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1 Introduction

Starting with the discovery of microRNAs and the advent aiaee-wide tran-
scriptomics, non-protein-coding transcripts have mowednfa fringe topic to
a central field of research in molecular biology. Most wedkdribed functional
RNAs have distinctive structures that are conserved ov@uganary time scales.
As efficient algorithms exist to predict RNA secondary stuoe, bioinformatics
has played an important role in RNA research almost from dggriming [20].

We describe here a collection of novel improved variantsdARolding and
alignment that were conceived during the 2006 RNA Meetingémasqué In
particular, the accuracy of structure prediction can somes be improved by
considering onlycanonical structuresi.e., those that contain no “isolated base-
pairs”. This leads to the idea to emphasize stacking alsthier@ontexts, such as
structure comparison. The prerequisite for such appraisitee observation that
stacking probabilities can be efficiently computed as a-postessing of dynamic
programming table entries that are computed and storeddyliia the folding al-
gorithms as implemented in tWeenna RNA Package.

2 The Loop-Based Energy Model

RNA secondary structures can be seen as outer-planar grdqase vertices are
the nucleotides and whose edges represent the covaleriidreeckf the molecule
as well as the basepairs. This class of graphs has a unigeiegahar embedding
whose bounded faces form the unique minimum cycle basis TI#se faces, in
the context of RNA usually callétioops” have a direct biophysical interpretation
as stabilizing stacked basepairs or entropically destatgjl elements. Thus they
form the units of the standard additive energy model. Enpagameters that de-
pend on sequence, length, and type of the loops have bedulameasured over
the last two decades [14,15]. From the biophysical poini@fnone distinguishes
hairpin loops, stacked base pairs, bulges, true intermpdpand multi(branched)
loops. From an algorithmic point of view one can treat bulgéscked pairs, and
true interior loops as subtypes of interior loops. We shegl Iselow, however, that
in some cases stacked pairs require separate treatment.

We consider an RNA sequengef lengthn. The nucleotide at sequence po-
sition k is X, andx[k,l] denotes the sub-sequenpe,...,X ). Hairpin loops are
uniquely determined by their closing pdk,l). The energy of a hairpin loop is
parametrized as

H (K1) = A (XK 1]) = A (% X 1,6, X -1,%) (1)

where/ is the length of the loop (expressed as the number of its tegbaiu-
cleotides). Each interior loop is determined by the two hzses enclosing it. Its
energy is tabulated as

(K 1;p,0q) = F (XK, p|, X0, 1]) 7 (Xi; Xic-1; 015 Xp—1, Xpi Xqs Xg 15 €2, X —1, %) (2)

wherel; = p—k+ 1 is the length of unpaired strand betwdeandp and/, =1 —
1+ 1is the length of the unpaired strand betwgemd|. Symmetry of the energy

1 RNA-2006, Benasque, Spain, July 14-27 2006
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model dictates? (k,I; p,q) = Z(q, p;1,K). If £1 = ¢, =0 we have a (stabilizing)
stacked pair, if only one of; and /¢, vanish we have a bulge. For multiloops,
finally, we have an additive energy model of the for#i = a+bxB+cx /¢
where/ is the length of multiloop (again expressed as the numbemphined
nucleotides) and > 2 is the number of branches, not counting the branch in
which the closing pair of the loop resides.

Modern versions of the energy parameters also considealtdaangling
ends i.e., extra energy contributions of the terminal basesp@imultiloops and
exterior to any other basepair. Although they can be faidsilg included in the
algorithms below, we suppress the dangling end contribatfor clarity of pre-
sentation. They are, however, implemented in the prograsesissed here.

3 The Basic Folding Recursions

Energy-directed RNA folding is solved by Dynamic Programgnalgorithms that
are based on decomposing the set of possible structuresdtsof sub-structures
that are defined on sub-sequences. This decomposition cealnodsen such that
each possible structure appears in exactly one of the sedcase Fig. 1 (top)
for a graphical representation. In the course of RNA folditgprithms for linear
RNA molecules, th&ienna RNA Package [8,6] computes the following arrays
fori < j, which correspond to the distinct types of substructurdsdgn1 (top).

F; free energy of the optimal substructure on the subsequénge

Cj; free energy of the optimal substructure on the subsequenggsubject to the
constraint that and j form a basepair.

M;; free energy of the optimal substructure on the subsequgngesubject to the
constraint that that[i, j] is part of a multiloop and has at least one component,
i.e., a sub-sequence that is enclosed by a basepair.

Mﬁ free energy of the optimal substructure on the subsequegndé subject to
the constraint that[i, j] is part of a multiloop and has exactly one component,
which has the closing pairh for someh satisfyingi < h < j.

The “conventional” energy minimization algorithm for liameRNA molecules

[24,23] can be summarized in the following way. We give theursions in the
form in which they are implemented in tiiéenna RNA Package [8,6]:

Fj =min {F,+1,j, ig?<i<nj Cik + Fii1,j }

Cj —min{%ﬂ(i,j), min Cyq+ (i, j;k 1), iglljigj Mi+1,u+M&+1,j1+a}

i<k<l<]j
M;j —min{_min_(ui1)C+Cu+1,j+b, min Mjy+Cyi1j+Db, Mi7j1+C}
i<u<]j I<u<]

Mg =min{M}; ;+c, Gj+b}
(3)
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TheinitializationisFj = 0,Cjj = M;j = Miil = +00, Memory consumption is quadratic
in sequence lengthIn our current implementation, the total length of interio
loops (second term in the recursion Y is limited such thatj —1 — 1) + (k—

— 1) < 30. This restriction leads to a cubic run-time. Under certainditions on
the interior loop energies, a cubic algorithm can also baiobt without a length
restriction for interior loops [13].

The corresponding recursions for the partition functiafs, (ZI , u , Z’V'l)
are obtained by replacing minimum operations with sums alnlmans with muI—
tiplications [16]:

Zij =Zip1j + Z§Zii1

i<k<j
28 —e B0 4 Zge P74 5 2l 2o e
<K< i<u<j
e B 4
M = > e Plumi=TezM | i+ > Zhzg. e PP+ 2l e Pl “
i<t<j i<u<j

ZMl _ZMl 1e BC+ZB —Bb
Zi=1,28=z2M=7zZM—0

As usual,8 = 1/RT is the inverse thermal energy. Uniqueness of the substrictu
decomposition is crucial in the case, since the partitiorction is a weighted
count over all structures.

4 Canonical Secondary Structures

A canonicalsecondary structure does not contain isolated (“lonelg3dpairs,
i.e., pairs that are not stacked on another pair. In Fig. 1avepare the structure
decomposition of the usual, unconstrained, secondargtates with the decom-
position of constrained structures. Restrictions of thergy minimization algo-
rithms to this subclass have already been included ivilkk@na RNA Package.
The requirement of a unique structural decomposition, Wwhan be waived in the
case energy minimization, however, requires some algorittthanges in parti-
tion function approaches.

Let Z; denote the partition function over all structures that arel@sed by
a basepair and that become canonical when enclosed by aadbexterior
basepaifi — 1, j 4+ 1); this corresponds to the structures marked (C) in Fig. 1. The
usual forward recursions (4) remain almost unchanged: €bersion forZ* is
precisely as given faZ® in eq. 4 above, while th&?

zB ZH-]_J 1e B (i4+1,j—1,.j) (5)

is computed by adding the stacking contribution to the esedostructure. The
multiloop decomposition remains unchanged.

2 In most applications the thd® andF arrays can be replaced by linear arrays that store only
the current and previous row or column
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Basic RNA Folding

RNAfolding for Canonical Structures
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Fig. 1 Comparison of the structure decompositions used in RNAirfigldigorithms for uncon-
strained structures (top) and canonical structures (Hel®dhin arcs denote substructures that
are closed by a possibly lonely basepair but otherwise deabrThick arcs mark canonical
substructures enclosed by a stacked pair. We note that toengesition stays almost the same
provided one reinterprets the closed structures as caalostitictures enclosed by a basepair
(B). The only difference is the representationBs an enclosed structur€)(that becomes
canonical when enclosed by a single outer basepair.

;
:
L

The backward recursions are bit more problematic, howd&¥enote byZEj‘
the partition function over all canonical structures adgsthe pair(i, j), and let
Zj; be the partition function over all structures outsidg ) that become canonical

when enclosed by the additional basefgir 1, j +1). Again there is little change
compared to the “usual” backwards recursion as impleménttfttVienna RNA
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Package. The main difference is that the case of a stacking intevads differ-
ent here, since the sub-structures excludediby) need not be canonical. It is
sufficient that(i — 1, j + 1) is paired. Therefore, the stacking term dependgn
instead ofZB. We thus obtain the following recursions:

7 7B B (hli,] 7 —B7(i—1,j+1ii,j
Z:} :Z]ﬁi*lzjﬁ»l,n“r Z Zh‘|e B ( ’ IJ)+Z;‘,1‘H1G B (I I+ Il)+
N, e’ h<i<j<l
exterior (hD)#(-1,j+1) interior loop stack

(6)

5 —Bli—h— —B(l-j-
Zp x Qe Pz |+ ZM g e PUTITe Z o ZM g

h<i<j<l
multiloop right multiloop left multiloop both

Sx

28 =2y g PO I-LiHLED)

From these quantities we can immediately compute the pilitlyadf the stack
(i,j;i+1,j—1)as
zB.7B

— L,j541,j-1
Pli, j] = Ze B (Li+Li+1) )

Note that we have to divide by the stacking contribution sitids factor is con-
tained in bochi‘?j andZiBHJ_l. The individual base pairing probabilities can be
computed as follows:

1 = - ~
Ri=3 [Zf] Z8 + 237 - 2373 (8)
The last term accounts for the fact that in the first two terneshave twice in-
cluded the structures that are canonical both inside arsideuthe paici, j).

The partition function algorithm for canonical structutess been included
in the latest version of th#ienna RNA Package. Fig. 2 gives an example in
which the restriction to canonical basepairs increaseadberacy of the structure
prediction. Since fewer basepairs have to be consideréeicetnonical case, there
is also a moderate performance gain.

5 Probabilities for Stacks

The probability of a structural motif can be computed easilge theZB table has
been filled. Of particular interest are the probabilitiessiacks and helices, which
we derive below. The conditional probability for the statkf two pairs is

zZ8 .. o
Prob[(i + 1, j —1)|(i, )] = %e—ﬁeﬁ(u,l—}&?]—l) ©
1)

The probability for a stack of length at lea&tnside the pair(i, j) can be
determined by a similar expression:

¢ Z'Bé/l'kliz iU i—wi -
pl) _ p. THLi—t I—Le—/}f(|+u,1—u,|+u+1,1—u—1) (10)

] 1] ziBj L
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Fig. 2 Canonicalersusgeneral secondary structures.

L.h.s. panel: Comparison of base pairing probabilities tiRISA (Genbank Accession number
AB031211) with isolated pairs (lower left) and without (@spight) triangular matrix. In this
example, the characteristic clover leaf shape is more appar the distribution of canonical
structures.

R.h.s. panel: comparison of the performance of the foldmgjlzacktracing algorithm as imple-
mented in the current version of tiiéenna RNA Package. As expected, computing canonical
structures is cheaper by a constant factor since fewer paitbase pairs have to be considered.

Equivalently, Al-Bakuf’s equation expressﬁ%) in terms of the conditional stack-
ing probabilities

=2

Rl =R |'LProb[(i+u+l,j—u—l)\(i+u,jfu)] (11)
u=

The probability that the stack extends exactlyasepairs frongi, j) can be com-
puted as

pll _ p(O) _ p(t+1) 12)

We can also rather easily enforce tliatj) is the first pair of the stack. We
start from Bayes’ equation:

Prob(i+1,j —1)|(i, j)|Rj = Prob[(i, ))|(i+1,j - 1)]R41j-1 (13
Thus, the probability thai — 1, j + 1) is not a paimgiventhat(i, j) is paired is

Prob[—(i—1,j+1)|(i, )] =1—Prob[(i, j)|(i—1, ]+ 1)] y (14)

1)
The probability_liff) of stack of length at leagtwith the first pair(i, j) is thus

Pl = Prob~(i —1.j +1)|(i, )] P}’

Z -2

Py Z8 'B/‘l'bl :
— [q- =it d e BA(-1,j+1i) p.% rLe—ﬁJ(|+u.|—u;l+u+1.|—u—1)

SB 1

Ry Z°

i—1,j+1 (15)

] u=|

ZiB . -2
I L il4] B g1 it T o
_ Pi(j() 7P|,1‘j+1 +B =41 B (-1 j+14.)) |—Le BI(i+u,j—ui+u+1,j—u-1)

11,4 U=
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Fig. 3 Comparison of base pairing probabiliti® (upper right of both dot plots), stack-

ing probabilities Pi(jz) (lower left of left dot plot), and conditional stacking putilities

Prob[(i, j)|(i+1, ] —1)] (lower left of right dot plot) for a short artificial sequendéven for
low probability helices, conditional stacking probaldg are often close to 1.

As we would expect, we obtain

V4 y4 (+1
Pl =R -RY, (16)

Finally, the probability for a stack of length exactlyvith first pair (i, j) is

/4 14 (+1

¢ 41 41 42

= Piﬁ )~ Pi(—l,j>+1 - Piﬁ 4 Pi(—l,j>+1 (17
] o+l

= Pl[j] - Pi[—l,j]+1

Fig. 3 compares Prdli, j)|(i+ 1, ] — 1)] with Rj. In general we see a similar
pattern, indicating that stacked basepairs are highlyetated.

6 Structural Alignment with Stacking

In many applications it is convenient to avoid the full loogskd energy model
and to use a scoring scheme based on pre-computed pair pitdminstead.
Essentially, such an approach treats pair probabilitiésthsy were independent.
Including the effect of basepair stacking should improvie Hituation without
introducing much additional complexity.

As an example we consider the structural alignment prograeARNA [21].
Similar toPMcomp [7], LocARNA implements a Nussinov-style version of the Sankoff
algorithm [18] in which scores for basepair matches arecpreputed using ther-
modynamic folding algorithms.
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Fig. 4 Recursion scheme for sequence-structure alignment

Let Mjjq be the optimal score of an alignment of the subsequeAfieg]
andBlk..I]. FurthermoreD;jq is the optimal score of an alignment of the subse-
quencedi..j] andBJk..I] with matching basepairs (arcf) j) and (k,I). With a
gap penaltyy, and sequence dependent scaref®r unpaired (mis)match and
for arc matches one finds the following recursions (see atpar€ 4):

Mij-1kl +VY
Mijkl-1+Y
Mijkl = mMaxq M; j_1x-1+0(, )
max (M p_1kq-1+Dp,jql)

i<p<j
k<g<l

Dijkl =Misgj-1ksri—1+a(i,j,kl)

(18)

In order to incorporate stacking we have to introduce antewidil set of pa-
rametersy’ that scores the extension of a series of adjacent arcs.efortine, we
have to distinguish the extension of an arc-enclosed akagntifnom the formation
of an individual enclosing arc:

Mitgj-2ks1i-1+Y
Mit1j-1k+1l-2+Y
ali, j,k 1) +max$ Mz jopi11—2+0(i—1,j - 1)
max (Miy1p-1j+1q-1+Dpj-1q1-1)

i+1<p<l-1
k+1<qg<l

a’(i,j, k1) +Diy1j-1k+1i-1

Di j k| = max

(19)
The global alignment score M | 1 g)-

For local alignment with a score thresholdwe have to include théun-
aligned” state with scoré; x| = O as additional alternative in equ.(18). Back-
tracking than starts at local maxima of thlg j 1| matrix that exceed the threshold
T.
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a.) b.)
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Fig. 5 (a) Crossing interaction produced by broken arcs. (b) Botk are broken here since
they are not part of a basepair match.

In our implementation, only thB array (for pairs of matched base pairs only)
and the valueM j 1| are stored permanently. Since the number of basepairs in the
input structures is linear in sequence length provided palys with a minimum
pairing probabilitypg are considered, the algorithm requirggA| x |B|) memory,
see [21] for details.

Concerning the definition of the scoring function, a natway of defininga
anda’ is to use properly scaled logarithms of base pairing anditondl base
probabilities, respectively. For molecudeve have

Wi = max{0,log(R}/po)/log(1/po) }
Wi = max{0,log(Probi(i, j)|(i+1,j — 1)] /po)/10g(1/po) } -

Herepg is a use-defined minimum pairing probability. Analogousresgions de-
fine W and Y. Then we simply setr(i, j,k,1) = Wi+ W anda’(i, j, k1) =
W+ P

Thus, only the base matchés—B; that arenot part of matching basepairs
(arcs) are given a sequence dependent sadrg) (third entries in egs.(18) and
(19)), resp. BotlL.ocARNA and PMComp also use a sequence-specific component
1(i, j,k,I) for matching basepairs in the definition@fi, j,k,1). For this purpose
one can utilize e.g. the RIBOSUM basepair substitutionex¢tl], a 16< 16
matrix derived from substitution probabilities betweehgadssible pairs of nu-
cleotides.

The question remains, haavc breaking should be treated, which occurs when-
ever an input basepair in one sequence is not matched agatsier basepair. If
two known secondary structures instead of basepair prhityaiiatrices are used
as input, it is biophysically meaningful to explicitly pdize arc breaking, see e.g.
[10,1]). These score could be added as an extra row and cdtutha RIBOSUM
model. However, the above recursion scheme or variantscahionly be applied
if the score for arc breaking has a special form, namely tfietel right ends of
the broken arcs are scored independently. The reason iscthsidering a broken
arc as an entity would produce crossing interactions asguargi5a for an exam-
ple. In contrast, tree-editing like algorithms (see [5] d@he references therein)
treat arcs as entities that can be added or deleted only asla.vitn such models
it is natural to have scores that depend on the type of base@paeneral, these
will not be the sum of contributions for the paired bases.

In the case of.ocARNA andPMcomp Where basepair probability matrices are
given as an input, scoring of arc breaking does not make s@uwswsider the case

(20)
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Fig. 6 Left: Secondary structure of the best 3 snoRNA candidateghtRDot plot produced
by RNAfold of first candidate (a)). Candidates show specific snoRNAufeatlike: 2 stems
of approximately equal length, ACA-box at 3'end and H-boangensus: ANANNA) between
both stems.

where we have two crossing aras anda, in the basepair probability matrices
having a similar probability as in Figure 5b. In this case,siraply do not know
which of the two arcs are part of the real structure of the esfuence. Further-
more, both arcs are exclusive. Hence, we could score at mesaic breaking,
and we simply do not have any information which one shoulddoeesd.

7 Using Structural Alignment Algorithms for Gene Finding

A natural application of local structural alignments is twogy based RNA gene
finding. To this end, a structure-annotated genomic DNA aefficiently com-
putedRNALfold [9] or RNAplfold [2]. These programs compute local RNA struc-
ture by restricting the maximum span of basepéir§) to |j —i| < L.

Utilizing LocARNA for sequence/structure homology search requires several
modifications. We first extended the algorithm so that itkbacking routine not
only return the optimal local alignment but thebest local alignments. This was
achieved by an interval splitting strategy on top of the basjorithm. For com-
plexity reasons, we process overlapping windows (size Q0PMhstead of com-
plete chromosomes. For each window, the RNA search patdatally aligned
to the window. Local folding allows us to restrict the maximesach basepairs
to the size of the search pattern.

The following example is intended to demonstrate that Iseglience/structure
alignments can indeed be utilized for genome-wide homok&grches at accept-
able computational costs.

For our application to box H/ACA snoRNAs we furthermore nfpdhe se-
guence scoring scheme so that in/dels in the conserved rssgjbexes can be
prohibited. As a typical non-coding RNA, snoRNA is largelyatacterized by
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structure and shows only small sequence conservationhEaxample in Fig. 6
we derived the snoRNA pattern from the human U65 snoRNAtL, Rirs compute
a pair probability matrix using McCaskill's algorithm [1@NAfold -p). Due to
the very low sequence conservation, we ignore most of theeseg information
is discarded. We enforce, however, exact matches of thexHrhotif ANANNA be-
tween the two stems) and the ACA-box (matfa at the 3’ end). We conduct our
search on chromosome | @aenorhabditis elegans, which has a size of approx-
imately 16 megabases. The entire computation took appairi;n8 hours on a
Pentium 4 3GHz, 4GB RAM running Linux, about half of the timaswsed by
locarna, the other half was used to pre-compute the base pairingapiiities
with RNAplfold (L = 138, the size of the query pattern).

We determined the 400 top-ranking local alignments of theR§MA pattern.
Three good examples are shown in Figure 6. We then foldedslisingRNAfold
and selected a top-list of 78 snoRNAs candidates whose ramienergy struc-
ture resembles the typical shape of box H/ACA snoRNAs. Ia $leit we find the
single box H/ACA snoRNAcer-3 that is reported for Chr.l in the “Wormbook”
[19]. In addition, we recover two of the nine novel ncRNAs ohrCthat have
been reported as likely box H/ACA snoRNAs in recent expernitakescreens [3,
22].

The LocARNA algorithm [21] could be modified to a true scanning variant in
which memory requirements are independent of the subjeabdae (apart from
storing the input itself). The idea is similar to tRBALfold-style “scanning” al-
gorithms, another variant of which is described in sectidie®w. We observe
that the lengtlw of any local alignment with score are ledst> 0 on the subject
sequence is bounded since the maximally possible alignegemé must exceed
the prescribed threshold. One easily derives the estimate

0<T <M(maxo +maxa,a’)/2) — |lw—M|y (21)

whereM is the length of query sequence dnis the maximal span of a basepair
in subject sequence. It follows that

w< M+ [M(maxo +maxa,a’)/2)—T]/y (22)

It is therefore sufficient to store a window of siméackward from the current po-
sition| in the subject database and to start backtracking from mvithig “active”
window of sizeM x w. It is easy to avoid producing groups of similar alignments
by enforcing a minimum distance in the database betweentainepositions for
consecutive calls to the backtracking routine.

8 A Scanning Version ofRNAup

Regulatory RNAs often interact with a target RNA by forminger-molecular
helices. Duplex formation, e.g. between an siRNA and its rARMNget, is facili-
tated if the binding site is accessible, i.e. in an unpaieggion. To predict possible
binding sites it is therefore of interest to compute the phility PY[i, j] that a se-
quence intervali, j] is unpaired, as is done in tB®Aup program [17]. However,
sinceRNAup folds the complete molecule, its CPU requirements scalé (@s),
making it unsuitable for very long sequences. Instead, ameuse a windowing



RNA Folding and Alignment Algorithms 13

plunpaired]
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Fig. 7 Dot plot and probability of 4 bases being unpaired in an aidifiy designed 3'UTR
targeted by thexcr4siRNA [4]. Bars denote the binding sites. Note that the higjpeobabilities
of being unpaired are observed at the “seed-sites”, i.¢head’ end the binding sites.

technique as an approximation. As in the caseNfplfold it is of interest to
replace explicit computations of individual sequence wimsgl by a “scanning ap-

proach” that directly computes the average over all pemtisequence windows
of a fixed length_.

As shown in [17], the values ¢%°[i, j] can be computed from the equation

PPl jl = LT 5 R Probif, ]| (1) 23)

h<i, <l

where Proljfi, j]|(h,1)] is the probability thafi, j] is an unpaired region within
the loop with closing pai(h,l). Note that this probability is independent of the
structures outside the pdin,|).

As in RNAplfold [2] we define the average over all folding windows of the
probability that(i, j) is paired:

o 1 i u,L
KR )

u=]—L
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Now we compute the averag@]i, j] of the PY[i, j] values over all windows of
lengthL containingi, j], i.e.,

1 i

T[O[|,J] - mu:;LPO[i7j]
= 1 i Zg:iL—lz}j%Ll,n
CL-(-D+14 Zy (25)
i—1 i+l L*(h—|)+1 N
+h:J—L|:J+lL_(j_i)‘f‘ln#lPrOb[[l’JH(h’l)]
Since
Prob[[i, j]|(h,1)] = Zu i, j]/Z}} (26)

is independent of the folding window as long fisl] C [u,u+ L — 1, and the
computation ofZy i, j] requires only partition function entries in the inter{rll ],
we have here a way of combinimgfAup andRNAplfold.

This algorithm can be used e.g. to obtain a quick estimateso@vailability of
putative binding sites for miRNA target prediction. In thisse it seems reasonable
to assume that in order for the miRNA to initiate binding,eddt a small part of
the binding site must be unpaired to accommodate the ipthiatacts. Fig. 7 shows
an application of this approach to an example from the liteea
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