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Abstract

The RFAMdatabase defines families of ncRNAs by means of sequenclassiies that are sufficient
to establish homology. In some cases, such as microRNAsHBBXA snoRNAs, functional common-
alities define classes of RNAs that are characterized bytsiral similarities, and typically consist of
multiple RNA families. Recent advances in high-throughpamscriptomics and comparative genomics
have produced very large sets of putative non-coding RNAsragulatory RNA signals. For many of
them, evidence for stabilizing selection acting on thettoselary structures has been derived, and at least
approximate models of their structures have been comptiee.overwhelming majority of these hypo-
thetical RNAs cannot be assigned to established familietasses.
We present here a structure-based clustering approaclstbapable of extracting putative RNA classes
from genome-wide surveys for structured RNAs. Tlhec ARNA tool implements a novel variant of the
Sankoff algorithm that is sufficiently fast to deal with sealehousand candidate sequences. The method
is also robust against false positive predictions, i.eqra@mination of the input data with unstructured or
non-conserved sequences.
We have successfully tested thec ARNA-based clustering approach on the sequences difiad/tseed
alignments. Furthermore, we have applied it to a previopsiylished set of 3332 predicted structured
elements in th€iona intestinalisgenomes (Missadt al., Bioinformatics21(S2), i77-i78) In addition to
recovering e.g. tRNAs as a structure-based class, the hédeatifies several RNA families, including
microRNA and snoRNA candidates, and suggests several ntagdes of ncRNAs for which to-date no
representative has been experimentally characterized.

1 Introduction

Starting with the discovery of microRNASI[LI 2 3] and the adivof genome-wide transcriptomidg [4,
[B,[€], it has become obvious that RNA plays a large varietyrgfartant, often regulatory, roles in living
organism that extend far beyond being a mere intermediapedtein biosynthesis. The elucidation of
the functional roles of the plethora of newly discovered+toding RNAs (ncRNAs) has thus become a
central research interest in molecular biology.

Recent advances in computational RNomics have resultednrerous software packages that can be
employed to detect ncRNAs with evolutionarily conservetbselary structure$[¥] Bl B, 10,11T] 12]. Two
of these,EvoFol d [L0] andRNAz [B, [13] are efficient enough to be applied to genome-wideetsv
in mammals[[I0[_13] and other metazoan clades[[14, 15]. Bmpinaaches start from multiple sequence
alignments. WhileEvoFol d uses the SCFG approach pioneeredjbya [[7], RNAz is based on eval-
uating the folding thermodynamics. Both approaches diaggput alignments either as unstructured or
as possessing a common RNA secondary structure; in the tatse they provide a prediction for the
consensus structure of the aligned sequences.

Just as in the case of proteins, ncRNA-sequences can beagtmtpfamiliesthat are characterized by
clear homologies. Usually the members in a family sharetfonal characteristics as well as conserved
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sequence and structure motifs. Indeed, R¥\M database[[16] compiles several hundred families of
NncRNAs based on this observation. Examples include theiohgal snRNAs U1, U2, U4, U5, and U6,
5S rRNA, RNAse P RNA, the RNA component of telomerase, magia thhundred families of snoRNAs
and several hundred microRNA families collectechinr base [I7]. In many cases, RNA families can
be grouped together, formingr@RNA classvhose members have no discernible homology at sequence
level, but still share common structural and functionalpgedies. The best-known classes are tRNAs
(although is well established that all tRNAs derive from ancoon ancestof[18]), the two distinct classes
of snoRNAs (box H/ACA and box C/D), RNAse P and MRP RNAs, androlRNAs. It is thus natural to
ask whether the many ncRNA candidates that have been prddiomputationally can be grouped into
families or even classes, and in particular, whether themvidence for novel families and classes for
which we have not yet seen experimentally verified repredimes.

As sequence similarity is often remote even within welbbtished RNA families, we cannot rely on
pure sequence alignment techniques for this task. Indekdsibeen shown that sequence alignments of
structured RNAs fail at pairwise sequence identities bedbaut 60%[[19]. Several different algorithmic
approaches have been introduced in the past to determirastil similarities and to derive consensus
structure patterns for RNAs that are too diverse to be abtmat sequence level. The corresponding
software tools, such agARNA [20], PMul ti [21]], RNAf or r est er [22], cannot be applied without
modifications to the problem of clustering predicted stuoes fromRNAz or EvoFol d surveys, how-
ever. The main reason is that these ncRNA detectors are reoagieed to find the complete ncRNA
genes; rather they usually detect particularly conserubdtsuctures and sometimes the predictions are
contaminated with spurious predictions in the flanking seqes. Thus a local structure-based align-
ment algorithm is necessary. This is already implemente@NAf or r est er [2Z], which is based on
tree-alignment, and in the local sequence-structure alégrt approach described 23], which in addition
can detect alsatructurally local motifs. A related approach detects exact local secgistructure pat-
terns inO(n?) [24]. However, all these approaches requirgirggleknown or predicted input structure.
Tree-alignment and tree-editing in addition have only fedicapabilities to repair incorrect base-pairs.
Tree-alignment is particularly restrictive in this respsinice even broken arcs must be nested. As a con-
sequenceRNAf or r est er tends to produce many alignment columns that contain mgagycharacters
in the multiple alignment mode.

In contrast, derivates of the Sankoff algorithml[25] sollie problem of simultaneous folding and
alignment, which turned out to be more appropriate. Howether large number of predicted ncRNASs,
several thousands in the case of nematode and urochordaiengs and close to 100000 in the case of
mammals, calls for more efficient variants of these alganih

In this contribution we introduckeoc ARNA, a local pairwise structural alignment algorithm for pseud
knot-free RNA secondary structures, and its multiple \@rsiLoc ARNA. ( m) LocARNA is a Sankoff-
style algorithm, similar ta®Mrul t i , that is efficient enough to be used for large clustering efioted
ncRNAs. We have successfully tested thec ARNA-based clustering approach on the sequences of the
RFAMseed alignments to demonstrate the feasibility of the @augir, and to evaluate the results. Further-
more, we use the data from a survey of the ascid@iosa intestinalissndCiona savigny[d4] to achieve
the following goals: (1) We search for novel, clade-sped#idA families in Ciona, which is of interest
in itself. (2) In doing so, we can increase the credibilitysoine of the predicted ncRNAs, since being
part of larger family of related RNAs with similar structureduces the likelihood of being a false positive
prediction. (3) We improve the genome annotation be assigadditional ncRNAs to known families.
(4) The inferred consensus structures of novel familiemfarstarting point for subsequent searches in
related organisms.

2 Structure-Based Clustering

In this work, we set up a pipeline for automated clustering@®NAs (or ncRNA candidates) and semi-
automated selection of novel, complex clusters of RNAs. impat is a set of RNASR, ..., R,,, which
are given by their sequences, and the output is a hieratdtlicsiering of these RNAs. In addition, we
will generate a fast, pre-sorted, and annotated overvieleo€lusters for further inspection by an expert.
Our pipeline is built from the following steps:

1. For each of the RNAs, we compute structural informatiomgidMcCaskill's algorithm, imple-
mented inRNAf ol d. This algorithm computes a matrix of pair probabilities &h®n a complete
energy model of RNAs.

2. The next step is to compute all pairwise alignments of thectirally annotated sequences using
LocARNA. Note that this requires to comput®(m?) pairwise sequence/structure alignments for
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determining the distance matrix. Note further that perfioigrall pairwise comparisons cannot be
reasonably circumvented or replaced in a full-featuredteling procedure. For genomic-scale data
sets,0(m?) comparisons are way too costly for most existing sequetreeisre approaches. The
computational efficiency remains crucial, even if this cangionally most intensive procedure is
distributed for parallel computation, which we do in a gtaforward manner. As result we assign
aLocARNA-alignment scorecore(s, j) to each pair of RNAYR;, R;).

3. Acluster-tree is generated by applying the weightedgrainp method algorithm (WPGMA), which
is also known as average-linkage clustering, to a matrixaifyise distances of the RNAs. There,
the distanced(i, j) correspond directly to ouroc ARNA-scores. Instead of computing distances as
max;; — score(i, j), we define distances by

d(i, j) = max(0,q — score(i, 7)),

wheregq is the z-quantile (e.g.z = 99%) of all pairwise scores. This decision avoids that ex-
ceptionally large scores influence the distance-transéition. In the resulting tree, internal nodes
correspond to clusters of RNAs. Their heights corresporttiéomean pairwisé oc ARNA-scores

of their constituents and thus give a single-value meadurkister quality.

4. A good overview and a true quality assessment of the ehist be provided best through multiple
alignments of each cluster. We simultaneously constrlintaltiple sequence/structure alignments,
i.e. one for each cluster, by ony(n) runs of the pairwise alignment algorithm. This can be done
by constructing the multiple alignments progressiveljngshe, already constructed, cluster-tree as
guide tree.

From each of the multiple alignments, we collect informatibat can guide a quality assessment
of the cluster. We compute the mean pairwise sequence tigéhtiPl) and, usingRNAal i f ol d,

the structure conservation index (SCI), the consensusmaimi free energy (MFE), the consensus
MFE structure, and the consensus base pair probabilitieging the list of generated clusters by
the quantities size of cluster, SCI, MPI, and MFE provideseakpert with a automatically proposed
order for his manual inspection of the clusters. The mudtiglignment itself and the consensus
structure information facilitate the selection of “intetiag” clusters.

This pipeline crucially depends on pairwise sequenceggira alignments. Therefore, we require the
following algorithmic components which we describe in saetail in the following subsections:

2.1 We need an efficient algorithm for high quality pairwidigraments of RNAs that considers both
sequence and structure information. For this purpose, d¢isé flesults are achieved with Sankoff-
style algorithms. We provide the new method callext ARNA, which is much more efficient than
current approaches and uses base pair probabilities asstLinput.

2.2 Forthe selection of clusters, one important sub-pralidgo extract consensus structure information
from the clustered RNAs, which is done by usiRyAal i f ol d. For producing the input for
RNAal i f ol d, we introduce théocal multiple alignment methodioc ARNA.

2.1 LocARNA Efficient pairwise local sequence/structure alignment

For the pairwise alignments of RNA we use our novel oot ARNA, which computes local alignments of
RNA. It is a Sankoff-style algorithm in the spirit &Vt onp, but goes beyond its ancestor by introducing
local alignment and significantly improving the efficiency.

The Sankoff algorithn{[25] provides a general solution @ pinoblem of simultaneously computing an
alignment and the common secondary structure of the twaetigequences. In its full form, the problem
requiresO(n%) CPU time andD(n*) memory, wheren is length of the RNA sequences to be aligned.
In general, one can distinguish two variants of the SanKgfhrithms: Programs such &®l dal i gn
[286,[Z7] anddynal i gn [28] implement a more or less complete energy model for thé Riding part.

In contrast,PNconp [21]] assumes that a structure model for the two input secggeiscalready known
and given in the form of weights for the individual base paltswever, note that such a structure model is
reasonably obtained using McCaskill's algoritHml[29] aga the basis of a full featured energy model.

Consider two sequencesand B with associated base pairing weight matride$ and ¥ Z, respec-
tively. The goal is to compute a sequence alignnienf A and B together with secondary structusen
A. A consists of a set of (mis)matches written as pgirg), wherei is a position inA, andk a position in
B. The consensus secondary structiifer an alignment\ consists of a set of quadrupl@g; ki), where
(i,k) € Aand(j,1) € A are two matches i, (z, j) is a base pair on sequendeand(k, !) is a base pair
on sequence. Furthermore, denote b, the single-stranded part of the alignment, i.e(iifk) € A,
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then there is no paifj, /) such that(ij; kl) € S or (ji; kl) € S. The goal is to determine the pdi4, S)
that maximized the score function

Z (‘I’ﬁ + ‘I’k%) + Z o(Ai, Bi) — NgagY, (1)
(ig;kl)€S (i,k)EA,

whereo : {A,C,G,U}? — R is the similarity score for (mis)matches,is the gap score parameter and
Nyapis the number of insertions and deletions in the alignrent

Both PMconp and our novel toollLoc ARNA(“Local Alignment ofRNA™), use base pair scores that
are derived from the base pairing probability matrices @f o individual sequences. More precisely,
we use here

Po
—00 otherwise,

\I/_

ij =

Pi; ; *
{1og /log pio if Pjj >p @)
whereP;; is equilibrium pairing probability as computed by McCaskialgorithm [29],p, is the expected
probability for a pairing to occur at random apd is the cut-off probability, below which the arcs are
ignored. Formally, this is expressed by assigning as weight in this case. The tefiwg P;; /po is the
log-odds score for having a specific base pairing againsttiienodel of a random pairing, aridg 1/po
is a normalization factor that transforms the weights to aimam of 1. The reason for this normalization
is just that it is more easier to balance the sequence scamsighe structure score.

LocARNA improves thePMconp approach in several ways. First of all, it uses a modified dyina
programming approach that allows us to utilize the fact thygitcally the number of significant base pairs
does not grow withO(n?), i.e., that thel matrices are usually sparse. In particulagifis constant for
differentn, then each base can take part in at mgst*, and thusO(1), many base pairs. Hence, there
are onlym = O(n) significant entries inv.

We defineD; ;.,; as the maximal similarity score of an alignment for the sgosacesAl:..j] and
Blk..l) with the additional condition thdt j; k1) is part of consensus secondary structure. To profit from
the reduced number of significant basepairs in time and spaicglexity, we calculate and store only
D; ;.11 that correspond to significant base pairs. Due to this meadifin, we need to take special care
to avoid redundant computation. Therefore, we computeiges D; ;.. ; by fixing 7 andk and varying
only j and!. We introduce the notatio®; ..;,. to denote the matrix slice whegeand k are fix. The
efficient calculation ofD; ... in O(n?) time requires auxiliary matriced/, where the entried/; ;.;, are
the optimal similarity score of subsequencHs + 1..j] and B[k + 1..[], and leads to computation order
that differs fromPMconp. Finally, the dynamic programming recursion faf and D takes the usual form
of a Sankoff-style algorithm:

M;j—11-1 +0(Aj, By)
M1+
M;jipi—1+7y (3)

m%xMij/_l;kl/_l + Dj’j;l’l
J

Dijt = Mij-yki—1 + V5 + U5

Mij;kl = max

The important observation is that the last, computatigmatbst expensive, alternative in tié recursion
needs to be evaluated only fﬁf[;i‘l, > p* and P} > p*, and, analogously, needs to be stored only for
matching base pairs. We observe that.;,. depends only of/; .., ., which in turn can be computed from
otherM; ;.. entries. Thus we only need to store the entriedbfor the current values of andk, i.e.
O(n?) entries. The recursion can therefore be evaluated(im? + n?) memory and?)(n?(n? + m?))
time.

From the matriced/ and D, we can now compute the score of the best global alignmeneiisa
the score of the best local alignment. In our study, we arg inérested in the latter. Global alignment is
only explained for better understanding and for comparisatihe global alignment algorithfaMVconp.
The score of the global alignment can be computed by evalyttie recursion foly ;.o,, i.e. the optimal
global alignment score i/ | 41,0 |5-

Concerning local alignment, in a Sankoff-style approaalailg we compute a four-dimensional ma-
trix of alignment scores foeachpair of subsequences$; ... A; and By, ... B;. In this case, we could
trivially obtain the best local alignment score by seargHir the maximal score.

In our case however, we cannot apply this simple methodgsive do not compute entries for all
possible pairs of subsequences. Rather, we compute ontgsséar subsequences that are closed by
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(significant) base pairs or prefixes of them. Those scoresitrer stored inD; ;.;,; (in the case of closing
a base-pair match) or iv; ;.. ;.

Instead we will borrow, slightly tailored for our purposéettrick of standard sequence alignment,
which is to add an addition@lentry in the recursion for cutting off dissimilar prefix-gfiments. The best
local alignment is then obtained as the maximal entry of tagrisn

However, note that we must not change the recursion equsforall AZ; ;.;,; which serve for com-
puting some entry ob. Only for alignments of subsequencés. .. A; andB,, . .. B;, where at least one
of the subsequences is not enclosed by a (significant) baset [ correct to cut off dissimilar prefix-
alignments. All these cases are accounted for when comsigigre alignments of all pairs of prefixes of
A and B, which are stored in thé/, ..o« slice. Therefore, we introduce a variant of Hg. (3) by

]V[JJ;OI = max(0, Mo j;01)-

Instead of computing the entriédy, ;.o;, we will then compute the entrie’BfOTj;Ol. Note that the entries
Mo ;.01 Will not needed to compute any entfr ./ .

By computing the maximum of scofeand M, ;,0:, We ensure that entries i/, ,, are nonnegative.
Since negative scores are considered dissimilar, we theszhove prefix-alignments that do not belong
to the local alignment. The optimal local alignment scormimmale(MOTj:Ol).

The corresponding optimal alignment and consensus seppsttacture can now be obtained by
backtracing, i.e. for local alignment we start from the nmaad entry inM{, ., , and stop when similarity
drops to its minimal value of 0. In addition, for every pé&irj; k1) in the consensus structure we have
to re-compute thé/; .., « at a cost ol0(n? + m?). Since there are at mo&¥(n) pairs in the consensus
structure, the cost of backtracing stays negligible.

LocARNA is implemented irC++, which results in a further performance gain relative to Fee |
implementation oPMconp. While it fully exploits speed and memory reductions that t& obtained
by limiting possible consensus structures, additionafgarance gains are possible by restricting the
possible sequence alignments. This is done e.gtiem oc [30] by using “alignment envelops”. A
similar but more easily implemented technique is use@B)MSAN [31], where high confidence matches
(“pins”) are derived from local sequence alignments. Thygoathm then considers only alignments that
contain all pins.

2.2 Local Multiple Sequence Structure Alignments

Based on the pairwiseocARNA algorithm, we construct a progressive multiple alignmergttmod,
mLoc ARNA, which is similar in spirit toPMrul t i , the PMconp-derived multiple alignment tool[T21].
m_oc ARNA differs from PMrul ti in the algorithm for computing base paring weighité°? for the
combined alignment oft and B from the base paring weights of the sub-alignments (or setps)A and

B. For a pair of columngg in the alignment ofA and B, PMconp defines the combined base pair weight

by
. /A < wB if pandq are gap-less
\Ijﬁq B _ { plq kpkq (4)

0 otherwise

wherei, andi, are the positions correspondingg@ndq in the sub-alignmend, respectively.k, and
k, are defined analogously for sub-alignméht This has the effect that whenever one sub-alignment
contains a gap at or g or has a very low base pair probability then the structuririmation betweemp
andq from the other sub-alignment is effectively lost. In consegce PMul t i tends to remove most
base pairs when aligning many sequences.

In order to avoid this undesired effect, we introduce the definition

AoB __ T, T,
\I’pq -V \Ijz?q X \Ilgq’ (5)

max(po, U}, ) if pandq are gap-less
Do otherwise

where
4
\Ilpq -
andV 7 is defined analogously.
As usual, the order of pairwise alignments is directed by idegytree. We use for that purpose the
sub-trees produced by the hierarchical clustering.
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Figure 1: ROC curve the global comparison of clustering BRAMfamilies. At a false positive rate of 12%
we achieve a sensitivity of 52% (correctly grouping togetseguences of the same family), which is more
than sufficient to detect families.

3 Results

3.1 Evaluation of the Clustering Procedure

To evaluate the quality of our clustering approach we haysiegh our procedure to the sequences in the
RFAMseed alignments. Our test set consists of all seed sequehadshave no more than 80% sequence
identity and do not exceed 400nt in length, resulting in 388duences from 504 families. Normally,
quality measures such as sensitivity and specificity areeeéfior binary classification problems, while
here we face the problem of comparing our hierarchical elirsgy with the family assignment iRFAM

In principle, there are two ways of looking at the problenmedy globally (considering the complete set
of clusters), and locally (considering the quality for eéaimily separately).

Concerning the global view, the complg®EAM defines a partition of the set of all sequences into
families (or clusters), and we can compare the degree okawgat between the partition defined by our
clustering with the partition defined BFAM Since we have a hierarchical clustering, different sets of
clusters can be defined by cutting the tree at different holelsJ, and we have to compare all these
thresholds to find the set of clusters with the best agreeniEim¢ problem of comparing the partition
defined by a given set of clusters (generated by cutting #eedt some specific level), with the partition
defined byRFAMis now transformed into a classification problem as followge consider all possible
pairs of sequences, and define the number of true positisagsthe number of sequence pairs from the
same family that lie in the same cluster. Analogously, theber of false positives, false negatives, and
true negatives are given by the number of pairs from diffefamilies but same cluster (ds), same family
but different clusters (sd), and different families andeatiént clusters (dd), respectively. Sensitivity and
specificity are then defined as usual, namelyc = dd/(dd + ds) andsens = ss/(ss + sd). The
receiver operating characteristic (ROC), obtained bytjpigtthe sensitivity against the false positive rate
(1-specificity) for different values of the cut-aff is shown in figur&3l1.

A problem in the comparison eFAMfamilies is that different families exhibit very differediversity:
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Table 1: Average precision and F-measure for different mim recall levels.

Minimum recall level | Average recall| Average precision Average F-measure
0.50 0.5818 0.8280 0.6079
0.55 0.6996 0.7819 0.6475
0.60 0.7277 0.7530 0.6391
0.65 0.7596 0.7117 0.6191
0.70 0.8092 0.6831 0.6158
0.75 0.8519 0.5949 0.5650
0.80 0.8763 0.5701 0.5526
0.85 0.9381 0.4794 0.4964
0.90 0.9599 0.4419 0.4647
0.95 0.9766 0.3907 0.4173

Averages are weighted by family size. Families which arg ogpresented by one sequence do not contribute
to average as their precision is alwalys

some families consist only of closely related sequencekwltihers accommodate significant variation in
sequence and structure. Therefore one should not expédhti@FAMfamily division can be modeled
by using one fixed threshold for all families. We therefore consider a local, family-wjsriterium for
the clustering quality. For a giveRFAMfamily R and a clusteC' we define the recalt(R, C) as the
fraction of members fronk contained inC, i.e. 7(R,C) = |R N C|/|R|. For each family and a given
minimum recall0.5 < » <= 1 we can always determine the minimal threshdlduch that there is a
unique clusteC' with »(R, C) > r. A measure how well the clustering reconstructs the farilg then
the associated precisigifR,C) = |[R N C|/|C|. An equal assessment of precision and recall is given
with the F-measure:
2x7r(R,C) xp(R,C)

r(R,C) +p(R,C)

Table[dl shows the average precision and F-measure weighttrily size for different minimum
recall levels between 0.5 and 0.95. If we require that le@%6 of a family (= minimal recall level) are
grouped within the same cluster level, we get in fact on ayegarecall of 80%. In this case, we observe
on average 32% false positive sequences within this clu§course, we have much better values for
some families like 5S rRNA, where we have a precision of 100%r&call level of 95%. The complete
RFAMtree constructed with our method is given as supplementatgial.

Concerning the formation of classes comprising severalili@snthis makes mainly sense for classes
like tRNAs and miRNAs which have a similar structure, but &gt for ribosomal RNAs where there are
four structurally different families. The best classificatis observed for the class of all tRNAs. They
still have a precision of 96% at a recall level of 95%. Conaggrihe class of all miRNAs, they are (not
surprisingly) grouped in several separate cluster. Howaeehave a large cluster comprising 85% of all
213 miRNAs and only 18% false positive sequences.

fO.S(Rv C) =

3.2 Clustering of ncRNA-candidates inCiona intestinalis

The data set resulting from tHeNAz -based survey for conserved non-coding RNAs in the genorhes o
the ascidian€iona intestinalisand Ciona savignyill4] consists of 3332 predicted structured RNAs, of
which only about 500 could be annotated as members of wellvkrRNA families. The overwhelming
majority of the known RNAs are the 301 tRNAs recognizedRNAz. Fig.[d summarizes the results of
the clustering procedure.

At the first glance the result might look disappointing as we fa large number of predictions that do
not belong to any tight cluster. This is not surprising, hegregiven that we expect a very high noise level
in this data set: (1) ThBNAz screen has an estimated false discovery rate of about 1§%o(attempts
have been made to correct the fairly unreliable strandiptieth of RNAz, which has an error rate up to
30% [32]. (3) We can expect that a significant fraction of stuwed elements have been predicted only
partially. (4) Thermodynamic consensus structure préemtistbased on only pair-wise alignments are far
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1384 1249 5S u3 mir

Figure 2: Summary of the clustering procedure. The WPGMA trentains 3332 putative ncRNAs. A
few large, prominent clusters are indicated. Among thentlRMAs and U3 snRNA, and a miRNA cluster,
Fig[3, which contains the known miRNAwir-124-a/bandlet-7 as well as candidates fanir-126 andmir-7.
Clusters 1384, Fifl4, and 1249, g 5, are good candidatesofal ncRNA classes. sc01 and sc03 are both
example clusters based on high sequence similarity.

from perfect [38[19]. It is thus not surprising that only adtion of the input data can be assigned to
meaningful clusters.

As expected, the largest and most prominent cluster is cisegbof tRNAs. As discussed in some
detail in [34], this tRNA cluster is composed of subclustepsresponding to homologous tRNAs with
common anti-codons. Several other well-known multi-gearaifies are easily identifiable as structural
clusters, including the U5 snRNAs, U3 snRNAs and 5S rRNAsvegsd families of multi-copy genes
with common secondary structure are present in the Cionarges[[34]. Most of them are also readily
identifiable in the structural cluster tree. Since thesehkigbers are easily detectable already on sequence
level, they are of little interest for the structured baspdraach pursued here.

A more interesting example is a cluster, H1fj. 3, that costaiwo paralogs ofmir-124 and one copy of
let-7 microRNAs that were previously described in computati@takens ofCiona intestinalig36,[31],
as well as good candidates fonir-126 and mir-7. The other members of the cluster have no sequence
similarity with known microRNA families compiled ini RBase rel ease 9.0 (bl ast £ < 0.001).
Both mir-124 candidates occur within introns of known mRNAsGfona i nt esti nal i s (JGI2.0),
while mir-126 and mir-7 do not seem to be located in an intron. That a large clustemofvk and
putative miRNAs was detected demonstrates that annotatinoRNA candidates is highly improved by
structure based clustering. The majority of cluster mermseuld not be identified as miRNA candidates
by sequence comparison alohel[14]. Further a comprehecsimparative screen for miRNAs across the
metazoan species identified only few homologs with high eage similarity within the urochordatés[37]
raising the question if there may exist a group of yet unknaviRNA families within the urochordates.

The following two panelEl4 arfd 5 highlight two novel clustefsstructurally similar predictions for
which no functional or class assignment is available. Thghi®r-net graphs in the insets show the se-
quence distance within the example cluster. Since the segudistance is on average larger than 0.5,
this confirms that the clusters are defined essentially basestructural similarities. While our exam-
ples usually contain some subsets of related sequenceasyldhere is little or no detectable sequence
conservation so that the clusters could not have been ddtbgtsequence similarity alone. Since many
ncRNAs, in particular snRNAs, tend to form multi-gene faesl(often evolving under some form of con-
certed evolution that keeps the family members nearly idaht a moderate copy number in the genome
can be interpreted as supporting the hypothesis that thdidate is indeed a true ncRNA.

In cluster 1384, Fi@l4, for example, sequences with a welkeored secondary structure but low se-
quence similarity are grouped. 9 of 11 sequences of clu§®4 tould be exactly mapped to the new
Ciona intestinalisassembly JGI2.0. The structural cluster contains threechudiers, 1378, 1381 and
1383, that have overall structural features in common. Altl-slusters have three stem loops originating
from one single multiloop as consensus structure. But tleeigth and number of internal loops dif-
fer. Their grouping into the super-clusters 1382 and 13&4astified by compensatory mutations. Two
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Figure 3: Cluster containing known and predictémbna intestinalismicroRNAs. The two knowrmir-124
paralogs are members of sub-cluster 127. Whereas the kfawhis found in sub-cluster 139. Sequence
¢i_555813 in sub-cluster 152 containgw@-126 candidate (JCGUACCGUGAGUAAUAAAGC) and ci555312 in
sub-cluster 127 anir-7 candidate (JGGAAGACUAGUGAUUUUGUUG). 40 of the 58 cluster members (marked
with ***) are classified as putative microRNAs HNAmi cr o [B5]. The fourth known microRNA in uro-
chordates/mir-92 does not fall into this structural cluster. Members of thestér are no sequence related
(Nei ghbor Net in the bottom right corner). N...number of sequences inteludPl...mean pairwise iden-
tity of multiple alignment. SCI...structure conservatiodex.
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Figure 4: Cluster 1384 groups sequences with a well condesgeondary structure consisting of three stem
loops. Whereas the sequence identity is low we observe adtightural conservation. N...number of se-
guences in cluster. MPI...mean pairwise identity of midti@lignment. SCI...structure conservation index.
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class. The consensus structure models thus show a largeen@indtompensatory mutations. N...number of
sequences in cluster. MPI...mean pairwise identity of iplelalignment. SCI...structure conservation index.
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sequences of sub-cluster 1378 and one of sub-cluster 138daapvithin an intron ofCi ona-mRNA
AK113484. Whereas the two sequences of sub-cluster 1378aapgthin the same copy of mRNA
AK113484 on chr01p, the sequence in sub-cluster 1381 odewascopy on chr04q. Six different ge-
nomic copies of AK113484 exist in JG12.0 but none of the intcaregions where the ncRNA candidates
are found are associated with repeats. This allows the asiwtl that those ncRNA candidates are in-
deed functional ncRNAs as their sequences are highly dievghereas they share common structural
features and appear within the sa@ieona-mRNA. One sequence of sub-cluster 1383 occurs in an exon
of the known protein codin@i ona-mRNA AK114007. All other elements are intergenic or at tehs
corresponding MRNASs are not yet known.

Cluster 1249 is also composed of highly divergent sequebgesimilar secondary structures. Two
sequences of sub-cluster 1247 appear within an intron oCtlena-mRNA AK174830. Sub-clusters
1238 and 1245 contain one sequence occuring in an intr@h oha-mRNA AK222260 and AK116291,
respectively.

Clusters 1384 and 1249 are good candidates for novel cla$seschordate-specific NcCRNAs, since
none of the sequences has detectable ncRNA homologs ifbrees.

3.3 Clustering of ncRNA-candidates inGammaproteobacteria

A RNAz screen of six related gammaproteobacteria resulted in &lAcdndidate set of 123 unique loci
of the reference organisfscherichia coliThe screen follows the same pipeline asid [14, 15] but thetu

a new approach to built multiple alignments. Only alignnsenith homolog sequences of at least three
genomes, with maximal pairwidd ast e-values ofle — 10 and a minimal length of 40nt were retained
for input to theRNAz -pipeline.

That the majority of ncRNA candidates could be annotateth witown Escherichia colincRNAs
(labeled withEC]...] in Fig. [@.) is not surprising as the screen was set up with @icége e-value for
the initial bl ast search. Further only candidates with homologs in at leasetgammaproteobacteria
genomes are reported. This provides us with a second ncRNdidate set to validate the clustering
approach, which in contrast to tREAMseed sequences in sectiod 3.1 was detect&iNdy . A candidate
was annotated to be a knovischerichia colncRNA if their genomic regions overlap to at least 70%. If
such an annotation was not availableleast search against tieFAMdatabaseX < le — 6) identified
further homolog ncRNAs.

In Fig. [@ the complete WPGMA tree is depicted. It is nicelyrséieat again tRNAs get grouped
in one separate cluster. Even tRNAs coding for the same atideeare mostly found within the same
subclusters. Different families of rRNAs appear also inesalseparate clusters, although there exist none
single cluster for each family.

4 Discussion

Genome-wide studies, both experimental and computatitiagk uncovered tens of thousands of tran-
scripts in higher Eukaryotes, that have little or no proteiling capacity. For a large subset of these,
there is evidence for selection acting to preserve secgraiarcture motifs. Many classes of functional
RNAs, on the other hand, can be recognized based on strusionigarities. It is thus natural to ask if
the available data contain evidence for novel families dadses of structured RNAs, for which so far
no representative has been well characterized experitherifa answer this question, it is necessary to
cluster the candidate RNAs based on their structural feafw task that is computationally much harder
than clustering based on sequence similarity.

We present here a new toblpc ARNA, which implements a novel, more efficient variant of the Sdhk
algorithm. We have demonstrated thaic ARNA is fast enough to make structure-based clustering of
thousands of putative structured RNAs feasible. The maisae for its superior efficiency is due to the
pre-filtering of the basepairs by their probability, and #icent computation scheme that is able to profit
from the reduced number of basepairs considered. The méthaddo robust enough to find significant
clusters in fairly noisy, realistic data that contain a gahsal fraction of false positive predictions. We
have successfully tested the tool on the sequences &RABIseed alignments.

The LocARNA implements a local sequence structure alignment methoéhwh required when
applied to candidate ncRNA sequences where the exact regjioterest is not exactly known (of course,
the tool can also be applied to global alignment problem$&aly, there is a length dependency in the
scores, which has several sources, one being the caleulatipair probabilities. This influences both
pairwise alignment and the clustering, which implies tinat ncRNAS to be clustered should not diverge
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to much in length. This is the case in many applications lileedlustering of predicted ncRNAs. A more
precise treatment of the different kinds of dependenciks (5C-content) is planned for a future version.

The application of the tool to a dataset of more than 3000ipted structured RNAs in urochordates
showed that the clustering approach not only recovers kriRWA families and classes such as tRNAs,
but also predicts several candidates for novel ncRNA ctassa some cases we find that additional
sequences are identified as structural relatives of knowA Riilies. In this way we have, for example,
identified amir-126 and amir-7 homolog which were not detected in previous computationaliss.
More importantly, however, we also find structure-basedtelts that are candidates for novel, presumably
urochordate-specific, RNA classes. We find that these clistiten contain sub-clusters consisting of
multi-copy sequences. Comparing this with the charadiesief several well-studied ncRNA families,
in particular tRNAs, the snRNAs associated with the majdicepsome, and SL RNAs lends further
credibility to the hypothesis that these sequences indered dbona fideRNA class.
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