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1 Introduction

Starting with the discovery of microRNAs and the advent of genome-wide tran-
scriptomics, non-protein-coding transcripts have moved from a fringe topic to
a central field of research in molecular biology. Most well-described functional
RNAs have distinctive structures that are conserved over evolutionary time scales.
As efficient algorithms exist to predict RNA secondary structure, bioinformatics
has played an important role in RNA research almost from the beginning [20].

We describe here a collection of novel improved variants of RNA folding and
alignment that were conceived during the 2006 RNA Meeting inBenasque1. In
particular, the accuracy of structure prediction can sometimes be improved by
considering onlycanonical structures, i.e., those that contain no “isolated base-
pairs”. This leads to the idea to emphasize stacking also in other contexts, such as
structure comparison. The prerequisite for such approaches is the observation that
stacking probabilities can be efficiently computed as a post-processing of dynamic
programming table entries that are computed and stored already in the folding al-
gorithms as implemented in theVienna RNA Package.

2 The Loop-Based Energy Model

RNA secondary structures can be seen as outer-planar graphswhose vertices are
the nucleotides and whose edges represent the covalent backbone of the molecule
as well as the basepairs. This class of graphs has a unique outer-planar embedding
whose bounded faces form the unique minimum cycle basis [12]. These faces, in
the context of RNA usually called“loops” have a direct biophysical interpretation
as stabilizing stacked basepairs or entropically destabilizing elements. Thus they
form the units of the standard additive energy model. Energyparameters that de-
pend on sequence, length, and type of the loops have been carefully measured over
the last two decades [14,15]. From the biophysical point of view one distinguishes
hairpin loops, stacked base pairs, bulges, true interior loops, and multi(branched)
loops. From an algorithmic point of view one can treat bulges, stacked pairs, and
true interior loops as subtypes of interior loops. We shall see below, however, that
in some cases stacked pairs require separate treatment.

We consider an RNA sequencex of lengthn. The nucleotide at sequence po-
sition k is xk, andx[k, l ] denotes the sub-sequence(xk, . . . ,xl ). Hairpin loops are
uniquely determined by their closing pair(k, l). The energy of a hairpin loop is
parametrized as

H (k, l) = H (x[k, l ]) = H (xk,xk+1, ℓ,xl−1,xl ) (1)

whereℓ is the length of the loop (expressed as the number of its unpaired nu-
cleotides). Each interior loop is determined by the two basepairs enclosing it. Its
energy is tabulated as

I (k, l ; p,q) = I (x[k, p],x[q, l ])I (xk,xk+1;ℓ1;xp−1,xp;xq,xq+1;ℓ2;xl−1,xl ) (2)

whereℓ1 = p−k+1 is the length of unpaired strand betweenk andp andℓ2 = l −
1+1 is the length of the unpaired strand betweenq andl . Symmetry of the energy

1 RNA-2006, Benasque, Spain, July 14-27 2006
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model dictatesI (k, l ; p,q) = I (q, p; l ,k). If ℓ1 = ℓ2 = 0 we have a (stabilizing)
stacked pair, if only one ofℓ1 and ℓ2 vanish we have a bulge. For multiloops,
finally, we have an additive energy model of the formM = a+ b×B+ c× ℓ
whereℓ is the length of multiloop (again expressed as the number of unpaired
nucleotides) andB ≥ 2 is the number of branches, not counting the branch in
which the closing pair of the loop resides.

Modern versions of the energy parameters also consider so-called dangling
ends, i.e., extra energy contributions of the terminal base pairs in multiloops and
exterior to any other basepair. Although they can be fairly easily included in the
algorithms below, we suppress the dangling end contributions for clarity of pre-
sentation. They are, however, implemented in the programs discussed here.

3 The Basic Folding Recursions

Energy-directed RNA folding is solved by Dynamic Programming algorithms that
are based on decomposing the set of possible structures intosets of sub-structures
that are defined on sub-sequences. This decomposition can bechosen such that
each possible structure appears in exactly one of the subcases, see Fig. 1 (top)
for a graphical representation. In the course of RNA foldingalgorithms for linear
RNA molecules, theVienna RNA Package [8,6] computes the following arrays
for i < j , which correspond to the distinct types of substructures inFig. 1 (top).

Fi j free energy of the optimal substructure on the subsequencex[i, j ].
Ci j free energy of the optimal substructure on the subsequencex[i, j ] subject to the

constraint thati and j form a basepair.
Mi j free energy of the optimal substructure on the subsequencex[i, j ] subject to the

constraint that thatx[i, j ] is part of a multiloop and has at least one component,
i.e., a sub-sequence that is enclosed by a basepair.

M1
i j free energy of the optimal substructure on the subsequencex[i, j ] subject to

the constraint thatx[i, j ] is part of a multiloop and has exactly one component,
which has the closing pairi,h for someh satisfyingi ≤ h < j .

The “conventional” energy minimization algorithm for linear RNA molecules
[24,23] can be summarized in the following way. We give the recursions in the
form in which they are implemented in theVienna RNA Package [8,6]:

Fi j =min

{
Fi+1, j , min

i<k≤ j
Cik +Fk+1, j

}

Ci j =min

{
H (i, j), min

i<k<l< j
Ckl +I (i, j ;k, l), min

i<u< j
Mi+1,u +M1

u+1, j−1 +a

}

Mi j =min

{
min

i<u< j
(u− i −1)c+Cu+1, j +b, min

i<u< j
Mi,u +Cu+1, j +b, Mi, j−1 +c

}

M1
i j =min

{
M1

i, j−1 +c, Ci j +b
}

(3)
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The initialization isFii = 0,Cii = Mii = M1
ii =+∞. Memory consumption is quadratic

in sequence length2. In our current implementation, the total length of interior
loops (second term in the recursion forC) is limited such that( j − l −1)+ (k−
i−1) ≤ 30. This restriction leads to a cubic run-time. Under certain conditions on
the interior loop energies, a cubic algorithm can also be obtained without a length
restriction for interior loops [13].

The corresponding recursions for the partition functions (Zi j , ZB
i j , ZM

i j , ZM1
i j )

are obtained by replacing minimum operations with sums and additions with mul-
tiplications [16]:

Zi j =Zi+1, j + ∑
i<k≤ j

ZB
ikZk+1, j

ZB
i j =e−βH (i, j) + ∑

i<k<l< j

ZB
kle

−βI (i, j;k,l) + ∑
i<u< j

ZM
i+1,uZM1

u+1, j−1e−βa

ZM
i j = ∑

i<u< j
e−β (u−i−1)cZM

u+1, j + ∑
i<u< j

ZM
i,uZB

u+1, je
−βb +ZM

i, j−1e−βc

ZM1
i j =ZM1

i, j−1e−βc +ZB
i j e

−βb

Zii = 1, ZB
ii = ZM

ii = ZM1
ii = 0

(4)

As usual,β = 1/RT is the inverse thermal energy. Uniqueness of the substructure
decomposition is crucial in the case, since the partition function is a weighted
count over all structures.

4 Canonical Secondary Structures

A canonicalsecondary structure does not contain isolated (“lonely”) basepairs,
i.e., pairs that are not stacked on another pair. In Fig. 1 we compare the structure
decomposition of the usual, unconstrained, secondary structures with the decom-
position of constrained structures. Restrictions of the energy minimization algo-
rithms to this subclass have already been included in theVienna RNA Package.
The requirement of a unique structural decomposition, which can be waived in the
case energy minimization, however, requires some algorithmic changes in parti-
tion function approaches.

Let Z∗
i j denote the partition function over all structures that are enclosed by

a basepair and that become canonical when enclosed by an additional exterior
basepair(i−1, j +1); this corresponds to the structures marked (C) in Fig. 1. The
usual forward recursions (4) remain almost unchanged: The recursion forZ∗ is
precisely as given forZB in eq. 4 above, while theZB

i j

ZB
i j = Z∗

i+1, j−1e−βI (i+1, j−1,i, j) (5)

is computed by adding the stacking contribution to the enclosed structure. The
multiloop decomposition remains unchanged.

2 In most applications the theM1 andF arrays can be replaced by linear arrays that store only
the current and previous row or column
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Fig. 1 Comparison of the structure decompositions used in RNA folding algorithms for uncon-
strained structures (top) and canonical structures (below). Thin arcs denote substructures that
are closed by a possibly lonely basepair but otherwise canonical. Thick arcs mark canonical
substructures enclosed by a stacked pair. We note that the decomposition stays almost the same
provided one reinterprets the closed structures as canonical structures enclosed by a basepair
(B). The only difference is the representation ofB as an enclosed structure (C) that becomes
canonical when enclosed by a single outer basepair.

The backward recursions are bit more problematic, however.Denote byẐB
i j

the partition function over all canonical structures outside the pair(i, j), and let
Ẑ∗

i j be the partition function over all structures outside(i, j) that become canonical
when enclosed by the additional basepair(i−1, j +1). Again there is little change
compared to the “usual” backwards recursion as implementedin theVienna RNA
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Package. The main difference is that the case of a stacking interaction is differ-
ent here, since the sub-structures excluded by(i, j) need not be canonical. It is
sufficient that(i −1, j + 1) is paired. Therefore, the stacking term depends onẐ∗

instead ofZB. We thus obtain the following recursions:

Ẑ∗
i j =Z1,i−1Z j+1,n︸ ︷︷ ︸

exterior

+ ∑
h<i< j<l

(h,l) 6=(i−1, j+1)

ẐB
h,l e

−βI (h,l ;i, j)

︸ ︷︷ ︸
interior loop

+ Ẑ∗
i−1, j+1e−βI (i−1, j+1;i, j)

︸ ︷︷ ︸
stack

+

∑
h<i< j<l

ẐB
h,l ×





e−β (i−h−1)cZM

j+1,l−1︸ ︷︷ ︸
multiloop right

+ZM
h+1,i−1e−β (l− j−1)c

︸ ︷︷ ︸
multiloop left

+ZM
h+1,i−1ZM

j+1,l−1︸ ︷︷ ︸
multiloop both






ẐB
i j = Ẑ∗

i−1, j+1e−βI (i−1, j+1;i, j)

(6)

From these quantities we can immediately compute the probability of the stack
(i, j ; i +1, j −1) as

P[i, j ] =
ZB

i, j Ẑ
B
i+1, j−1

Ze−βI (i, j;i+1, j+1)
(7)

Note that we have to divide by the stacking contribution since this factor is con-
tained in bothẐB

i, j andZB
i+1, j−1. The individual base pairing probabilities can be

computed as follows:

Pi j =
1
Z

[
Z∗

i j Ẑ
B
i j +ZB

i j Ẑ
∗
i j −ZB

i j Ẑ
B
i j

]
(8)

The last term accounts for the fact that in the first two terms we have twice in-
cluded the structures that are canonical both inside and outside the pair(i, j).

The partition function algorithm for canonical structureshas been included
in the latest version of theVienna RNA Package. Fig. 2 gives an example in
which the restriction to canonical basepairs increases theaccuracy of the structure
prediction. Since fewer basepairs have to be considered in the canonical case, there
is also a moderate performance gain.

5 Probabilities for Stacks

The probability of a structural motif can be computed easilyonce theZB table has
been filled. Of particular interest are the probabilities for stacks and helices, which
we derive below. The conditional probability for the stacking of two pairs is

Prob[(i +1, j −1)|(i, j)] =
ZB

i+1, j−1

ZB
i, j

e−βI (i, j;i+1, j−1) (9)

The probability for a stack of length at leastℓ inside the pair(i, j) can be
determined by a similar expression:

P(ℓ)
i, j = Pi j

ZB
i+ℓ−1, j−ℓ+1

ZB
i, j

ℓ−2

∏
u=0

e−βI (i+u, j−u;i+u+1, j−u−1) (10)
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Fig. 2 Canonicalversusgeneral secondary structures.
L.h.s. panel: Comparison of base pairing probabilities of atRNA (Genbank Accession number
AB031211) with isolated pairs (lower left) and without (upper right) triangular matrix. In this
example, the characteristic clover leaf shape is more apparent in the distribution of canonical
structures.
R.h.s. panel: comparison of the performance of the folding and backtracing algorithm as imple-
mented in the current version of theVienna RNA Package. As expected, computing canonical
structures is cheaper by a constant factor since fewer potential base pairs have to be considered.

Equivalently, Al-Bakuf’s equation expressesP(ℓ)
i, j in terms of the conditional stack-

ing probabilities

P(ℓ)
i, j = Pi j

ℓ−2

∏
u=0

Prob[(i +u+1, j −u−1)|(i +u, j −u)] (11)

The probability that the stack extends exactlyℓ basepairs from(i, j) can be com-
puted as

P[ℓ]
i j = P(ℓ)

i j −P(ℓ+1)
i j (12)

We can also rather easily enforce that(i, j) is the first pair of the stack. We
start from Bayes’ equation:

Prob[(i +1, j −1)|(i, j)]Pi j = Prob[(i, j)|(i +1, j −1)]Pi+1, j−1 (13)

Thus, the probability that(i −1, j +1) is not a pairgiventhat(i, j) is paired is

Prob[¬(i −1, j +1)|(i, j)] = 1−Prob[(i, j)|(i −1, j +1)]
Pi−1, j+1

Pi, j
(14)

The probability P(ℓ)i j of stack of length at leastℓ with the first pair(i, j) is thus

P(ℓ)
i j = Prob[¬(i−1, j +1)|(i, j)]P(ℓ)

i j

=

[
1−

Pi−1, j+1

Pi, j

ZB
i, j

ZB
i−1, j+1

e−βI (i−1, j+1;i, j)

]
Pi, j

ZB
i+ℓ−1, j−ℓ+1

ZB
i, j

ℓ−2

∏
u=0

e−βI (i+u, j−u;i+u+1, j−u−1)

= P(ℓ)
i j −Pi−1, j+1

ZB
i+ℓ−1, j−ℓ+1

ZB
i−1, j+ j

e−βI (i−1, j+1;i, j)
ℓ−2

∏
u=0

e−βI (i+u, j−u;i+u+1, j−u−1)

(15)



8 Bompfünewereret al.

G G A A C G G U G C G A G C C G U U U G G A G G U C A C C G C A A C U

G G A A C G G U G C G A G C C G U U U G G A G G U C A C C G C A A C UG
G

A
A

C
G

G
U

G
C

G
A

G
C

C
G

U
U

U
G

G
A

G
G

U
C

A
C

C
G

C
A

A
C

U

G
G

A
A

C
G

G
U

G
C

G
A

G
C

C
G

U
U

U
G

G
A

G
G

U
C

A
C

C
G

C
A

A
C

U

G G A A C G G U G C G A G C C G U U U G G A G G U C A C C G C A A C U

G G A A C G G U G C G A G C C G U U U G G A G G U C A C C G C A A C UG
G

A
A

C
G

G
U

G
C

G
A

G
C

C
G

U
U

U
G

G
A

G
G

U
C

A
C

C
G

C
A

A
C

U

G
G

A
A

C
G

G
U

G
C

G
A

G
C

C
G

U
U

U
G

G
A

G
G

U
C

A
C

C
G

C
A

A
C

U

Fig. 3 Comparison of base pairing probabilitiesPi j (upper right of both dot plots), stack-

ing probabilities P(2)
i j (lower left of left dot plot), and conditional stacking probabilities

Prob[(i, j)|(i +1, j −1)] (lower left of right dot plot) for a short artificial sequence. Even for
low probability helices, conditional stacking probabilities are often close to 1.

As we would expect, we obtain

P(ℓ)
i j = P(ℓ)

i j −P(ℓ+1)
i−1, j+1 (16)

Finally, the probability for a stack of length exactlyℓ with first pair(i, j) is

P[ℓ]
i j = P(ℓ)

i j −P(ℓ+1)
i j

= P(ℓ)
i j −P(ℓ+1)

i−1, j+1−P(ℓ+1)
i j +P(ℓ+2)

i−1, j+1

= P[ℓ]
i j −P[ℓ+1]

i−1, j+1

(17)

Fig. 3 compares Prob[(i, j)|(i +1, j −1)] with Pi j . In general we see a similar
pattern, indicating that stacked basepairs are highly correlated.

6 Structural Alignment with Stacking

In many applications it is convenient to avoid the full loop based energy model
and to use a scoring scheme based on pre-computed pair probabilities instead.
Essentially, such an approach treats pair probabilities asif they were independent.
Including the effect of basepair stacking should improve this situation without
introducing much additional complexity.

As an example we consider the structural alignment programLocARNA [21].
Similar toPMcomp [7], LocARNA implements a Nussinov-style version of the Sankoff
algorithm [18] in which scores for basepair matches are pre-computed using ther-
modynamic folding algorithms.
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Fig. 4 Recursion scheme for sequence-structure alignment

Let Mi jkl be the optimal score of an alignment of the subsequencesA[i.. j ]
andB[k..l ]. Furthermore,Di jkl is the optimal score of an alignment of the subse-
quencesA[i.. j ] andB[k..l ] with matching basepairs (arcs)(i, j) and(k, l). With a
gap penaltyγ , and sequence dependent scoresσ for unpaired (mis)match andα
for arc matches one finds the following recursions (see also Figure 4):

Mi, j,k,l = max






Mi, j−1,k,l + γ
Mi, j,k,l−1 + γ
Mi, j−1,k,l−1 +σ(i, j)
max
i<p< j
k<q<l

(
Mi,p−1,k,q−1 +Dp, j,q,l

)

Di, j,k,l = Mi+1, j−1,k+1,l−1 +α(i, j ,k, l)

(18)

In order to incorporate stacking we have to introduce an additional set of pa-
rametersα ′ that scores the extension of a series of adjacent arcs. Furthermore, we
have to distinguish the extension of an arc-enclosed alignment from the formation
of an individual enclosing arc:

Di, j,k,l = max






α(i, j ,k, l)+max






Mi+1, j−2,k+1,l−1 + γ
Mi+1, j−1,k+1,l−2 + γ
Mi+1, j−2,k+1,l−2 +σ(i −1, j −1)

max
i+1<p<l−1

k+1<q<l

(
Mi+1,p−1, j+1,q−1 +Dp, j−1,q,l−1

)

α ′(i, j ,k, l)+Di+1, j−1,k+1,l−1

(19)
The global alignment score isM1,|A|,1,|B|.

For local alignment with a score thresholdT we have to include the“un-
aligned” state with scoreMi, j,k,l = 0 as additional alternative in equ.(18). Back-
tracking than starts at local maxima of theM1, j,1,l matrix that exceed the threshold
T .
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a.)

UCCCCCCACCC

broken
arcs

CCCACCCCCCU

b.)

CCCCCCCCCCC

UCCACCCACCU
a2a1

Fig. 5 (a) Crossing interaction produced by broken arcs. (b) Both arcs are broken here since
they are not part of a basepair match.

In our implementation, only theD array (for pairs of matched base pairs only)
and the valuesM1, j,1,l are stored permanently. Since the number of basepairs in the
input structures is linear in sequence length provided onlypairs with a minimum
pairing probabilityp0 are considered, the algorithm requiresO(|A|×|B|) memory,
see [21] for details.

Concerning the definition of the scoring function, a naturalway of definingα
andα ′ is to use properly scaled logarithms of base pairing and conditional base
probabilities, respectively. For moleculeA we have

Ψ A
i j = max{0, log(PA

i j /p0)/ log(1/p0)}

ΨA∗
i j = max{0, log(Prob[(i, j)|(i +1, j−1)]/p0)/ log(1/p0)} .

(20)

Herep0 is a use-defined minimum pairing probability. Analogous expressions de-
fineΨ A

i j andΨA∗
i j . Then we simply setα(i, j,k, l) = Ψ A

i j +ΨB
kl andα ′(i, j,k, l) =

Ψ A∗
i j +ΨB∗

kl .
Thus, only the base matchesAi—B j that arenot part of matching basepairs

(arcs) are given a sequence dependent scoreσ(i, j) (third entries in eqs.(18) and
(19)), resp. BothLocARNA andPMComp also use a sequence-specific component
τ(i, j,k, l) for matching basepairs in the definition ofα(i, j,k, l). For this purpose
one can utilize e.g. the RIBOSUM basepair substitution scores [11], a 16× 16
matrix derived from substitution probabilities between all possible pairs of nu-
cleotides.

The question remains, howarc breaking should be treated, which occurs when-
ever an input basepair in one sequence is not matched againstanother basepair. If
two known secondary structures instead of basepair probability matrices are used
as input, it is biophysically meaningful to explicitly penalize arc breaking, see e.g.
[10,1]). These score could be added as an extra row and columnto the RIBOSUM
model. However, the above recursion scheme or variants of itcan only be applied
if the score for arc breaking has a special form, namely the left and right ends of
the broken arcs are scored independently. The reason is thatconsidering a broken
arc as an entity would produce crossing interactions as in Figure 5a for an exam-
ple. In contrast, tree-editing like algorithms (see [5] andthe references therein)
treat arcs as entities that can be added or deleted only as a whole. In such models
it is natural to have scores that depend on the type of basepair; in general, these
will not be the sum of contributions for the paired bases.

In the case ofLocARNA andPMcomp where basepair probability matrices are
given as an input, scoring of arc breaking does not make sense. Consider the case
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Fig. 6 Left: Secondary structure of the best 3 snoRNA candidates. Right: Dot plot produced
by RNAfold of first candidate (a)). Candidates show specific snoRNA features like: 2 stems
of approximately equal length, ACA-box at 3’end and H-box (consensus: ANANNA) between
both stems.

where we have two crossing arcsa1 anda2 in the basepair probability matrices
having a similar probability as in Figure 5b. In this case, wesimply do not know
which of the two arcs are part of the real structure of the firstsequence. Further-
more, both arcs are exclusive. Hence, we could score at most one arc breaking,
and we simply do not have any information which one should be scored.

7 Using Structural Alignment Algorithms for Gene Finding

A natural application of local structural alignments is homology based RNA gene
finding. To this end, a structure-annotated genomic DNA can be efficiently com-
putedRNALfold [9] or RNAplfold [2]. These programs compute local RNA struc-
ture by restricting the maximum span of basepairs(i, j) to | j− i|< L.

Utilizing LocARNA for sequence/structure homology search requires several
modifications. We first extended the algorithm so that its backtracking routine not
only return the optimal local alignment but thek-best local alignments. This was
achieved by an interval splitting strategy on top of the basic algorithm. For com-
plexity reasons, we process overlapping windows (size 100000) instead of com-
plete chromosomes. For each window, the RNA search pattern is locally aligned
to the window. Local folding allows us to restrict the maximal reach basepairsL
to the size of the search pattern.

The following example is intended to demonstrate that localsequence/structure
alignments can indeed be utilized for genome-wide homologysearches at accept-
able computational costs.

For our application to box H/ACA snoRNAs we furthermore modify the se-
quence scoring scheme so that in/dels in the conserved sequence boxes can be
prohibited. As a typical non-coding RNA, snoRNA is largely characterized by
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structure and shows only small sequence conservation. For the example in Fig. 6
we derived the snoRNA pattern from the human U65 snoRNA. First, we compute
a pair probability matrix using McCaskill’s algorithm [16](RNAfold -p). Due to
the very low sequence conservation, we ignore most of the sequence information
is discarded. We enforce, however, exact matches of the H-box (motif ANANNA be-
tween the two stems) and the ACA-box (motifACA at the 3’ end). We conduct our
search on chromosome I ofCaenorhabditis elegans, which has a size of approx-
imately 16 megabases. The entire computation took approximately 8 hours on a
Pentium 4 3GHz, 4GB RAM running Linux, about half of the time was used by
locarna, the other half was used to pre-compute the base pairing probabilities
with RNAplfold (L = 138, the size of the query pattern).

We determined the 400 top-ranking local alignments of the snoRNA pattern.
Three good examples are shown in Figure 6. We then folded all hits usingRNAfold
and selected a top-list of 78 snoRNAs candidates whose minimum energy struc-
ture resembles the typical shape of box H/ACA snoRNAs. In this set we find the
single box H/ACA snoRNAcer-3 that is reported for Chr.I in the “Wormbook”
[19]. In addition, we recover two of the nine novel ncRNAs on Chr.I that have
been reported as likely box H/ACA snoRNAs in recent experimental screens [3,
22].

TheLocARNA algorithm [21] could be modified to a true scanning variant in
which memory requirements are independent of the subject database (apart from
storing the input itself). The idea is similar to theRNALfold-style “scanning” al-
gorithms, another variant of which is described in section 8below. We observe
that the lengthw of any local alignment with score are leastT ≥ 0 on the subject
sequence is bounded since the maximally possible alignmentscore must exceed
the prescribed thresholdT . One easily derives the estimate

0≤ T ≤ M(maxσ +max(α,α ′)/2)−|w−M|γ (21)

whereM is the length of query sequence andL is the maximal span of a basepair
in subject sequence. It follows that

w ≤ M +[M(maxσ +max(α,α ′)/2)−T ]/γ (22)

It is therefore sufficient to store a window of sizew backward from the current po-
sition l in the subject database and to start backtracking from within this “active”
window of sizeM×w. It is easy to avoid producing groups of similar alignments
by enforcing a minimum distance in the database between the start positions for
consecutive calls to the backtracking routine.

8 A Scanning Version ofRNAup

Regulatory RNAs often interact with a target RNA by forming inter-molecular
helices. Duplex formation, e.g. between an siRNA and its mRNA target, is facili-
tated if the binding site is accessible, i.e. in an unpaired region. To predict possible
binding sites it is therefore of interest to compute the probability P0[i, j] that a se-
quence interval[i, j] is unpaired, as is done in theRNAup program [17]. However,
sinceRNAup folds the complete molecule, its CPU requirements scale asO(n3),
making it unsuitable for very long sequences. Instead, one can use a windowing
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Fig. 7 Dot plot and probability of 4 bases being unpaired in an artificially designed 3’UTR
targeted by thecxcr4siRNA [4]. Bars denote the binding sites. Note that the highest probabilities
of being unpaired are observed at the “seed-sites”, i.e., atthe 3’ end the binding sites.

technique as an approximation. As in the case ofRNAplfold it is of interest to
replace explicit computations of individual sequence windows by a “scanning ap-
proach” that directly computes the average over all pertinent sequence windows
of a fixed lengthL.

As shown in [17], the values ofP0[i, j] can be computed from the equation

P0[i, j] =
Z1,i−1Z j+1,n

Zn
+ ∑

h<i, j<l

Ph,l Prob[[i, j]|(h, l)] , (23)

where Prob[[i, j]|(h, l)] is the probability that[i, j] is an unpaired region within
the loop with closing pair(h, l). Note that this probability is independent of the
structures outside the pair(h, l).

As in RNAplfold [2] we define the average over all folding windows of the
probability that(i, j) is paired:

πL
i j =

1
L− ( j− i)+1

i

∑
u= j−L

Pu,L
i j . (24)
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Now we compute the averageπ0[i, j] of the P0[i, j] values over all windows of
lengthL containing[i, j], i.e.,

π0[i, j] =
1

L− ( j− i)+1

i

∑
u= j−L

P0[i, j]

=
1

L− ( j− i)+1

i

∑
u= j−L

Zu,L
1,i−1Zu,L

j+1,n

Zu,L
1,n

+
i−1

∑
h= j−L

i+L

∑
l= j+1

L− (h− l)+1
L− ( j− i)+1

πL
hlProb[[i, j]|(h, l)]

(25)

Since
Prob[[i, j]|(h, l)] = Zhl [i, j]/ZB

i j (26)

is independent of the folding window as long as[h, l] ⊆ [u,u + L − 1, and the
computation ofZhl [i, j] requires only partition function entries in the interval[h, l],
we have here a way of combiningRNAup andRNAplfold.

This algorithm can be used e.g. to obtain a quick estimate of the availability of
putative binding sites for miRNA target prediction. In thiscase it seems reasonable
to assume that in order for the miRNA to initiate binding, at least a small part of
the binding site must be unpaired to accommodate the initialcontacts. Fig. 7 shows
an application of this approach to an example from the literature.
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