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ABSTRACT

Summary: Recently, genome wide surveys for non-coding RNAs
have provided evidence for tens of thousands of previously undes-
cribed evolutionary conserved RNAs with distinctive secondary struc-
tures. The annotation of these putative ncRNAs, however, remains
a difficult problem. Here we describe a SVM-based approach that,
in conjunction with a non-stringent filter for consensus secondary
structures, is capable of efficiently recognizing microRNA precur-
sors in multiple sequence alignments. The software was applied to
recent genome-wide RNAz surveys of mammals, urochordates, and
nematodes.

Availability: The program RNAmi cr o is available as source code and
can be downloaded from http://ww. bi oi nf. uni-1eipzig/
Sof t war e/ RNAm cr o.
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1 INTRODUCTION

MicroRNAs (miRNAs) form an abundant class of non-coding RNA
genes that have an important function in post-transcriptional gene
regulation and in particular modulate the expression of developmen-
tally important genes in both multi-cellular animals and plants. In
both kingdoms they act as negative regulators of translation. They
are transcribed as longer primary transcripts from which approxima-
tely 70nt precursors (pre-miRNASs) with a characteristic stem-loop
structure are extracted; after export to the cytoplasm, the mature
miRNAs, approximately 22nt in length, are cut out from one side of
the precursor stem structure. For reviews on the discovery and func-
tion of miRNAs we refer to the literature, see e.g. (Ambros, 2004;
Kidner & Martienssen, 2005). At present several hundred distinct
miRNA families are known in metazoan animals (Griffiths-Jones
et al., 2005; Hertel et al., 2006), and a few dozens have been descri-
bed in plants (Griffiths-Jones et al., 2005; Zhang et al., 2005; Axtell
& Bartel, 2005). In contrast to other major RNA classes, in parti-
cular tRNAs, there is no recognizable homology between different
families, so that it is unclear whether they arose independently in
evolution or whether they derive from a single ancestral microRNA
gene.

There are two basic strategies to detecting novel miRNAs. The
simpler one uses sequence homology to experimentally known miR-
NAs as well as the characteristic hairpin structure of the pre-miRNA
(Weber, 2005; Legendre et al., 2005; Hertel et al., 2006; Dezulian

et al., 2006). A specialized machine learning approach that is spe-
cifically designed to search for distant homologs of human miRNA
families is described in (Nam et al., 2005). Clearly, this approach
is not capable of finding miRNAs for which no family member is
already known.

Several approaches have focussed on detecting novel miRNAs
based on the secondary structure of their precursor, sequence
conservation in related organisms, and the sequence conservation
patterns of the 3" and 5 arms precursor hairpin. The programs
miRscan?! (Lim et al., 2003), miRseeker (Lai et al., 2003), and
miralign? (Wang et al., 2005) have lead to the discovery of a
large number of novel microRNAs in nematodes (Lim et al., 2003),
insects (Lai et al., 2003), and vertebrates (Lai et al., 2003). A similar
procedure was employed in (Grad et al., 2003) and in the plant-
specific harvester approach (Dezulian et al., 2006). Berezikov
et al. (2005) use phylogenetic shadowing to find regions that are
under stabilizing selection and exhibit the characteristic variations in
sequence conservation between stems, loop, and mature miRNA. In
this case, secondary structure is used in a later filtering step. Geno-
mic context also can give additional information: Mirscan-11,
for example, takes conservation of surrounding genes into account
(Ohler et al., 2004). Altuvia et al. (2005) utilize the propensity
of miRNAs to appear in genomic clusters, often in the form of
polycistronic transcripts, is used as an additional selection criterion.

MicroRNA detection without the aid of comparative sequence
analysis is a very hard task but unavoidable when species-specific
miRNAs are of prime interest. The miR-abela® approach first
searches of hairpins that are robust against changes in the folding
windows (and also thermodynamically stabilized) and then uses a
support vector machine (SVVM) to identify microRNAs among these
candidates (Sewer et al., 2005). A related technique is described
by Xue et al. (2005). The program PalGrade scores hairpins in
a somewhat similar way (Bentwich et al., 2005). A quite different
approach starts with the analysis of overrepresented patterns in phy-
logenetic footprints located in the 3’UTRs of mMRNAs. These motifs
constitute putative microRNA target sites and are used to guide the
search for corresponding pre-miRNA candidates (Xie et al., 2005).

1 http://genes.mit.edu/mirscan/
2 http://bicinfo.au.tsinghua.edu.cn/miralign
3 hitp://www.mirz.unibas.ch/cgi/pred_miRNA _genes.cgi
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Advances in computational RNomics have most recently made
it feasible to perform genome-wide surveys for non-coding RNAs
that are not a priori restricted to particular RNA classes. Programs
such as grna (Rivas & Eddy, 2001), EvoFold (Pedersen et al.,
2006), and RNAz (Washietl et al., 2005b) attempt to discover evo-
lutionarily conserved RNA secondary structures in given multiple
sequence alignments. Two distinct approaches have been realized:
EvoFold and qrna are based on SCFGs (stochastic context free
grammars) to evaluate the probability that the aligned sequences
have evolved under the constraint of conserving secondary structure.
RNAZz, in contrast, is based on energy-directed RNA folding and
assesses both thermodynamic stabilization of the secondary struc-
ture relative to a randomized control and structural conservation as
measured by the relative folding energy of an alignment consensus
(Hofacker et al., 2002). A support vector machine (SVM) is then
employed to classify the multiple sequence alignment as “structured
RNA”. Both RNAz and Evofold have been applied to survey-
ing the human genome providing evidence for tens of thousands of
genomic loci with signatures of evolutionarily conserved secondary
structure (Washietl et al., 2005b; Pedersen et al., 2006) and detec-
ted tens of thousands of putative structured RNAs. Further RNAz
surveys have been conducted for urochordates (Missal et al., 2005),
nematodes (Missal et al., 2006), and yeasts (Steigele et al., 2006).

These surveys produced extensive lists of candidates for functio-
nal RNAs without using (or providing) information on membership
in a particular class of RNAs. The large number of putative ncRNAs
(from a few thousands in invertebrates to about 100000 in mam-
mals) prompts the development of efficient automatic tools for their
further classification and annotation.

With the exception of a small number of evolutionarily very
well conserved RNAs (in particular rRNAs, tRNAs (Lowe & Eddy,
1997), the U5 snRNA (Collins et al., 2004), RNAse P and MRP
(Piccinelli et al., 2005)), most ncRNAs are not only hard to discover
de novo in large genomes, but they are also surprisingly hard to reco-
gnize if presented without annotation. Indeed, given an alignment
not more than a few hundred nucleotides in length that is known to
contain an conserved secondary structure, it should be very easy to
decide whether these sequences belong to a known class of ncRNAs
or not. Conceptually, this is a simple classification task that should
be solvable efficiently by most machine learning techniques.

In the case of non-coding RNAs, however, machine learning
approaches severely suffer from the very limited amount of available
positive training data and fact that negative training data are almost
never known at all. Even for the most benign case, microRNA pre-
cursors, there is only a few hundred independent known examples,
namely the miRNA families listed in the mir-base (Griffiths-
Jones, 2004; Griffiths-Jones et al., 2005; Hertel et al., 2006). Over-
training is thus a serious problem. As a consequence, it is necessary
to restrict oneself to a small set of descriptors. This constraint, howe-
ver, makes the choice of the descriptors a crucial task. Since most
ncRNAs have well-conserved secondary structures, it seems natural
to include structural descriptors in the classification procedure. RNA
structure prediction, however, is less than perfect even when cova-
riation information from the alignments can be used (Hofacker et al.,
2002). This is true in particular when the exact ends of structured
sequence within the multiple sequence alignment are not known.

In this contribution we present an SVM-based classificator for
microRNA precursors that is designed to evaluate the informa-
tion contained in multiple sequence alignments. The program

Fig. 1. Secondary structure automaton. The automaton reads an RNA secon-
dary structure string in dot parantheses notation, recognizes all substructures,
and stores their start positions and lengths.

RNAmicro is designed specifically to work as a “sub-screen” for
large-scale ncRNA surveys with RNAz or Evofold. The goal of
RNAmicro is thus a bit different from that of specific surveys for
miRNAs in genomic sequences: in the latter case one is interested in
very high specificity so that the candidates selected for experimental
verification contain as few false positives as possible. RNAmicro,
in contrast, tries to provide an annotation of the RNAZz survey data,
so that we are interested in a more balanced tradeoff between sen-
sitivity and specificity similar to that of annotating protein motifs in
known predicted protein coding genes.

2 METHODS

RNAmicro consists of (1) a preprocessor that identifies conserved
“almost-hairpins” in a multiple sequence alignment, (2) a module
that computes a vector of numerical descriptors from each “almost-
hairpin”, and (3) a support vector machine used to classify the
candidate based on its vector of descriptors.

2.1 Detecting “Almost Hairpins”

The outer loop of RNAmicro extracts windows of length L in
1-nucleotide steps from the input alignment. For each window, con-
sensus sequence and consensus structure are computed using the
RNAal i foldalgorithm (Hofacker et al., 2002) implemented in the
Vienna RNA Package (Hofacker et al., 1994; Hofacker, 2003).
The automaton in Fig. 1 is then used to analyze secondary structure,
which is obtained in “dot-parenthesis” notation®.

Alignment windows that do not contain a stem with at least 10
base pairs as well as windows that contain two or more hairpins with
more than 4 base pairs are rejected. Otherwise, the starting position
and the length ¢ of the “almost-hairpin” which constituted the pre-
miRNA candidate, are recorded and the corresponding alignment
window is used to compute the descriptors. This filter, which on
purpose is not very stringent, thus accepts stem-loop structures with
short “branches” as candidates. Some important animal microRNAs
are known to have structures of this type, for example let-7.

4 In this string notation for secondary structures, each unpaired nucleotide
is represented by a dot, while base pairs correspond to matching pairs of
parentheses.




Hairpins in a Haystack

Table 1. Descriptors used for SVM classifi cation

Property # Descriptors
Structure 2 s, 1y

Sequence composition 1 G+C

Sequence conservation 4 S5, 53,50, Smin
Thermodynamic stability 4 FE, €7, 2
Structure conservation 1 Econs

Total 12

2.2 Descriptors

The lengths Is and I, of stem and hairpin loop regions recognized
by the automaton form the first two descriptors provided the ali-
gnment window passes the structure filter. In addition we use the
G+C content.

The second class of descriptors summarizes the thermodynamic
properties of local sequence interval. MicroRNA precursors are
known to be more stable than other RNAs with the same sequence
composition (Bonnet et al., 2004; Clote et al., 2005). We thus use
the average z of the energy z-scores

z=(E — (E)random)/c @)

where E' is the folding energy of the given sequence. The mean
(E)random and o of the distribution of randomized sequences is
computed from a regression model as described by Washietl et al.
(2005b) instead of using a shuffling procedure. Zhang et al. (2006)
reported two folding energy scores that efficiently distinguish pre-
miRNAs from other ncRNAs. The ““adjusted mfe™ is defined as ¢ =
E /€ % 100; the “mfe index™ ) is the ratio of € and the G+C content.
We use their average values € and 7 as descriptors.

Structural conservation can be assessed by the structure con-
servation index (Washietl et al., 2005b), i.e., the ratio of the
average folding energy of the aligned sequences and the energy
of the consensus secondary structure. We use here £ and Econs
separately.

An important characteristic of pre-miRNAs is the difference in
the sequence conservation between the mature miRNA, which may
be contained at either the 3’ or the 5” side of the stem-loop structure,
other parts of the stem, and the hairpin loop region, respectively, see
e.g. (Lim et al., 2003; Lai et al., 2003). We compute the average
columnwise entropies Ss/, Ss/, and Sy, separately for 5' and 3’
sides of the stem region and the hairpin loop. For a region (i.e., a
subset of alignment positions) we define

1
~len(€) 2 2

€€ a=A,C,G,U

Sg = Di,c lnpi,a (2)

where p; o is the fraction of « nucleotides at sequence position <.
Since the mature miRNA is typically extremely well conserved, we
determine the sequence window of length 23 with the lowest entropy
Smin and use this value as an additional descriptor, Tab. 1.

2.3 SVM implementation

For classification we used a support vector machine as implemented
in the 1ibsvm package, version 2.8, (Chang & Lin, 2001). Des-
criptor vectors were scaled linearly to the interval [—1, +1] before

Table 2. Initial training and performance of RNAm cr o SVM. Half of the
positive and negative sets were used for training and testing, respectively.

Test sets
Classification positive negative
miRNA 134 2
not miRNA 13 381
total 147 383

training the SVM using an RBF kernel with v+ = 2 and probabi-
lity estimates. Default settings as listed in the README file of the
1 ibsvm package were used for all other parameters.

For alignments of length at most L a single classification is per-
formed. For longer alignments, we used a sliding window of length
L with step-size 1. In this case, only the best (w.r.t. to SVM classi-
fication confidence value p) non-overlapping windows of length L
were retained for each input alignment.

2.4 SVM Training

Due to the relative sparseness of the available training data we used
a stepwise training scheme. The positive training set is construc-
ted from the union of animal microRNAs contained in the miRNA
registry 6.0 and orthologous and paralogous sequences that
have been obtained by a homology search in all metazoan genomes
(Hertel et al., 2006). This set consisted of 295 alignments of distinct
microRNA families.

The antagonistic data was obtained by randomly shuffling the
columns of each true miRNA alignment until the consensus
sequence of the shuffled aligment folded again into a hairpin struc-
ture. This was successful for all but one true miRNA alignment. We
have to rely at least in part on artificial examples since it seems hard
to obtain a large collection of mutually independent evolutionarily
conserved hairpin structures that are known not to be pre-miRNAs.
The artificial set of negatives was complemented by a collection of
483 tRNA alignments which also passed the hairpin check. Note,
however, that tRNAs are fairly similar to each other and hence cover
only a relatively small part of the descriptor space.

In order to assess the quality of the descriptors, we divided both
the positive and the negative set randomly into two halves, one used
for training the SVM and the other used as test set.

We used RNAmicro with three different window sizes, L =
70,100, 130, to scan the input alignments. An alignment is clas-
sified as putative microRNA if at least one window of at least one
of the three values of L is classified with p > 0.5 by the SVM.
We achieve a sensitivity of about 90% (134/147) and a specificity of
about 99% (381/383) on the test dataset, Tab. 2.

Over-training thus does not seem to be an issue, so that we trained
the SVM using the entire positive and negative sets. We then tested
the program on the results of RNAz screens of nematodes (Missal
et al., 2006) and seasquirts (Missal et al., 2005). We found that
a significant number of known ncRNAs were erroneously classi-
fied as pre-miRNAs, indicating that our initial negative set does not
sufficiently cover the descriptor space. The reason is that hairpins
are common motifs in many other ncRNAs and that other ncRNA
families are also known to be thermodynamically very stable (Clote
etal., 2005).
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Fig. 2. Summary of RNAmi cr o-classifi cations of RNAz survey datawith a RNAz cutoff of 0.5. The subsets of structured RNAs that are classifi ed as miRNA
candidates by RNAmi cr o are shown with bold outlines for p = 0.5 and p = 0.9 confi dence levels. The subset of known microRNAs are shown with a grey
background. Red numbers are other known ncRNAs or UTR elements that consitute known false positives in the 0.5 < p < 0.9 and the p > 0.9 confi dence
classes, respectively. Numbers below the Venn diagram are the total number of RNAz aignements that were screened by RNAm cr o, and the total numbers
of signals classifi ed positive at confi dence values p = 0.5 and p = 0.9, respectively.

(a) Datafrom a pairwise screen of the nematoda C. elegans and C. briggsae (Missal et al., 2006). In this case many known ncRNAs are contained in the data
set allowing at least arough estimate of false positive rates. (b) In the case of the two urochordates Ciona intestinalis and Ciona savignyi only 4 miRNAs are
known. (c) For the screen of mammalian genomes comprising sequences that are conserved at least in human, dog, mouse, and rat (Washietl et al., 2005a)

amost all known non-coding RNAs were not available in the input alignments because they are marked as repetitive (tRNAs, sSnRNA, some microRNAS), so

that ameaningful estimate for the false positive rate cannot be derived.

We therefore extracted alignments of noncoding RNAs from
the Rfam database, focussing on a subset of snoRNAs, rRNAs,
additional tRNAs, and RNAseP sequences and scored those with
RNAmicro. False positives were added to the negative set and
RNAmicro was retrained. This procedure was iterated until no
significant improvement was achieved on the Rfam dataset. This
procedure is not statistically sound, of course. We have, however,
the opportunity to assess the trained model on alignments from the
RNAZz surveys, which in general contain different sequences and
which are constructed in different ways.

3 APPLICATIONS

Three extensive surveys of metazoan genomes have been published
recently. In (Washietl et al., 2005a) data derived from multi-species
alignments of vertebrate genomes are reported, in (Missal et al.,
2005, 2006) predictions of evolutionarily conserved RNA secondary
structures in urochordates and nematodes are presented. In order
to identify putative miRNAs in these data we screened all indivi-
dual alignment slices that were classified as potentially structured
RNA with SVM classification confidence of prnaz > 0.5. Note
that in all three studies individual alignment slices are combined
to single “RNAz hits” when they overlapped on the genome of the
species. Hence the number of alignment slices is much larger than
the number of “RNAz hits” reported in these studies. Redundancies
arising from miRNAs that appear in more than one alignment slice
have been removed. The Venn diagrams in Fig. 2 summarize our
classification.

It is reassuring that most of the RNAmi cro predictions have high
confidence values in the original RNAZz screens: For example, 3850
(70%) of the 5440 prnani cro > 0.5 candidates in the mammalian
screen have prvaz > 0.9. Conversely, Only 204 (14%) of the 1491
PrNAM cro > 0.9 have prvaz < 0.9. At least a rough estimate for the
false discovery rate can be obtained from the distribution of the clas-
sification confidence values. For the three RNAZz surveys we expect
that about 1/5 to 1/4 of the putative ncRNAs are false positives at
p > 0.5 classification confidence (not shown).

Berezikov et al. (2005) predicted 976 miRNAs by scanning
whole-genome human/mouse and human/rat alignments. Their
method, however, highlights evolutionary recent microRNAs so that
it is not too surprising that there is relatively little overlap bet-
ween these candidates and the RNAZz screen (Washietl et al., 2005a),
which focuses on evolutionary well-conserved RNA structures.

In order to compare our prediction with related classification
methods, we re-evaluated the positive RNAmi cro predictions using
the SVM approach by Xue et al. (2005), which is designed for
finding miRNAs ab initio in genomic sequences. Their procedure
employes a very restrictive check for hairpin structures which in
particular rejects the majority of the known microRNAs recogni-
zing only 69 of 249. Only 3077 of our 5440 p > 0.5 candidates and
only 953 of our 1481 p > 0.9 candidates pass the hairpin filter. Of
these, 1590 and 657, resp., are scored as microRNAs. Screening the
prvaz > 0.9 subset with mi r-abe la returned 981 candidates.

Several computational searches for miRNAs have been perfor-
med for nematodes. Grad et al. (2003) predicted 222 microRNA
candidates (beyond those known at the time of publication) for
C. elegans. This set, however, shows little overlap with our clas-
sification. Nevertheless it is interesting to note that the estimated
total number of miRNAs is comparable. In contrast, based on the
results of experimental verification of mirscan predictions, Lim
et al. (2003) and Ohler et al. (2004) conclude that the overwhelming
majority of C. elegans miRNAs should have been found already.

Ohler et al. (2004) reported upstream sequence motifs specific to
independently transcribed miRNAs in C. elegans and C. briggsae.
We have therefore searched 2000nt upstream for approximate occu-
rances of these patterns using mast. We find that both approximate
patterns are substantially overrepresented in sequences classified as
miRNAs relative to the remainder of the data, Fig. 3. This provi-
des additional statistical evidence that a substantial fraction of the
RNAmi cro-predictions indeed are microRNAs. As noted by Ohler
et al. (2004), these sequence patterns, which are presumably tran-
scription factor binding sites, do not occur associated with intronic
miRNAs. We find that 176 (50%) of the 351 C. elegans candidates
are located in introns, Fig. 4.
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Fig. 3. Distribution of two closely related upstream motifs reported for
(Ohler et al., 2004, Fig.2) C. elegans (A) and C. briggsae (B), respectively.
We plot the fraction of RNAm cr o candidates for which mast (Bailey &
Gribskov, 1998) recovers at least one copy A or B within 2000nt upstream of
the miRNA candidate as a function of the mast E-value cutoff. For small
cutoffs, the miRNA specifi ¢ sequence elements are overrepresented in true
data versus acontrol set of RNAz hitsthat were not classifi ed as microRNASs.

In the human data, 4245 candidates that are not associated with
known protein-coding genes, while 1107 candidates (20%) are loca-
ted in introns (of which 36 are known microRNASs). This is in
agreement with a recent study reporting that intronic microRNAs
are much more frequent than previously thought (Ying & Lin, 2005).
The remaining 88 sequences map to exons of known genes. A single
known miRNA, mir-320, belongs to this last group.

MicroRNAs have a tendency to appear in clusters, probably
because they are frequently processed from a polycistronic trans-
cript. This fact has been utilized by (Altuvia et al., 2005; Sewer
et al., 2005) to identify additional miRNAs in the vicinity of known
ones. Using a rather conservative distance cutoff of < 1000nt
between adjacent miRNAs, we found 143 clusters of miRNA candi-
dates in the human genome, which contain 316 individual candidate
sequences. Among them are 58 known miRNAs (according to
mirbase 7.1) in 33 clusters. Most prominently, we recover the
extensive imprinted cluster at human locus 14g32 discovered by
(Lagos-Quintanta et al., 2002) (in total, we found 54 candidates in
multiple tight clusters between positions 100M and 101M of the
hgl7 assembly) and the paralogs of the mir-17 cluster (Tanzer &
Stadler, 2004). In C. elegans we find 30 clusters with 131 mem-
bers, in C. intestinalis there are 5 clusters with 10 members. Note
that these are conservative estimates since in some cases, such as
the C. elegans mir-42 cluster, it is known that the distance between
clustered miRNAs can be larger.

4 DISCUSSION

In contrast to other related approaches to miRNA detection,
RNAmicro does not directly search a genome or genomes. Instead
it is designed to classify the raw results of large-scale compara-
tive genomics surveys for putative RNAs that are conserved in both
sequence and secondary structure. Consequently, RNAmicro uses
a different tradeoff between sensitivity and specificity. In the spi-
rit of protein annotation methods, we aim for very high sensitivity
rather than minimizing the expected number of false positives. As
classificators become available for other classes of ncRNAs and
common UTR motifs, conflicting class assignments from diffe-
rent classificators will eventually help to improve the specificity of
miRNA detection.
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Fig. 4. Typical example of a pair of related putative intronic microRNAs in
C. elegans extracted from the USCS genome browser. The gene Y37E3.8
is a hypothetical protein of unknown function. The “mountain range’ on
the bottom displays the sequence conservation between C. elegans and C.
briggsae.

We have applied RNAmicro to three recent RNAz-bases studies
of mammalian, nematode, and urochordate ncRNAs. In each case
a large number of novel miRNA candidates have been detected.
We have therefore investigated whether there is confounding evi-
dence that a significant fraction of these predictions should be true
positives: In C. elegans, for example, we find a strong association
of RNAmicro predictions with a miRNA specific upstream motif
previously reported by Ohler et al. (2004). Furthermore, we found
several hundred miRNA candidates that occur in tight genomic clu-
sters. In particular in the human data, a large number of predictions
are located within 1000nt of a known microRNA. In line with recent
reports (Ying & Lin, 2005), we furthermore observed a substantial
fraction (20% in human, 50% in C. elegans) of candidates located
in introns. Thus we argue that a large part of the RNAmicro candi-
dates corresponds to real microRNAs. It is well conceivable that we
have seen only a small fraction of the true miRNA repertoire to due
to small expression levels and expression patterns restricted to a few
cell-lines (Ambros, 2004; Bartel & Chen, 2004; Mattick, 2004).
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