNA stability. Once the mRNA is exported to the cytoplasm, it is either
degraded or translated, but it might also be stored for later use.

Translation of mRNA is the final step in gene expression that involves
nucleic acid sequence elements in control. Not only upstream regulatory ele-
ments like secondary structures or upstream ORF may effect scanning of the
small ribosomal subunit for the initiation codon. Close proximity of the 5’
and 3’ end of the mRNA allows protein binding sites located in the 3’-UTR
to control translation initiation. In fact, most known regulatory sequences,
and miRNA binding sites are found within the 3> UTR.

The regulatory mechanisms and phenomena described above leave more
or less visible traces in their genome sequences. For some regulatory elements,
the corresponding traces on DNA level are very well understood and have been
studied in much detail. This chapter reviews known sequence characteristics
of regulatory elements. Whenever one is available, we will give an overview
over the corresponding computational methods for unveiling those traces in
genomic sequences.

1.2 Gene Finding

The most conspicuous traces found in a genome sequence arise from protein
coding regions. Since proteins are key players in the gene regulatory network,
identifying the positions of the protein coding genes in whole genome se-
quences is an elementary step. Beside identifying the protein coding sequences,
genome annotations serve a second purpose, namely to obtain those regions
in the vicinity of the annotated genes that contain cis-regulatory elements,
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Table 1.2. Estimated number of protein coding genes

Species Estimated No. of Genes Ref.
Homo sapiens 20,000-25,000 [132]
Drosophila melanogaster 12,000 [133]
Caenorhabditis elegans 19,000 [135]

such as transcription factor binding sites. Furthermore, gene annotations give
an estimate of the number of players involved in regulatory networks.

Once a complete genome sequence is available, a first step typically is to
identify protein coding genes in the sequence by computational means, a task
commonly referred to as gene prediction or gene finding. Due to statistically
noticeable features such as being grouped in coding triplets or protruding
traits such as start or stop codons, protein coding genes typically show com-
paratively strong signals in genome sequences. Consequently, a number of
well-established methods have contributed to detecting protein coding genes
in genomes. The first type of gene prediction methods, so-called ab initio
methods, are based on considering a single genome sequence in combination
with a probabilistic model involving multiple characteristic traits of transcrip-
tional, translational, or splicing sites that are typically visible on sequence
level. Approaches such as GENSCAN [13] or Genie [72] incorporate this infor-
mation into a hidden Markov model for unveiling genomic regions that have
a striking probability of being protein coding.

While the accuracy of ab initio gene prediction methods turned out to be
principally limited [43, 118], more reliable results can be obtained by compar-
ative gene prediction approaches, which incorporate pairwise alignments of
the underlying genomes produced by programs such as Blastx. Due to a very
specific selectional pressure on the coding triplets of protein coding regions,
predictions produced by programs such as Twinscan [67] or Procrustes [40]
yield much more reliable results than ab initio methods.

As has been demonstrated by several studies, incorporating issues such
as protein similarity or expressed sequence tags may enhance the reliability
of gene prediction methods [54, 113, 150]. For surveys on gene prediction
methods, we refer to [12, 34, 39, 71]. Gene prediction methods yield estimates
of the number of (protein coding) genes, some of which are shown in Table
1.2.

While detecting protein coding genes appears to be a largely resolved
problem, finding non-coding RNA genes is much more involved. For details
on RNA gene prediction, see section 1.4.

1.3 Identifying Cis-Regulatory Elements

Once the protein coding genes and non-coding RNAs (see section 1.4) as the
key players in the regulatory network and their coding regions are known,
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Table 1.3. Major modes of transcription.
RNA |Promoter Location rela-|Transcript Function
poly- tive to start
merase site
Pol I |Core element |—45 to +20 |pre-rRNA components of the ribosome;
UCE (up-|—180 to —107](28S, 18S, |translation
stream  con- 5.8S)
trol element)
Pol 11 |TATA-Box —25 to =35 |mRNA protein coding genes
Initiator
CpG islands |-100
snRNA (Ul-4) |components of the spliceo-
some; mRNA splicing
no LINEs Retrotransposon
Pol |Type 1: A-[4+50to +80 |55 rRNA component of large riboso-
111 box, C-box mal subunit
Type 2: A-|4+10to +60 [tRNA translation
box, B-box
Type 3:|—30 to =70 |snRNA (U6) |components of the spliceo-
TATA-Box some; mRNA splicing
7SL RNA component of the SRP
(signal recognition particle);
protein transport to ER
(endoplasmatic reticulum)
internal SINEs Retrotransposon

one is naturally interested in their cis-regulatory elements, that is, sequence
elements associated with the gene to be regulated that serve as sequence-based
“addresses” for their regulators. On the level of transcription regulation, the
most striking sequence signals of a gene are given by the basal promoter and
the proximal promoter. In mammals, 60% of all promoters colocalize with
regions of high C+G content, known as CpG islands. A feature that can also
be used to find unknown genes. In the immediate upstream region of the
basal an proximal promoter, auxiliary binding sites can be located for further
transcription factors, which are often observed to be organized in regulatory
modules.

1.3.1 Polymerases and Associated Promoters

Transcription of DNA into RNA is performed by the three different types of
RNA polymerases. For the modes of transcription associated with the different
RNA polymerases, see Table 1.3. Each of the polymerases requires certain cis-
acting elements in order to initiate transcription; due to its crucial relevance in
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transcribing mRNA necessary for protein coding genes, much effort has been
spent on studying the polymerase II core promoter as the minimal stretch
of contiguous DNA sufficient for initiating transcription. In most (yet not
all) polymerase II transcribed genes, the core promoter contains the TATA
boz, which is located 25 bases upstream of the transcription start site. The
TATA box is a usually 6 nucleotide long sequence motif characterizing the
binding site for the tata-binding-protein (TBP). TBP usually interacts with
other transcription factors, whose binding sites are typically found within
40 nucleotides (nt) upstream to the transcription start site. For details on
the RNA polymerase II core promoter, we refer to the survey by Butler and
Kadonaga [14]. The action of the polymerase II promoter is often enhanced
by several distal promoters organized in cis-regulatory modules (see section
1.3.3).

Polymerase I transcripts are also regulated by a a core promoter, which is
separated by about 70 bp from a second elementary promoter element, the so-
called upstream control element (UCE). In place of the TF for polymerase 11,
pol I requires two core transcription factors, namely UBF1 (upstream binding
factor) binding to a GC-rich region and SL1 (selectivity factor).

Promoters for RNA polymerase III occur in several variants. First, they
may consist of bipartite sequences downstream of the start point, with pro-
moter element borA separated from either of the promoter elements boxC or
boxB. Second, some U snRNA genes are regulated by upstream type promot-
ers involving an octamer binding site, a so-called prozimal sequence element

and a TATA box.

1.3.2 Identification of Transcription Factor Binding Sites

Transcription factors are known to bind to short, specific sequences of DNA.
Experimental evidence obtained by techniques such as DNase footprinting [36]
and gel-shift assays [37] suggests that protein-DNA binding of transcription
factors involves a relatively short, contiguous DNA segment, whose length usu-
ally ranges between 8 and 15 nucleotides. Repositories of known transcription
factors and their experimentally derived binding site motifs can be found in
databases such as TRANSFAC [45] or JASPAR [123]. However, experimental
determination of binding sites and their relevance in vivo takes a significant
effort, so that numerous computational approaches have been proposed for
determining candidates for TFBSs in silico.

While the length of the binding sites corresponding to one specific TF is
observed to be essentially constant, the individual positions of the binding site
sequences may vary up to a certain degree. Hence, to derive a suitable model
of the sequences that a TF binds to, different notions of describing TFBS
sequence variability have been proposed. Such models are also important in
the context of computationally determining TFBSs based on comparative
genomics approaches.



8 Sonja J. Prohaska, Axel Mosig, and Peter F. Stadler

-250 -200 -150 -100 -50 0 +50 +100
Lo ‘ IR AR ‘ Lol ‘ RN B ‘

Pol | i

UCE core promoter

Pol Il L_’

oi—0—0 —
CpG island BRE TATA Inr DPE

Pol Il type 1 I_>
boxA boxC

Pol I type 2 ,_>

boxA boxB
Pol 1l type 3 ,_>
Oct PSE TATA

Fig. 1.1. Core motifs of the different promoter types. Motifs in dark gray are less
dispensable than motifs in light gray. Any specific promoter may contain just a
subset or, in the worst case, none of these motifs. UCE = upstream control element,
BRE = TFIIB recognition element, Inr = initiator element, DPE = downstream core
promoter element, Oct = octamer binding site, PSE = proximal sequence element.
The arrow indicates the transcription start site at +1.

Different observed binding sites corresponding to a given transcription
typically show a high degree of sequence similarity; moreover, the observed
binding site motifs have the same length ¢. To capture the observed binding
sites in one unique structure, we define a binding site model of length £ as a
mapping M : X¢ — R> 0 assigning a weight to each sequence of length £ over
the DNA alphabet X'. While M (s) ideally should be related to the physical
binding affinity of sequence s binding to the transcription factor modeled by
M, M(s) usually is obtained on the basis of the frequency of observed or
putative binding sites in a given set of genomic sequences.

The concept of binding site models introduced above is too general in
many situations: first, there are usually not enough data to derive reasonable
weights for each DNA sequence of length ¢ and second, storing and retrieving
the complete mapping M would be too expensive. Hence, several simplified
models of TFBSs have been established. The most simple model of a binding
site model is to derive a consensus sequence. In this model, each of the ¢
positions is associated with a subset of the DNA nucleotide alphabet. A given
sequence fragment s of length ¢ is assigned score M (s) = 1 if at each position,
the nucleotide of the fragment is contained in the corresponding nucleotide
set of the model; otherwise, we have M(s) = 0. Alternatively, one can define
M (s) as the number of positions in s where the nucleotide in s is contained
in the corresponding set in M.
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Consensus sequences disregard major information contained in the se-
quences used for deriving the consensus model; namely, they do not take
into account frequencies of occurrence. This is overcome in the most estab-
lished way of TFBS modeling, namely position weight matrices (PWMs). In
the PWM model (sometimes also referred to as a position specific weight ma-
triz), each of the ¢ positions of the binding site is assumed to be distributed
independently: for each position i, we are given a probability density function
pi: X — [0, 1] over the four nucleotides. Given s := s1...sf € £*, this allows
us to define

M(s) == pl(sl) +---+ pl(sl).

PWDMs can be derived canonically from a collection of sequences S1,...,5M €
Xtforxz € Yandi € {1,...,0}, let v(z,i) denote the number of sequences in
which letter x occurs at position . By setting pi(z) := v(x,i)/M, we indeed
obtain a PWM model. In practice, the sequences S1,...,SM are typically
obtained either from a set of experimentally determined binding sites or from
motif discovery methods.

PWDMs, however, disregard any information about the correlation between
sites that may be contained in the sequences that a matrix was derived from.
As a remedy, Pudimat et al [112] have developed a more sophisticated way of
modeling TFBSs based on parameter estimation in a Bayesian belief network.
As opposed to most other approaches of TFBS modeling, their approach allows
us to model correlations between the individual sequence positions. Another
approach for modeling dependencies between positions in PWMs based on 2
statistics has been investigated in [33].

While obtaining models for TFBSs from experimental data is relatively
easy, deriving them computationally from genomic sequences is a complex
problem. Essentially all approaches are based on comparative genomics in
the sense that they seek for motifs contained in each, or at least most, of K
promoter regions belonging to K co-regulated (or orthologous) genes. The re-
turned motifs usually result from optimizing a scoring function that measures
how well a candidate motif statistically differs from global properties of the
promoter sequences.

Among the earliest nontrivial approaches to extracting overrepresented
short motifs as potential TFBSs, Hertz and Stormo [48] proposed a greedy
algorithm. Their CONSENSUS approach starts with a position weight matrix
derived from a single sequence of a fixed length, which is extended to a pairwise
alignment of the same width by considering a best-matching subsequence
of the second sequence. The algorithm proceeds by successively adding one
subsequence of each remaining input sequence to obtain the final PWM, along
with a p-value that allows us to assess the statistical significance of the result.

A different approach based on the expectation maximization (EM) algo-
rithm is investigated in MEME [4], improving a previous approach by Lawrence
and Reilly [75]. The EM-based approach starts with an a priori guess for a
position weight matrix representing a binding site of fixed length ¢, which is
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then improved according to the input sequences in each of the subsequent
iteration steps. A single iteration step works as follows: for each subsequence
£ of the input sequences, the score of the current matrix is computed. After
normalization, the matrix entries are updated by summing up the individ-
ual position contributions of each of the length ¢ subsequences, weighted by
its corresponding normalized probability computed before. The resulting new
matrix is then used as input for the next iteration step, until convergence of
the process is observed.

A1ignACE developed by Roth and Hughes’s group [56, 119] is yet another
approach to obtain PWMs from genomic regulatory sequences. AlignACE
based on Gibbs sampling, enhancing approaches previously used for locally
aligning motifs in protein sequences such as [74] in a way such that both
strands of the input sequences are considered. Furthermore, single motifs that
were found are masked iteratively to allow for the extraction of more than
one binding site motif.

1.3.3 Discovering Regulatory Modules

As numerous studies demonstrate, transcription factors exhibit their function
synergistically through complexes of several transcription factors activating
or deactivating gene expression by binding to their corresponding binding
sites [27, 152], which thus form the building blocks of regulatory modules. On
the genome level, regulatory modules are characterized by binding sites being
located close to each other, usually within a segment whose length does not
exceed a few hundred nucleotides.

In recent years, a number of approaches have been developed in the con-
text of discovering cis-regulatory modules. Kel-Margoulis et al. [65] propose a
method based on identifying clusters with the property that pairwise distances
between occurrences of TFBSs range within certain bounds; sets of binding
sites that maximize a certain cluster score are searched by the means of a
genetic algorithm. Other methods are based on probabilistic methods [109] or
require (only sparsely available) knowledge about interactions between tran-
scription factors such as the algorithm presented in [130].

Among the most established methods, Sharan et al. proposed an approach
implemented in the program CREME [129], which is conceptually somewhat re-
lated to our approach. Given a set of candidate binding sites, CREME seeks to
identify motif clusters of limited length that occur more than once in a set
of regulatory sequences. However, the capabilities of the CREME approach is
limited to discovering repetitive occurrences of modules that contain precisely
the same set of binding sites. While biological data indeed indicate that func-
tionally related modules share a significant number of binding sites, modules
observed in a given regulatory region might as well contain occurrences of
known binding site motifs, which are not functional in the given context. If
this number of additional, non-shared binding sites is non-zero, the method
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underlying CREME does not allow us to discover such functional modules reli-
ably.

To overcome this shortcoming, the hypothesis underlying the bbq approach
[99] is that CRMs are characterized by sharing a significant number of com-
mon binding sites, but do not necessarily contain precisely the same set of
binding sites. More formally, we are given a set of candidate binding sites
sl,...,sm together with a set of genomic sequences T'1,...,TK. The role of
the genomic sequences T'j is taken by the regulatory regions of genes that are
suspected to share a regulatory module (due to being orthologous or having a
similar expression scheme), while the binding site motifs can be derived from
databases such as TRANSFAC or JASPAR. Alternatively, these motifs can be
derived from T1,...,TK using the motif discovery approaches discussed in
section 1.3.2. Finally, an upper bound for the length L (specified as a number
of nucleotides) of the regulatory module is given as an input parameter.

The bbq approach starts with determining the occurrences of each motif si
in each T'j and associating a color ¢ with binding site s¢. For each occurrence
of si, an interval of length (L — |si|) ending at the position of the occurrence is
introduced, so that one finally obtains K arrangements of colored intervals. By
“stabbing” into this arrangement, one obtains a cell in this arrangement. Such
a cell is associated with a set of colors, which corresponds to a set of binding
sites occurring within a genomic subsequence whose length is at most L nu-
cleotides. Finally, attempting to stab a maximum number of common colors
in each of the K arrangements leads to the so-called best-barbecue problem.
This problem leads to a natural combinatorial and geometric optimization
problem that is NP-complete in general.

1.3.4 Phylogenetic Footprinting

Just as genomic regions that code for proteins or functional RNAs, regula-
tory elements are also subject to stabilizing selection. They evolve much more
slowly than adjacent nonfunctional DNA so that one can observe conserved
islands of regulatory regions within intergenic or intronic regions. These con-
served islands are commonly referred to as phylogenetic footprints, which can
be detected by comparison of the sequences surrounding orthologous genes
in different species. The loss of phylogenetic footprints as well as the acquisi-
tion of conserved non-coding sequences in some lineages, but not others, can
provide evidence for the evolutionary modification of cis-regulatory elements.

While the motifs detected by the discovery methods discussed in section
1.3.2 can be seen as one particular type of footprints, one can often observe
conserved islands that are much longer, up to several hundred nucleotides,
than individual binding sites. Therefore, phylogenetic footprinting tools are
usually based on pairwise or multiple local alignment algorithms such as
blastz [125] or Dialign [97]. The tools PipMaker and MultiPipMaker [125]
(among others) process these alignments in order to provide information on
significantly conserved regions. The Tracker tool [111] assembles individual
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Fig. 1.2. Distribution of phylogenetic footprints in regulatory regions between the
horn shark HoxN sequence and the human HoxC and HoxD sequences obtained by
the tracker tool. Using this information for phylogenetic inference, this supports
the hypothesis that the shark HoxN sequence is orthologous to the mammalian
HoxD sequence [110]. Boxes indicate the location of the coding regions for the par-
alog groups 1 to 13, X denotes the evz gene. Lines conecting sequences represent
phylogenetic footprints shared with the shark HoxN sequence.

pairwise blastz alignments into cliques of overlapping alignments. This re-
sults in the possiblity of listing alternative multiple local alignments if the
pairwise matches are not consistent with one multiple alignment.

As demonstrated in [111], the analysis of sequence conservation of non-
protein-coding DNA can be used to unveil the evolutionary origin of phenom-
ena such as the duplication of Hox clusters in shark, human, and the dupli-
cated zebrafish and Takifugu (Fig. 1.2). In this context, information contained
in the regulatory regions yields insights that are not visible on the level of the
corresponding protein coding regions.

1.4 Regulatory ncRNAs and RNA Motifs

1.4.1 Diversity of the RNA Inventory

Non-coding RNAs form a diverse group of transcripts with often poorly under-
stood function. In contrast to protein-coding mRNAs there is little that they
all have in common. One group, which itself is composed of a heterogeneous
set of RNA families including tRNAs, the U6 snoRNA, the RNA component
of the signal recognition particle, and a small number of less wellknown ncR-
NAs including 7SK RNA and Y RNAs is transcribed by RNA polymerase-I11.
Ribosomal RNAs, transcribed by pol-I, form a group by themselves. Almost
all of these ncRNAs are evolutionarily very well conserved, and most of them
are evolutionarily ancient.

In contrast, the majority of the known ncRNAs are transcribed by pol-1I.
These can be subdivided into messenger-RNA-like transcripts, such as Xist,
which are typically spliced and polyadenylated, “structural ncRNAs” such
as spliceosomal RNAs (snRNAs) and many microRNAs, which are neither
spliced nor polyadenylated, and a class of functional RNAs that is processed
from introns (in particular snoRNAs). Informally, it is useful to distinguish
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a restricted group of “classical” ncRNAs containing the rRNAs, the pol-IIT
transcripts listed above, spliceosomal RNAs, box-C/D and hox-H/ACA small
nucleolar RNAs (snoRNAs), microRNAs, as well as telomerase RNA. As far
as we know, these RNAs are evolutionarily old, they have distinctive RNA sec-
ondary structure, and most of them are reasonably well conserved at sequence
level.

Recently, a number of small, non-mRNA-like ncRNAs have been found,
for example in the nematode Caenorhabditis elegans, which does not appear
to belong to one of the classical families, although at least some of them share
the distinctive promoter features of tRNAs or pol-II transcribed snRNAs [28].
Bacterial genomes also contain a large and diverse set of small RNAs (sSRNAs)
in addition to the classical ncRNAs. A recent survey discusses 55 known F.
coli sSRNAs [47] and their conservation patterns within Enterobacteria. For a
review of functional aspects of various bacterial SRNAs see [42]. An additional
class of small anti-sense transcripts derived from UTRs is discussed in [64]. For
a recent survey focusing on the regulatory effects of ncRNAs in eucaryotes,
see [25].

The function of almost all mRNA-like ncRNAs remains unknown. The few
well-studied examples, such as Xist or H19, have functions in imprinting [103].

Regulation by means of RNA can follow at least three distinct principles:
RNA switches sense changes in temperature or chemical environment and
react by conformational changes. Cis-acting RNA signals, often located in
untranslated regions of mRNAs, are bound by proteins. Trans-acting RNAs,
such as microRNAs, perform their function by binding to complementary
nucleic acid sequence motifs.

1.4.2 RNA Secondary Structure Prediction and Comparison

From a theoretical perspective, computational RNomics draws much of its
appeal from the fact that most quantities of interest can be computed ex-
actly within the secondary structure model. In contrast to proteins, nucleic
structures are dominated by a single, very specific type of interaction: the for-
mation of Watson-Crick and wobble (G-U) base pairs. The resulting contact
structures, which are predominantly stabilized by the stacking interactions of
adjacent base pairs, are not only a convenient and routinely used represen-
tation [70, 104, 106, 124], they also quantitatively describe the energetics of
RNA structure formation, and they form intermediate steps in the folding
process itself.

Formally, a secondary structure is a set {2 of base pairs such that (1)
each nucleotide position ¢ is paired with at most one other nucleotide (i.e.,
2 is a matching), and (2) base pairs do not cross, i.e., (i,7), (k,1) € 2 with
i < j,k < limplies j < k or [ < j. The second condition ensures that two base
pairs are either separated along the sequence or nested within each other. A
secondary structure therefore can be seen as a circular matching. Drawing the
bases along a circle, the base pairs form chords that do not cross. It follows
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that RNA secondary structures can be dealt with by means of exact dynamic
programming algorithms (Fig. 1.3).

A plethora of careful thermodynamic measurement confirmed that the
energetics of RNA structures can be understood in terms of additive contri-
butions of “loops” (Fig. 1.3) see [83, 84] and the references therein. Exact
dynamic programming algorithms can be used to compute for example the
minimum energy structure given any RNA sequence s [136, 153, 155]. The
most frequently used implementations of these algorithms are mfold [153, 155]
and the Vienna RNA Package [50, 53].

An RNA molecule, however, does not only form a single (ground state)
structure; rather, there is an ensemble X'(s) of different structures ¥ that de-
pend on the sequence s, which are populated in proportion to their Boltzmann
factors F'(¥)/RT. The partition function

Z =Y We (s)exp (—%) : (1.1)

from which all thermodynamics quantities of interest can be readily derived,
can be computed by the same type of dynamic programming approach [87].

1.4.3 Suboptimal Structures and RNA Switches

Some RNA molecules exhibit two competing conformations, whose equilib-
rium can be shifted easily by molecular events such as the binding of another
molecule. This can be used to regulate of gene expression, when the two mutu-
ally exclusive alternatives correspond to an active and in-active conformation
of the transcript [46, 90]. While most riboswitches were found in bacteria,
where they regulate several key metabolic pathways [11, 101], metabolite-
binding RNA domains are also present in some eukaryotic genes [134]. An
early computational study concluded that RNA switches are readily accessi-
ble in evolution and are therefore probably not exceptional instances of un-
usual RNA behaviour [35]. These findings, and the fact that riboswitches bind
their effectors directly without the need of additional factors, suggest that ri-
boswitches represent one of the oldest regulatory systems [139].

1.4.4 Detection of Functional RNNAs in Genomic DNA

Large-scale efforts to uncover the human and mouse transcriptomes, using
very different experimental techniques including tiling arrays [8, 21, 61, 63],
c¢DNA sequencing [58, 102], and unbiased mapping of transcription factor
binding sites [17], agree that a substantial fraction of these genomes is tran-
scribed and that the majority of these transcripts do not code for proteins.
It is still unclear at present, however, which fraction represents functional
non-coding RNAs (ncRNAs), and which constitutes “transcriptional noise”
[57].
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Fig. 1.3. RNA folding in a nutshell. Caption continued overleaf. . .
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Fig. 1.3, continued.

Top: The basic recursion for RNA folding is based on the observation that each
structure either terminates in an unpaired base or in a base pair that then separates
the structure into two independent parts: the one enclosed by the base pair, and the
one outside.

Box: The standard energy model distinguishes three types of loops: hairpin loops
with a single closing pair, interior loops (including bulges and the stabilizing stacking
pairs) that are delimited by two base pairs, and multiloops at which the structure
branches. For the latter the energy model assume additive contributions depending
on the number of branches #c and the number of unpaired bases #n in the loop.
Middle: Using the loop-based energy model complicated the recursion since one
now has to distinguish the different types of loops because of their distinct energy
contributions. Instead of a single array storing the optimal energies F'ij for substruc-
ture on the subsequence z[i..j], one now need a few auxiliary arrays that correspond
to restricted classes of structures. For instance, Cij is the optimal energy subject to
the constraint that i and j form a base pair.

Bottom: We give the complete recursion for energy minimization in the loop-based
energy model. Replacing minima by sums, and sums by products leads leads to the
recursions for the partition function Z.

Genome-wide computational surveys of ncRNAs, on the other hand, have
been impossible until recently, because ncRNAs do not share common sig-
nals that could be detected at the sequence level. An exception are bacterial
genomes, where a purely sequence-based machine learning approach was fairly
successful [122].

Most of the “classical” ncRNAs mentioned above, however, have charac-
teristic (secondary) structures that are functional and hence are well con-
served over evolutionary time scales. The stabilizing selection acting on the
secondary structure causes characteristic substitution patterns in the under-
lying sequences: Consistent and compensatory mutations replace one type
of base pair by another one in the paired regions (helices) of the molecule.
In addition, loop regions are more variable than helices. These patterns not
only have a significant impact on phylogenetic inference based on ribosomal
RNA sequences (see, e.g., [62] and the references therein), but it also can
be exploited for ncRNA detection in comparative computational approaches.
Examples are the alidot [51] and qrna [116] programs. Related approaches
predict consensus secondary structures for a set of aligned sequences [52, 107].

A second effect of stabilizing selection for RNA secondary structure is
even easier to measure. It was first suggested by Maizel’s group that functional
RNA elements should have a more stable secondary structure than comparable
random sequences [19, 76].

As demonstrated in [137], selection for structure implies that in the long
run sequences evolve that are more robust against mutations, that is, for which
a larger fraction of mutations does not lead to a change in the ground state
structure. This effect can, for example, be detected in viral RNA structures
[140]. Mutational robustness, however, is in turn strongly correlated with the
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thermodynamic stability of the ground state structure [2, 149]. Thus we expect
that the ground states of functional RNA structures should be thermodynam-
ically more stable than expected by chance, independently of whether there
is a direct selection pressure for thermodynamic stability or not. While this
effect can indeed be demonstrated [23], it is not statistically significant enough
for reliable ncRNA detection [115]. It can be quite large for specific classes of
ncRNAs; in particular microRNAs, however [10, 141].

Combinations of thermodynamic stability and information on gene struc-
ture such as positions of rho-independent terminators were quite successful
for ncRNA prediction in intergenic regions of prokaryotic genomes [16, 79].
Such methods cannot be employed in eukaryots because of their much larger
genome size and the much more complex gene structures.

Sufficient statistical power for ncRNA detection in eukaryotic genomes
can be obtained, however, by combining measures for both thermodynamics
stability and structural conservation. An implementation of such a combined
approach is the RNAz program [143]: A structure conservation index (SCI) is
computed by comparing the predicted minimum free energies of the sequences
in an alignment with a consensus energy, which is computed by incorporating
covariation terms into a free energy minimization computation [52]. Ther-
modynamic stability is quantified by means of a z-score that measures the
folding energy relative to shuffled sequences (a regression approach replaces
time-consuming shuffling methods). A support vector machine then classifies
an alignment as “structured RNA” or “other” based on z-score and SCI. The
significance of the classification is quantified as “RNA-class probability” p.

Various computational screens [1, 16, 20, 79, 116, 122] predict several hun-
dred ncRNA candidates. These predictions, however, show relatively little mu-
tual overlap in general. Indeed, the majority of bacterial SRNAs was discovered
based on computational predictions and subsequent experimental verification.

A RNAz survey based on the most conserved parts of the vertebrate
genomes estimates that the ncRNA content of mammalian genomes is com-
parable to their proteincoding genes [142], and hence at least an order mag-
nitude larger than in nematodes. In contrast, only a few thousand structured
RNAs in the urochordate Ciona intestinalis [93] and in the nematode C.
elegans [28, 94]. Only a few hundred ncRNAs appear to be present in the
yeast Saccharomyzes cerevisiae [88]. This indicates that higher vertebrates
have dramatically expanded their ncRNA inventory relative to their comple-
ment of protein coding genes. This is consistent with the assumption that the
function of the ncRNAs is primarily regulatory [85, 86].

1.4.5 RNA-RNA Interaction

Algorithmically, the “co-folding” of two RNAs can be dealt with in the same
way as folding a single molecule by concatenating the two sequences and using
different energy parameters for the loop that contains the cut-point between
the two sequences. A corresponding RNAcofold program is described in [53];
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the pairfold program [3] also computes suboptimal structures in the spirit of
RNAsubopt [149]. A restricted variant of this approach is implemented in the
program RNAhybrid [114] as well as RNAduplex from the Vienna RNA pack-
age, see also [30, 154]: here secondary structures within both monomers are
neglected so that only intermolecular base pairs are taken into account. The
program bindigo uses a variation of the Smith-Waterman sequence alignment
algorithm for the same purpose [49].

The most prominent application of RNA co-folding algorithms is the pre-
diction of microRNA target genes [9, 70, 95, 104, 124, 151]. The biological
activity of siRNAs and miRNAs is influenced by local structural characteris-
tics of the target mRNA. In particular, the binding site at the target sequence
must be accessible for hybridization in order to achieve efficient translational
repression. Recent contributions [106, 124] suggest two significant parameters:
the stability difference between 5’ and 3’ end of the siRNA, which determines
which strand is included into the RISC complex [66, 126] and the local sec-
ondary structure of the target site [9, 70, 95, 104, 124, 151].

The energetics of RNA-RNA interactions can be understood in terms of
two contributions: the free energy of binding consists of the contribution AGu
that is necessary to expose the binding site in the appropriate conformation,
and the contribution AGh that describes the energy gain due to hybridization
at the binding site. The first term can be computed from a partition function
computation as described above, and the second term is obtained through a
version of the co-folding algorithm. Comparison with the partition function of
the isolated systems and standard statistical thermodynamics can be used to
explicitly compute the concentration dependence of RNA-RNA binding [30].

1.4.6 RNA-Protein Interaction

In recent years an increasing number of functional features has been reported
in the untranslated regions of eukaryotic mRNA [60, 92, 108]. Well-known
motifs include internal ribosomal entry sites (IRES) in viral as well as cellular
mRNAs [55, 108, 121], and the AU-rich elements (ARE) [5, 89]. In many
cases, secondary structure motifs are recognized by regulatory proteins with
only highly degenerate, or no sequence constraints at all [91, 138]. In such
cases, the thermodynamics of RNA folding can influence binding specificities.

Consider a (protein) ligand that can bind to certain set RNAx of structural
conformations a given RNA molecules:

Ligand + RNAx* = Ligand - RNA

The law of mass action implies that the concentrations [RNAx|, [Ligand], and
[Ligand - RNA] of free accessible RNA, free protein, and complex are related
through the dissociation constant

[RNAx| [Ligand]

Kd= —-—-—"— 1.2
[Ligand - RNA] (12)
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Fig. 1.4. Left: Apparent dissociation constants for HuR-mRNA complexes at
23.5°C for natural ARE and UTR sequences (o), artificial molecules (O), and de-
signed mutants of the tumor necrosis factor a 3'UTR () [44]. Right: Effect of a
complementary opener of length NO = 20 on in vitro HuR/RNA affinities. The ap-
parent affinity of recombinant HuR to IL-2 3’UTR was determined in the presence
and absence of the opener Op3 (black circles) and of the negative controls with
1D-FIDA detection. Data redrawn from [89].

Writing A(s) C X(s) for the accessible structures of our RNA molecule s we

obtain
[RNAx] = p*x [RNA] (1.3)

where px is the fraction of accessible secondary structures, which can be com-
puted as a ratio of two partition functions

pr=Y e As)p ZWEA exp( Fé?)_%. (1.4)

Zx, the partition function of all RN As with suitable structure can be computed
by dynamic programming [87, 100] or by means of stochastic backtracking and
sampling [31, 32].

Using conventional methods to measure RNA protein interactions, only
the total concentration of unbound RNA, [RNA], can be measured. Hence,
only the apparent dissociation constant Kd*PP = Kd/px can be determined
experimentally. The theory therefore predicts structure dependence of the
measured values of Kd?*PP. Under the assumption that the true value of Kd
depends only on the ligand and the sequence-structure motif that binds the
ligand, we can predict sequence-dependent variations in RNA-ligand binding
affinity by means of a computational analysis of the ensemble of RNA struc-
tures. In [44, 44] it has been shown that the interaction of the HuR protein
with ARE-carrying mRNAs indeed follows this scheme.
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An immediate consequence of this mechanism is the possibility of using
small RNA “modifiers” to modulate the binding affinities of RNAs and lig-
ands by binding to their target RNA in such a way that it alters the local
structure at the ligand binding site. The HuR-mRNA interaction again serves
as a well-studied in vitro example for such a technique [44, 89], Fig. 1.4. The
regulation of HuR-ARE-mediated export and RNA stability in vivo, however,
remains enigmatic. There is only the single ubiquitously expressed protein
HuR (and a handful of tissue specific relatives such as the neuronal specific
homologue HuD) that upregulates the export and stability of potentially thou-
sands of ARE-carrying mRNAs. It is tempting to speculate that modifying
RNA “openers” could be involved in target gene-specific regulation of HuR
activity.

1.5 Conclusion

In this chapter we have discussed at least some of the regulatory mechanism
that leave traces at the DNA level. A significant fraction of the non-repetitive
DNA of higher eukaryotes is subject to stabilizing selection. It has been esti-
mated, for example, that about 5% of the human genome is under stabilizing
selective pressure [24, 59|, while less than 2% are protein-coding genes. It is a
major challenge for bioinformatics to elucidate the meaning of the remaining
conserved DNA.

The information about at least a large part of the regulatory circuitry of
a species is accessible by means of comparative genomics. Without a large
body of independent experiments, however, we have little chance to decode
this information. The first, and maybe crucial step, beyond identifying the
DNA footprints themselves is to discriminate between regulatory elements
that exert their function at the DNA level, cis-acting elements that function
at the mRNA level, and non-coding RNAs.

We have reviewed here some of the currently available computational ap-
proaches that can be used to detect and analyze such elements. Few general
tools are available. A subclass of non-coding RNAs and cis-acting mRNA
elements, for example, can be recognized because of its conserved secondary
structure. On the other hand, at present there is not even a way to distin-
guish protein binding sites on the genomic DNA from those on the mRNA,
unless specific knowledge about a particular sequence motifs is available from
experiments.
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