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Abstract

TheRFAM database defines families of ncRNAs by means of sequence similarities that are sufficient
to establish homology. In some cases, such as microRNAs, boxH/ACA snoRNAs, functional common-
alities define classes of RNAs that are characterized by structural similarities, and typically consist of
multiple RNA families. Recent advances in high-throughputtranscriptomics and comparative genomics
have produced very large sets of putative non-coding RNAs and regulatory RNA signals. For many of
them, evidence for stabilizing selection acting on their secondary structures has been derived, and at least
approximate models of their structures have been computed.The overwhelming majority of these hypo-
thetical RNAs cannot be assigned to established families orclasses.
We present here a structure-based clustering approach thatis capable of extracting putative RNA classes
from genome-wide surveys for structured RNAs. TheLocARNA tool implements a novel variant of the
Sankoff algorithm that is sufficiently fast to deal with several thousand candidate sequences. The method
is also robust against false positive predictions, i.e., a contamination of the input data with unstructured or
non-conserved sequences.
We have successfully tested theLocARNA-based clustering approach on the sequences of theRFAM-seed
alignments. Furthermore, we have applied it to a previouslypublished set of 3332 predicted structured
elements in theCiona intestinalisgenomes (Missalet al., Bioinformatics21(S2), i77-i78). In addition to
recovering e.g. tRNAs as a structure-based class, the method identifies several RNA families, including
microRNA and snoRNA candidates, and suggests several novelclasses of ncRNAs for which to-date no
representative has been experimentally characterized.

1 Introduction

Starting with the discovery of microRNAs [1, 2, 3] and the advent of genome-wide transcriptomics [4,
5, 6], it has become obvious that RNA plays a large variety of important, often regulatory, roles in living
organism that extend far beyond being a mere intermediate inprotein biosynthesis. The elucidation of
the functional roles of the plethora of newly discovered non-coding RNAs (ncRNAs) has thus become a
central research interest in molecular biology.

Recent advances in computational RNomics have resulted in numerous software packages that can be
employed to detect ncRNAs with evolutionarily conserved secondary structures [7, 8, 9, 10, 11, 12]. Two
of these,EvoFold [10] andRNAz [9, 13] are efficient enough to be applied to genome-wide surveys
in mammals [10, 13] and other metazoan clades [14, 15]. Both approaches start from multiple sequence
alignments. WhileEvoFold uses the SCFG approach pioneered byqrna [7], RNAz is based on eval-
uating the folding thermodynamics. Both approaches classify input alignments either as unstructured or
as possessing a common RNA secondary structure; in the latter case they provide a prediction for the
consensus structure of the aligned sequences.

Just as in the case of proteins, ncRNA-sequences can be grouped intofamiliesthat are characterized by
clear homologies. Usually the members in a family share functional characteristics as well as conserved
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sequence and structure motifs. Indeed, theRFAM database [16] compiles several hundred families of
ncRNAs based on this observation. Examples include the individual snRNAs U1, U2, U4, U5, and U6,
5S rRNA, RNAse P RNA, the RNA component of telomerase, more than a hundred families of snoRNAs
and several hundred microRNA families collected inmirbase [17]. In many cases, RNA families can
be grouped together, forming ancRNA classwhose members have no discernible homology at sequence
level, but still share common structural and functional properties. The best-known classes are tRNAs
(although is well established that all tRNAs derive from a common ancestor [18]), the two distinct classes
of snoRNAs (box H/ACA and box C/D), RNAse P and MRP RNAs, and microRNAs. It is thus natural to
ask whether the many ncRNA candidates that have been predicted computationally can be grouped into
families or even classes, and in particular, whether there is evidence for novel families and classes for
which we have not yet seen experimentally verified representatives.

As sequence similarity is often remote even within well-established RNA families, we cannot rely on
pure sequence alignment techniques for this task. Indeed, it has been shown that sequence alignments of
structured RNAs fail at pairwise sequence identities belowabout 60% [19]. Several different algorithmic
approaches have been introduced in the past to determine structural similarities and to derive consensus
structure patterns for RNAs that are too diverse to be alignable at sequence level. The corresponding
software tools, such asMARNA [20], PMmulti [21], RNAforrester [22], cannot be applied without
modifications to the problem of clustering predicted structures fromRNAz or EvoFold surveys, how-
ever. The main reason is that these ncRNA detectors are not guaranteed to find the complete ncRNA
genes; rather they usually detect particularly conserved substructures and sometimes the predictions are
contaminated with spurious predictions in the flanking sequences. Thus a local structure-based align-
ment algorithm is necessary. This is already implemented inRNAforrester [22], which is based on
tree-alignment, and in the local sequence-structure alignment approach described [23], which in addition
can detect alsostructurally local motifs. A related approach detects exact local sequence structure pat-
terns inO(n2) [24]. However, all these approaches require asingleknown or predicted input structure.
Tree-alignment and tree-editing in addition have only limited capabilities to repair incorrect base-pairs.
Tree-alignment is particularly restrictive in this respect since even broken arcs must be nested. As a con-
sequence,RNAforrester tends to produce many alignment columns that contain mostlygap characters
in the multiple alignment mode.

In contrast, derivates of the Sankoff algorithm [25] solve the problem of simultaneous folding and
alignment, which turned out to be more appropriate. However, the large number of predicted ncRNAs,
several thousands in the case of nematode and urochordate genomes and close to 100000 in the case of
mammals, calls for more efficient variants of these algorithms.

In this contribution we introduceLocARNA, a local pairwise structural alignment algorithm for pseudo-
knot-free RNA secondary structures, and its multiple version mLocARNA. (m)LocARNA is a Sankoff-
style algorithm, similar toPMmulti, that is efficient enough to be used for large clustering of predicted
ncRNAs. We have successfully tested theLocARNA-based clustering approach on the sequences of the
RFAM-seed alignments to demonstrate the feasibility of the approach, and to evaluate the results. Further-
more, we use the data from a survey of the ascidiansCiona intestinalisandCiona savignyi[14] to achieve
the following goals: (1) We search for novel, clade-specificRNA families in Ciona, which is of interest
in itself. (2) In doing so, we can increase the credibility ofsome of the predicted ncRNAs, since being
part of larger family of related RNAs with similar structurereduces the likelihood of being a false positive
prediction. (3) We improve the genome annotation be assigning additional ncRNAs to known families.
(4) The inferred consensus structures of novel families form a starting point for subsequent searches in
related organisms.

2 Structure-Based Clustering

In this work, we set up a pipeline for automated clustering ofncRNAs (or ncRNA candidates) and semi-
automated selection of novel, complex clusters of RNAs. Theinput is a set of RNAsR1, . . . , Rm, which
are given by their sequences, and the output is a hierarchical clustering of these RNAs. In addition, we
will generate a fast, pre-sorted, and annotated overview ofthe clusters for further inspection by an expert.
Our pipeline is built from the following steps:

1. For each of the RNAs, we compute structural information using McCaskill’s algorithm, imple-
mented inRNAfold. This algorithm computes a matrix of pair probabilities based on a complete
energy model of RNAs.

2. The next step is to compute all pairwise alignments of the structurally annotated sequences using
LocARNA. Note that this requires to computeO(m2) pairwise sequence/structure alignments for
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determining the distance matrix. Note further that performing all pairwise comparisons cannot be
reasonably circumvented or replaced in a full-featured clustering procedure. For genomic-scale data
sets,O(m2) comparisons are way too costly for most existing sequence-structure approaches. The
computational efficiency remains crucial, even if this computationally most intensive procedure is
distributed for parallel computation, which we do in a straightforward manner. As result we assign
aLocARNA-alignment scorescore(i, j) to each pair of RNAs(Ri, Rj).

3. A cluster-tree is generated by applying the weighted pairgroup method algorithm (WPGMA), which
is also known as average-linkage clustering, to a matrix of pairwise distances of the RNAs. There,
the distancesd(i, j) correspond directly to ourLocARNA-scores. Instead of computing distances as
maxij − score(i, j), we define distances by

d(i, j) = max(0, q − score(i, j)),

whereq is thex-quantile (e.g.x = 99%) of all pairwise scores. This decision avoids that ex-
ceptionally large scores influence the distance-transformation. In the resulting tree, internal nodes
correspond to clusters of RNAs. Their heights correspond tothe mean pairwiseLocARNA-scores
of their constituents and thus give a single-value measure of cluster quality.

4. A good overview and a true quality assessment of the clusters can be provided best through multiple
alignments of each cluster. We simultaneously construct all multiple sequence/structure alignments,
i.e. one for each cluster, by onlyO(n) runs of the pairwise alignment algorithm. This can be done
by constructing the multiple alignments progressively, using the, already constructed, cluster-tree as
guide tree.

From each of the multiple alignments, we collect information that can guide a quality assessment
of the cluster. We compute the mean pairwise sequence identity (MPI) and, usingRNAalifold,
the structure conservation index (SCI), the consensus minimum free energy (MFE), the consensus
MFE structure, and the consensus base pair probabilities. Sorting the list of generated clusters by
the quantities size of cluster, SCI, MPI, and MFE provides the expert with a automatically proposed
order for his manual inspection of the clusters. The multiple alignment itself and the consensus
structure information facilitate the selection of “interesting” clusters.

This pipeline crucially depends on pairwise sequence/structure alignments. Therefore, we require the
following algorithmic components which we describe in somedetail in the following subsections:

2.1 We need an efficient algorithm for high quality pairwise alignments of RNAs that considers both
sequence and structure information. For this purpose, the best results are achieved with Sankoff-
style algorithms. We provide the new method calledLocARNA, which is much more efficient than
current approaches and uses base pair probabilities as structural input.

2.2 For the selection of clusters, one important sub-problem is to extract consensus structure information
from the clustered RNAs, which is done by usingRNAalifold. For producing the input for
RNAalifold, we introduce thelocal multiple alignment methodmLocARNA.

2.1 LocARNA: Efficient pairwise local sequence/structure alignment

For the pairwise alignments of RNA we use our novel toolLocARNA, which computes local alignments of
RNA. It is a Sankoff-style algorithm in the spirit ofPMcomp, but goes beyond its ancestor by introducing
local alignment and significantly improving the efficiency.

The Sankoff algorithm [25] provides a general solution to the problem of simultaneously computing an
alignment and the common secondary structure of the two aligned sequences. In its full form, the problem
requiresO(n6) CPU time andO(n4) memory, wheren is length of the RNA sequences to be aligned.
In general, one can distinguish two variants of the Sankoff algorithms: Programs such asfoldalign
[26, 27] anddynalign [28] implement a more or less complete energy model for the RNA folding part.
In contrast,PMcomp [21] assumes that a structure model for the two input sequences is already known
and given in the form of weights for the individual base pairs. However, note that such a structure model is
reasonably obtained using McCaskill’s algorithm [29] again on the basis of a full featured energy model.

Consider two sequencesA andB with associated base pairing weight matricesΨA andΨB, respec-
tively. The goal is to compute a sequence alignmentA of A andB together with secondary structureS on
A. A consists of a set of (mis)matches written as pairs(i, k), wherei is a position inA, andk a position in
B. The consensus secondary structureS for an alignmentA consists of a set of quadruples(ij; kl), where
(i, k) ∈ A and(j, l) ∈ A are two matches inA, (i, j) is a base pair on sequenceA and(k, l) is a base pair
on sequenceB. Furthermore, denote byAs the single-stranded part of the alignment, i.e., if(i, k) ∈ As
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then there is no pair(j, l) such that(ij; kl) ∈ S or (ji; kl) ∈ S. The goal is to determine the pair(A, S)
that maximized the score function

∑

(ij;kl)∈S

(ΨA
ij + ΨB

kl) +
∑

(i,k)∈As

σ(Ai, Bk) − Ngapγ, (1)

whereσ : {A, C, G, U}2 → R is the similarity score for (mis)matches,γ is the gap score parameter and
Ngap is the number of insertions and deletions in the alignmentA.

BothPMcomp and our novel tool,LocARNA(“Local Alignment ofRNA”), use base pair scores that
are derived from the base pairing probability matrices of the two individual sequences. More precisely,
we use here

Ψij =

{

log
Pij

p0

/

log 1
p0

if Pij ≥ p∗

−∞ otherwise,
(2)

wherePij is equilibrium pairing probability as computed by McCaskill’s algorithm [29],p0 is the expected
probability for a pairing to occur at random andp∗ is the cut-off probability, below which the arcs are
ignored. Formally, this is expressed by assigning−∞ as weight in this case. The termlog Pij/p0 is the
log-odds score for having a specific base pairing against thenull model of a random pairing, andlog 1/p0

is a normalization factor that transforms the weights to a maximum of1. The reason for this normalization
is just that it is more easier to balance the sequence score against the structure score.

LocARNA improves thePMcomp approach in several ways. First of all, it uses a modified dynamic
programming approach that allows us to utilize the fact thattypically the number of significant base pairs
does not grow withO(n2), i.e., that theΨ matrices are usually sparse. In particular, ifp∗ is constant for
differentn, then each base can take part in at most1/p∗, and thusO(1), many base pairs. Hence, there
are onlym = O(n) significant entries inΨ.

We defineDi j;k l as the maximal similarity score of an alignment for the subsequencesA[i..j] and
B[k..l] with the additional condition that(i j; k l) is part of consensus secondary structure. To profit from
the reduced number of significant basepairs in time and spacecomplexity, we calculate and store only
Di j;k l that correspond to significant base pairs. Due to this modification, we need to take special care
to avoid redundant computation. Therefore, we compute the entriesDi j;k l by fixing i andk and varying
only j and l. We introduce the notationDi ·;k · to denote the matrix slice wherei andk are fix. The
efficient calculation ofDi ·;k · in O(n2) time requires auxiliary matricesM , where the entriesMi j;k l are
the optimal similarity score of subsequencesA[i + 1..j] andB[k + 1..l], and leads to computation order
that differs fromPMcomp. Finally, the dynamic programming recursion forM andD takes the usual form
of a Sankoff-style algorithm:

Mi j;k l = max























Mi j−1;k l−1 + σ(Aj , Bl)

Mi j−1;k l + γ

Mi j;k l−1 + γ

max
j′l′

Mi j′−1;k l′−1 + Dj′ j;l′ l

Di j;k l = Mi j−1;k l−1 + ΨA
ij + ΨB

kl

(3)

The important observation is that the last, computationally most expensive, alternative in theM recursion
needs to be evaluated only forPA

j′l′ ≥ p∗ andPB
jl ≥ p∗, and, analogously,D needs to be stored only for

matching base pairs. We observe thatDi ·;k · depends only onMi ·;k ·, which in turn can be computed from
otherMi ·;k · entries. Thus we only need to store the entries ofM for the current values ofi andk, i.e.
O(n2) entries. The recursion can therefore be evaluated inO(m2 + n2) memory andO(n2(n2 + m2))
time.

From the matricesM andD, we can now compute the score of the best global alignment as well as
the score of the best local alignment. In our study, we are only interested in the latter. Global alignment is
only explained for better understanding and for comparisonto the global alignment algorithmPMcomp.
The score of the global alignment can be computed by evaluating the recursion forM0 j;0 l, i.e. the optimal
global alignment score isM0 |A|;0 |B|.

Concerning local alignment, in a Sankoff-style approach usually we compute a four-dimensional ma-
trix of alignment scores foreachpair of subsequencesAi . . . Aj andBk . . . Bl. In this case, we could
trivially obtain the best local alignment score by searching for the maximal score.

In our case however, we cannot apply this simple method, since we do not compute entries for all
possible pairs of subsequences. Rather, we compute only scores for subsequences that are closed by
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(significant) base pairs or prefixes of them. Those scores areeither stored inDi j;k l (in the case of closing
a base-pair match) or inMi j;k l.

Instead we will borrow, slightly tailored for our purpose, the trick of standard sequence alignment,
which is to add an additional0 entry in the recursion for cutting off dissimilar prefix-alignments. The best
local alignment is then obtained as the maximal entry of the matrix.

However, note that we must not change the recursion equations for all Mi j;k l which serve for com-
puting some entry ofD. Only for alignments of subsequencesAi . . . Aj andBk . . . Bl, where at least one
of the subsequences is not enclosed by a (significant) base pair, it is correct to cut off dissimilar prefix-
alignments. All these cases are accounted for when considering the alignments of all pairs of prefixes of
A andB, which are stored in theM0 •;0 • slice. Therefore, we introduce a variant of Eq. (3) by

MT
0 j;0 l = max(0, M0 j;0 l).

Instead of computing the entriesM0 j;0 l, we will then compute the entriesMT
0 j;0 l. Note that the entries

M0 j;0 l will not needed to compute any entryDi′ j′;k′ l′ .
By computing the maximum of score0 andM0 j;0 l, we ensure that entries inMT

0 •;0 • are nonnegative.
Since negative scores are considered dissimilar, we thereby remove prefix-alignments that do not belong
to the local alignment. The optimal local alignment score isthenmaxjl(M

T
0 j;0 l).

The corresponding optimal alignment and consensus secondary structure can now be obtained by
backtracing, i.e. for local alignment we start from the maximal entry inMT

0 •;0 • and stop when similarity
drops to its minimal value of 0. In addition, for every pair(i j; k l) in the consensus structure we have
to re-compute theMi •;k • at a cost ofO(n2 + m2). Since there are at mostO(n) pairs in the consensus
structure, the cost of backtracing stays negligible.

LocARNA is implemented inC++, which results in a further performance gain relative to thePerl
implementation ofPMcomp. While it fully exploits speed and memory reductions that can be obtained
by limiting possible consensus structures, additional performance gains are possible by restricting the
possible sequence alignments. This is done e.g. instemloc [30] by using “alignment envelops”. A
similar but more easily implemented technique is used byCONSAN [31], where high confidence matches
(“pins”) are derived from local sequence alignments. The algorithm then considers only alignments that
contain all pins.

2.2 Local Multiple Sequence Structure Alignments

Based on the pairwiseLocARNA algorithm, we construct a progressive multiple alignment method,
mLocARNA, which is similar in spirit toPMmulti, thePMcomp-derived multiple alignment tool [21].
mLocARNA differs from PMmulti in the algorithm for computing base paring weightsΨA◦B for the
combined alignment ofA andB from the base paring weights of the sub-alignments (or sequences)A and
B. For a pair of columnspq in the alignment ofA andB, PMcomp defines the combined base pair weight
by

ΨA◦B
pq =

{
√

ΨA
ipiq

× ΨB
kpkq

if p andq are gap-less

0 otherwise,
(4)

whereip andiq are the positions corresponding top andq in the sub-alignmentA, respectively.kp and
kq are defined analogously for sub-alignmentB. This has the effect that whenever one sub-alignment
contains a gap atp or q or has a very low base pair probability then the structural information betweenp
andq from the other sub-alignment is effectively lost. In consequence,PMmulti tends to remove most
base pairs when aligning many sequences.

In order to avoid this undesired effect, we introduce the newdefinition

ΨA◦B
pq =

√

Ψ̄A
pq × Ψ̄B

pq, (5)

where

Ψ̄A
pq =

{

max(p0, Ψ
A
ipiq

) if p andq are gap-less

p0 otherwise

andΨ̄B
pq is defined analogously.

As usual, the order of pairwise alignments is directed by a guide tree. We use for that purpose the
sub-trees produced by the hierarchical clustering.
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Figure 1: ROC curve the global comparison of clustering andRFAM families. At a false positive rate of 12%
we achieve a sensitivity of 52% (correctly grouping together sequences of the same family), which is more
than sufficient to detect families.

3 Results

3.1 Evaluation of the Clustering Procedure

To evaluate the quality of our clustering approach we have applied our procedure to the sequences in the
RFAM seed alignments. Our test set consists of all seed sequenceswhich have no more than 80% sequence
identity and do not exceed 400nt in length, resulting in 3901sequences from 504 families. Normally,
quality measures such as sensitivity and specificity are defined for binary classification problems, while
here we face the problem of comparing our hierarchical clustering with the family assignment inRFAM.
In principle, there are two ways of looking at the problem, namely globally (considering the complete set
of clusters), and locally (considering the quality for eachfamily separately).

Concerning the global view, the completeRFAM defines a partition of the set of all sequences into
families (or clusters), and we can compare the degree of agreement between the partition defined by our
clustering with the partition defined byRFAM. Since we have a hierarchical clustering, different sets of
clusters can be defined by cutting the tree at different thresholdsϑ, and we have to compare all these
thresholds to find the set of clusters with the best agreement. The problem of comparing the partition
defined by a given set of clusters (generated by cutting the tree at some specific level), with the partition
defined byRFAM is now transformed into a classification problem as follows.We consider all possible
pairs of sequences, and define the number of true positives (ss) as the number of sequence pairs from the
same family that lie in the same cluster. Analogously, the number of false positives, false negatives, and
true negatives are given by the number of pairs from different families but same cluster (ds), same family
but different clusters (sd), and different families and different clusters (dd), respectively. Sensitivity and
specificity are then defined as usual, namelyspec = dd/(dd + ds) andsens = ss/(ss + sd). The
receiver operating characteristic (ROC), obtained by plotting the sensitivity against the false positive rate
(1-specificity) for different values of the cut-offϑ, is shown in figure 3.1.

A problem in the comparison toRFAM families is that different families exhibit very differentdiversity:
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Table 1: Average precision and F-measure for different minimum recall levels.

Minimum recall level Average recall Average precision Average F-measure
0.50 0.5818 0.8280 0.6079
0.55 0.6996 0.7819 0.6475
0.60 0.7277 0.7530 0.6391
0.65 0.7596 0.7117 0.6191
0.70 0.8092 0.6831 0.6158
0.75 0.8519 0.5949 0.5650
0.80 0.8763 0.5701 0.5526
0.85 0.9381 0.4794 0.4964
0.90 0.9599 0.4419 0.4647
0.95 0.9766 0.3907 0.4173

Averages are weighted by family size. Families which are only represented by one sequence do not contribute
to average as their precision is always1.

some families consist only of closely related sequences while others accommodate significant variation in
sequence and structure. Therefore one should not expect that theRFAM family division can be modeled
by using one fixed thresholdϑ for all families. We therefore consider a local, family-wise, criterium for
the clustering quality. For a givenRFAM family R and a clusterC we define the recallr(R, C) as the
fraction of members fromR contained inC, i.e. r(R, C) = |R ∩ C|/|R|. For each family and a given
minimum recall0.5 < r <= 1 we can always determine the minimal thresholdϑ such that there is a
unique clusterC with r(R, C) ≥ r. A measure how well the clustering reconstructs the familyR is then
the associated precisionp(R, C) = |R ∩ C|/|C|. An equal assessment of precision and recall is given
with the F-measure:

f0.5(R, C) =
2 ∗ r(R, C) ∗ p(R, C)

r(R, C) + p(R, C)

Table 1 shows the average precision and F-measure weighted by family size for different minimum
recall levels between 0.5 and 0.95. If we require that least 70% of a family (= minimal recall level) are
grouped within the same cluster level, we get in fact on average a recall of 80%. In this case, we observe
on average 32% false positive sequences within this cluster. Of course, we have much better values for
some families like 5S rRNA, where we have a precision of 100% at a recall level of 95%. The complete
RFAM tree constructed with our method is given as supplementary material.

Concerning the formation of classes comprising several families, this makes mainly sense for classes
like tRNAs and miRNAs which have a similar structure, but e.g. not for ribosomal RNAs where there are
four structurally different families. The best classification is observed for the class of all tRNAs. They
still have a precision of 96% at a recall level of 95%. Concerning the class of all miRNAs, they are (not
surprisingly) grouped in several separate cluster. However we have a large cluster comprising 85% of all
213 miRNAs and only 18% false positive sequences.

3.2 Clustering of ncRNA-candidates inCiona intestinalis

The data set resulting from theRNAz-based survey for conserved non-coding RNAs in the genomes of
the ascidiansCiona intestinalisandCiona savignyi[14] consists of 3332 predicted structured RNAs, of
which only about 500 could be annotated as members of well-known RNA families. The overwhelming
majority of the known RNAs are the 301 tRNAs recognized byRNAz. Fig. 2 summarizes the results of
the clustering procedure.

At the first glance the result might look disappointing as we find a large number of predictions that do
not belong to any tight cluster. This is not surprising, however, given that we expect a very high noise level
in this data set: (1) TheRNAz screen has an estimated false discovery rate of about 18%. (2) No attempts
have been made to correct the fairly unreliable strand-prediction of RNAz, which has an error rate up to
30% [32]. (3) We can expect that a significant fraction of structured elements have been predicted only
partially. (4) Thermodynamic consensus structure predictions based on only pair-wise alignments are far
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u3sc01 sc03 mir5StRNA 1384 1249

Figure 2: Summary of the clustering procedure. The WPGMA tree contains 3332 putative ncRNAs. A
few large, prominent clusters are indicated. Among them aretRNAs and U3 snRNA, and a miRNA cluster,
Fig 3, which contains the known miRNAsmir-124-a/bandlet-7 as well as candidates formir-126 andmir-7.
Clusters 1384, Fig 4, and 1249, Fig 5, are good candidates fornovel ncRNA classes. sc01 and sc03 are both
example clusters based on high sequence similarity.

from perfect [33, 19]. It is thus not surprising that only a fraction of the input data can be assigned to
meaningful clusters.

As expected, the largest and most prominent cluster is comprised of tRNAs. As discussed in some
detail in [34], this tRNA cluster is composed of subclusterscorresponding to homologous tRNAs with
common anti-codons. Several other well-known multi-gene families are easily identifiable as structural
clusters, including the U5 snRNAs, U3 snRNAs and 5S rRNAs. Several families of multi-copy genes
with common secondary structure are present in the Ciona genomes [34]. Most of them are also readily
identifiable in the structural cluster tree. Since these subclusters are easily detectable already on sequence
level, they are of little interest for the structured based approach pursued here.

A more interesting example is a cluster, Fig. 3, that contains two paralogs ofmir-124 and one copy of
let-7 microRNAs that were previously described in computationalscreens ofCiona intestinalis[36, 37],
as well as good candidates formir-126 andmir-7. The other members of the cluster have no sequence
similarity with known microRNA families compiled inmiRBase release 9.0 (blastE ≤ 0.001).
Both mir-124 candidates occur within introns of known mRNAs ofCiona intestinalis (JGI2.0),
while mir-126 and mir-7 do not seem to be located in an intron. That a large cluster of known and
putative miRNAs was detected demonstrates that annotationof ncRNA candidates is highly improved by
structure based clustering. The majority of cluster members could not be identified as miRNA candidates
by sequence comparison alone [14]. Further a comprehensivecomparative screen for miRNAs across the
metazoan species identified only few homologs with high sequence similarity within the urochordates [37]
raising the question if there may exist a group of yet unknownmiRNA families within the urochordates.

The following two panels 4 and 5 highlight two novel clustersof structurally similar predictions for
which no functional or class assignment is available. The neighbor-net graphs in the insets show the se-
quence distance within the example cluster. Since the sequence distance is on average larger than 0.5,
this confirms that the clusters are defined essentially basedon structural similarities. While our exam-
ples usually contain some subsets of related sequences, overall there is little or no detectable sequence
conservation so that the clusters could not have been detected by sequence similarity alone. Since many
ncRNAs, in particular snRNAs, tend to form multi-gene families (often evolving under some form of con-
certed evolution that keeps the family members nearly identical), a moderate copy number in the genome
can be interpreted as supporting the hypothesis that the candidate is indeed a true ncRNA.

In cluster 1384, Fig 4, for example, sequences with a well conserved secondary structure but low se-
quence similarity are grouped. 9 of 11 sequences of cluster 1384 could be exactly mapped to the new
Ciona intestinalisassembly JGI2.0. The structural cluster contains three sub-clusters, 1378, 1381 and
1383, that have overall structural features in common. All sub-clusters have three stem loops originating
from one single multiloop as consensus structure. But theirlength and number of internal loops dif-
fer. Their grouping into the super-clusters 1382 and 1384 are justified by compensatory mutations. Two
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Figure 4: Cluster 1384 groups sequences with a well conserved secondary structure consisting of three stem
loops. Whereas the sequence identity is low we observe a highstructural conservation. N...number of se-
quences in cluster. MPI...mean pairwise identity of multiple alignment. SCI...structure conservation index.
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Figure 5: Example of structure based clustering of very diverse sequences which might form a novel ncRNA
class. The consensus structure models thus show a large number of compensatory mutations. N...number of
sequences in cluster. MPI...mean pairwise identity of multiple alignment. SCI...structure conservation index.
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sequences of sub-cluster 1378 and one of sub-cluster 1381 appear within an intron ofCiona-mRNA
AK113484. Whereas the two sequences of sub-cluster 1378 appear within the same copy of mRNA
AK113484 on chr01p, the sequence in sub-cluster 1381 occursin a copy on chr04q. Six different ge-
nomic copies of AK113484 exist in JGI2.0 but none of the intronic regions where the ncRNA candidates
are found are associated with repeats. This allows the conclusion that those ncRNA candidates are in-
deed functional ncRNAs as their sequences are highly diverged whereas they share common structural
features and appear within the sameCiona-mRNA. One sequence of sub-cluster 1383 occurs in an exon
of the known protein codingCiona-mRNA AK114007. All other elements are intergenic or at least the
corresponding mRNAs are not yet known.

Cluster 1249 is also composed of highly divergent sequencesbut similar secondary structures. Two
sequences of sub-cluster 1247 appear within an intron of theCiona-mRNA AK174830. Sub-clusters
1238 and 1245 contain one sequence occuring in an intron ofCiona-mRNA AK222260 and AK116291,
respectively.

Clusters 1384 and 1249 are good candidates for novel classesof urochordate-specific ncRNAs, since
none of the sequences has detectable ncRNA homologs in vertebrates.

3.3 Clustering of ncRNA-candidates inGammaproteobacteria

A RNAz screen of six related gammaproteobacteria resulted in a ncRNA candidate set of 123 unique loci
of the reference organismEscherichia coli. The screen follows the same pipeline as in [14, 15] but includes
a new approach to built multiple alignments. Only alignments with homolog sequences of at least three
genomes, with maximal pairwiseblast e-values of1e − 10 and a minimal length of 40nt were retained
for input to theRNAz-pipeline.

That the majority of ncRNA candidates could be annotated with knownEscherichia colincRNAs
(labeled withEC[...] in Fig. 6.) is not surprising as the screen was set up with a restrictive e-value for
the initialblast search. Further only candidates with homologs in at least three gammaproteobacteria
genomes are reported. This provides us with a second ncRNA candidate set to validate the clustering
approach, which in contrast to theRFAM seed sequences in section 3.1 was detected byRNAz. A candidate
was annotated to be a knownEscherichia colincRNA if their genomic regions overlap to at least 70%. If
such an annotation was not available ablast search against theRFAM database (E < 1e − 6) identified
further homolog ncRNAs.

In Fig. 6 the complete WPGMA tree is depicted. It is nicely seen that again tRNAs get grouped
in one separate cluster. Even tRNAs coding for the same nucleotide are mostly found within the same
subclusters. Different families of rRNAs appear also in several separate clusters, although there exist none
single cluster for each family.

4 Discussion

Genome-wide studies, both experimental and computational, have uncovered tens of thousands of tran-
scripts in higher Eukaryotes, that have little or no protein-coding capacity. For a large subset of these,
there is evidence for selection acting to preserve secondary structure motifs. Many classes of functional
RNAs, on the other hand, can be recognized based on structural similarities. It is thus natural to ask if
the available data contain evidence for novel families and classes of structured RNAs, for which so far
no representative has been well characterized experimentally. To answer this question, it is necessary to
cluster the candidate RNAs based on their structural features, a task that is computationally much harder
than clustering based on sequence similarity.

We present here a new tool,LocARNA, which implements a novel, more efficient variant of the Sankoff
algorithm. We have demonstrated thatLocARNA is fast enough to make structure-based clustering of
thousands of putative structured RNAs feasible. The main reason for its superior efficiency is due to the
pre-filtering of the basepairs by their probability, and an efficient computation scheme that is able to profit
from the reduced number of basepairs considered. The methodis also robust enough to find significant
clusters in fairly noisy, realistic data that contain a substantial fraction of false positive predictions. We
have successfully tested the tool on the sequences of theRFAM seed alignments.

The LocARNA implements a local sequence structure alignment method, which is required when
applied to candidate ncRNA sequences where the exact regionof interest is not exactly known (of course,
the tool can also be applied to global alignment problems). Clearly, there is a length dependency in the
scores, which has several sources, one being the calculation of pair probabilities. This influences both
pairwise alignment and the clustering, which implies that the ncRNAs to be clustered should not diverge
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Figure 6:
The complete WPGMA clustering tree for ncRNA candidates inGammaproteobacteriaEscherichia coli.
Candidates are annotated with knownEscherichia colincRNAs (EC[...]) or if such not exist with ncRNAs
from theRFAM database (RF[...]).
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to much in length. This is the case in many applications like the clustering of predicted ncRNAs. A more
precise treatment of the different kinds of dependencies (like GC-content) is planned for a future version.

The application of the tool to a dataset of more than 3000 predicted structured RNAs in urochordates
showed that the clustering approach not only recovers knownRNA families and classes such as tRNAs,
but also predicts several candidates for novel ncRNA classes. In some cases we find that additional
sequences are identified as structural relatives of known RNA families. In this way we have, for example,
identified amir-126 and amir-7 homolog which were not detected in previous computational studies.
More importantly, however, we also find structure-based clusters that are candidates for novel, presumably
urochordate-specific, RNA classes. We find that these clusters often contain sub-clusters consisting of
multi-copy sequences. Comparing this with the characteristics of several well-studied ncRNA families,
in particular tRNAs, the snRNAs associated with the major spliceosome, and SL RNAs lends further
credibility to the hypothesis that these sequences indeed form abona fideRNA class.

Supporting Information

Seehttp://www.bioinf.uni-freiburg.de/Supplements/locarna-06-12.
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