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Abstract. — We present a generic, problem independent algorithm for exploration of the low-
energy portion of the energy landscape of discrete systems and apply it to the energy landscape
of lattice proteins. Starting from a set of optimal and near-optimal conformations derived from a
constraint-based search technique, we are able to selectively investigate the lower part of lattice
protein energy landscapes in two and three dimensions. This novel approach allows, in contrast
to exhaustive enumeration, for an efficient calculation of optimal and near-optimal structures
below a given energy threshold and is only limited by the available amount of memory. A
straightforward application of the algorithm is calculation of barrier trees (representing the
energy landscape), which then allows dynamics studies based on landscape theory.

Introduction. — The concept of energy landscapes has proven to be of fundamental rel-
evance in investigations of complex disordered systems, from simple spin glass models to
biopolymer folding. In this picture, energy is viewed as an explicit function F(S) of under-
lying conformational degrees of freedom S. The topological structure of the conformation
space is determined in terms of the elementary moves that underly the dynamical behavior.
Examples are single spin flips in spin glasses, the formation or breaking of a base pair in RNA
folding models, or rotation around a bond in a protein folding model.

The geometric properties and topological details of the energy landscape, such as number
of local optima, the saddle points separating them, as well as the size distributions of the basins
of attraction, therefore directly influence the dynamics of the underlying system. A thorough
understanding of these aspects of geometrical landscape structure is thus of wide interest.
Various attempts to elucidate the topological structure of landscapes, and in particular of their
low-energy regions, have been developed independently and proposed for different contexts,
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among them +.J spin models [10], potential energy surfaces (PES) for protein folding [8] and
molecular clusters [4], as well as the kinetics of RNA secondary structure formation [6].

The decomposition of energy landscapes into basins and saddle points separating them is
straightforward for non-degenerate landscapes. However, the situation becomes more com-
plicated if the landscapes are degenerate (e.g. in the lattice protein case). Consider a flat
landscape. It is not a trivial task to decide which points are local minima or saddle points in
flat-land, however a rigorous formalism to answer questions like this was given in [7].

Energy landscapes are conveniently visualized by “barrier trees” (Figure 1) that give a
reasonable impression on the overall shape and topology of the landscape. Formally, three
things are needed to construct an energy landscape [14]: a) a set X’ of configurations, b) a
notion M of neighborhood, nearness, distance or accessibility on X and ¢) an energy func-
tion f : X — R. The conformation space X of a (biopolymer) sequence is the total set of
configurations S compatible with this sequence. The move set M is an order relation on X,
defining adjacency between the elements of X. It crucially determines the topology of the
energy landscape.

Here, we consider lattice proteins. The aim
of finding a structure = that minimizes the en-
ergy F(6,x) for a certain sequence G can be
regarded as a combinatorial optimization prob-
lem, often termed lattice protein folding prob-
lem. In contrast to RNA, where efficient algo-
£ rithms to determine the ground state exist [20],

1* lattice protein folding was shown to be NP-
complete, see e.g. [3]. However, there exists a
fast and successful constraint-based approach
to this problem, which we will use in this con-
tribution [1]. This method, termed constraint-
based protein structure prediction (CPSP), is
the only available method that is capable of
enumerating the ground state and near-optimal states of several three-dimensional lattice
protein models completely. An efficient algorithm to generate the lower part of the density
of states, like it was given for RNA [19], is not available for proteins. Nevertheless, several
approximation algorithms have been proposed so far. A resource intensive genetic algorithm
based on Monte Carlo techniques in the square lattice yields good results for fairly long chains
up to a length of 60 monomers [15].

Figure 1 — Schematics representation of an en-
ergy landscape and its associated barrier tree.
Local minima are labeled with numbers, saddle
points with lowercase letters. The global mini-
mum is marked with an asterisk.

Description of the Method. — In this contribution, we present a generic, problem-inde-
pendent approach for the exploration of the lower portion of energy landscapes. Generally, the
energy function for a sequence with n residues & = s155...5, with s, € A = {a1,a9,...,a},
the alphabet of b residues, and an overall configuration z = (x1,X2,...,X,) on a lattice £ can
be written as the sum of pair potentials. In the lattice models that we will consider in this
contribution, this takes the form

E(6,1) = > Ulsi,s).
i<j—1
[xi —x;[ =1

U[s, 5] is called the contact energy for the monomers s and s’. Within this contribution, we will
use two different lattice protein models: First, one with a two-letter alphabet A = {H, P}
where there is only one stabilizing interaction if, and only if hydrophobic residues (H) are
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neighbors on the lattice but not along the chain. Polar residues (P) do not explicitly contribute
to the overall energy. Second, we will give an example for the four-letter HPNX model (see [2])
with alphabet A = {H,P,N, X} in three dimensions. The letters denote hydrophobic (H),
positive (P), negative (N) and neutral (X) residues. This model extends the HP model by
incorporating electrostatic interactions among polar residues. ()

In addition, we assume a fixed move set giving rise to a symmetric neighborhood relation
MN: X xX. A walk between two conformations z and y is a list of conformations z =
X1 ... Tme1 =y such that V1 < i <m: N(z;, zi41)-

Given a threshold 7, the lower part of the energy landscape (written as X'<") consists of
all conformations x such that F(S,z) < 1. For generating this lower part, a naive approach
would exhaustively enumerate all conformations. However, this is only applicable to very
short sequences because of the huge size the conformation space.

So we developed a method for investigating the lower part of the energy landscape se-
lectively. This approach starts at low energy conformations and enumerates all “accessible”
conformations. To exemplify the idea, for generating the lower part completely one starts
with all local minima z with E(S&,z) <7 (where x is a local minimum if for all y with DN(x,y)
we have F(6,y) > x). Iteratively, one visits all conformations that are neighbors of already
seen conformations and stay below the energy threshold 7.

According to [7], two conformations z and y are mutually accessible at the level n (written
as <P " 3 y) if there is a walk from x to y such that all conformations z in the walk satisfy
E(&,z) <. The saddle height f(x,y) of = and y is defined by

f(z,y) = min{n [z 2" 3 y}.

This gives rise to an ultrametric distance d(x,y) between conformations x and y (see [13,16]).
Given the set of all local minima Xé{; below threshold 7, the lower energy part X'<" of the
energy landscape can alternatively be written as

X< ={y|3we X3 flz,y) <n}

min

Of course, one does not have the complete set of local minima X5 as starting point of
the construction in many practical applications. In this case, one can hope to enumerate a
large part of the low energy conformations by starting from a restricted set of low energy
conformations AXj,j;. In our application to the three-dimensional HPNX model, we use the
method described in [1] for computing a set of excellent start conformations. This method,
CPSP, is based on constraint optimization. Given a HPNX-sequence with n; monomers of
type t = H,P, N, X, it starts by enumerating all maximally compact hydrophobic cores of
size ng. Then, for every hydrophobic core, all possible threadings of the sequence onto the
selected hydrophobic core are generated. Since the maximally compact hydrophobic cores give
only optimality with respect to the hydrophobic part of the energy function, we enumerate
sub-optimal hydrophobic cores as well. Here, we can bound the degree of suboptimality by the
maximal number of N — P contacts for the given sequence, which is min(np,nn). Using this
approach, the method is able to enumerate the ground state and near-optimal states of three-
dimensional lattice proteins in HP-type models completely. The method was successfully
applied to complete enumeration of optimal conformations in the cubic lattice up to sequence
length 48 and predicts optimal conformations up to length 300 in the face-centered cubic

(})The contact energies ¥[s, s'] for two neighboring H’s in the HP model is —1. For the HPNX model, the
contact energies for H-H, N—P, P—P and N-N are —4,—1,+1,and +1, respectively. All other contacts have
energy 0.



@ EUROPHYSICS LETTERS

lattice. By using such states as start conformations we guarantee to cover the very lowest
part of the energy spectrum. Since furthermore the method provably predicts all ground
states, it can be used to identify sequences with unique ground state. This allows us to find
good candidate sequences for further studies; we provide an example for one such sequence
later.

Operationally, the lower part of the energy landscape can be generated using a fixpoint of
a monotone operator that successively adds neighbors whose energy is below the threshold 7.
Given a set X' of conformations whose energies are lower than 7, then §<"(X) is defined as
the following set of conformations:

FSNX)={y | E(&,y) <nATz e X :N(z,y)} UX

It is easy to see that F=" is a monotone operator, and that the fixpoint
o0
U=z
n=1

of applying =" to Xﬁ,’l is the lower part X'=" of the energy landscape.

This operator can now be implemented efficiently. We denote the initial set X by X°, and
define X for i > 0 to be

(F=)'(X°) = F="(x' ).

The current set X* of conformations is represented by a hash table. Note that by definition of
the operator, the set X'’ contains already all neighbors of X*~!. Hence, we need to consider
in the step X" — X**! only the conformations in the set X*\X*~!, which is represented as
a list of pointers to hash entries. For each single conformation z in the hash pointer list
for X*\X*~1, all neighbor conformations of = are generated. Given that its energy is below
the threshold 7, the hash table is used to determine for each neighbor of x if it has already
been seen before. If this is true, the structure is skipped and the next structure is processed.
Otherwise, it is inserted into the hash table and a pointer to the entry is put into a new hash
pointer list. After all conformations from X*\X*~! are processed, the new hash pointer list
replaces the previous one, and the next round is started. The end of the algorithm is reached
as soon as a) a predefined amount of structures has been found(?) or b) all structures that are
“reachable” from a distinct start-structure (constrained to an energy threshold) are found.

We have applied the algorithm to lattice proteins. However, the algorithm is readily appli-
cable to any kind of discrete system, such as spin glass models or RNA secondary structures.
The algorithm presented here does not - in contrast to previously mentioned algorithms - aim
at finding distinct low-energy minima. It is rather designed to generate the whole low-energy
portion of energy landscapes including the ground state(s) as well as suboptimal structures
in order to enable dynamics studies based on landscape theory. An efficient approach for
biopolymer folding dynamics calculations incorporating the energy landscape framework was
given recently [17]. The main advantage of this approach, compared to e.g. exhaustive enu-
meration, is time efficiency as well as the possibility to explore certain regions of the energy
landscape. It would thus be possible to selectively investigate a high-energy portion of the
landscape. The algorithm is only limited by the available amount of memory.

(?)To given an impression of limitations by the size of RAM, currently approximately 85 million structures
can be generated on machines with 4GB RAM.
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Move Sets. — For the purpose of this contribution we will rely on a simple, yet efficient
move whose ergodicity was proven for the simple (hyper)cubic lattice [12], called pivot move.
This move set is N-conserving, i.e. the total number of beads along the chain is preserved.
Pivot moves are non-local in a sense that the positions of a large fraction of beads along
the chain are changed by one elementary step. Alternatively, a local move set consisting of
crankshaft-, corner-, and end moves could has been implemented. Local move sets, altering
only a few consecutive beads of the chain and leaving all other sites unchanged allow the
chain to exhibit more fine-grained structural transitions. However, it was shown that every
local, N-conserving move set is non-ergodic on simple (hyper)cubic lattices for sufficiently
large N [11].

Results. — To illustrate the capabilities (and limitations) of this new approach we give
two examples of lattice heteropolymer energy landscapes here. The first one is a 31-mer
with the sequence HHHHHHHPPHPPHHPPHHPHPHPPHHPPHPH on the two-dimensional square lat-
tice. Starting from a conformation with an energy of -16 (middle structure at the bottom of
Figure 2) and an upper energy threshold of -10, we found a total of 22985151 conformations
that are related to the start structure by means of pivot moves.

Figure 2 — Barrier tree of an 31-mer HP-kind lattice protein showing the 150 lowest lying minima
of the energy landscape. Structures that can be inter-converted by symmetry operations (such as
reflections) were not considered for calculation of the tree. A ground state (17 contacts) as well as
two near-optimal conformations with 16 contacts are illustrated below. Note that there is one local

minimum at the very left of the plot that is not attached to the rest of the tree, but there is a direct
path connecting this minimum to the ground state with saddle height of £ = —6.

The barrier tree in Figure 2 exhibits common features of lattice protein energy landscapes
such as a high degree of degeneracy (i.e., there are many conformation having exactly the same
energy). There are 35 minima with £ = —16 and 114 minima with £ = —15. Degeneracy
can be seen as an artefact of the underlying model here, i.e. bond lengths/angles are fixed
and the alphabet consists of only two letters. It is striking that many of the near optimal
conformations are connected to the global optimum via a high energy barrier. This is due to
the low connectivity (i.e., number of neighbors) of the two-dimensional lattice. At this point,
it seems fair to ask whether it is correct to model a complex protein with such a coarse-grained
model.
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Figure 3 — Energy landscape for the sequence HHXHPHHHNPHHPHHHHNHPHNHHHNP; a) barrier tree gener-
ated by our method, using the ground state and the first excited states conformations as start set; b)
the conformations of the start set.

In the second example, we used a HPNX sequence in the three-dimensional cubic lattice.
Applying CPSP, we were able to prove that the 27-mer sequence HHXHPHHHNPHHPHHHHNHPHN -
HHHNP has a unique ground state. In addition, we used CPSP to find all conformations on the
first exited energy level. The resulting barrier tree for the lower part of the energy landscape is
given in Figure 3. Although the tree still shows lattice protein artifacts like high degeneracy,
the near optimal conformations are highly connected via low energy barriers. This more
pronounced connectivity makes the energy landscape similar to those found in biologically
relevant and well studied systems such as RNA [17]. This is in contrast to the two-dimensional

case, and is due to the use of the three-dimensional grid as well as the extended energy model
(HPNX).

Conclusion and Discussion. — We have designed a method for generating the lower
portion of the energy landscape of discrete models of biopolymers, given a starting set of low
energy conformations. Using this method, we are able to calculate the barrier tree representing
topological details of the energy landscape such as local minima, basin sizes and barrier heights.
This information can readily be used to study a coarse grained dynamics [17].

We have applied the method to lattice protein models, both for a two-dimensional as well
as for a three-dimensional model. We combined it with the constraint-based protein structure
prediction method (CPSP [1]), which allowed us to completely explore the low energy part in
three dimensions for the first time. The experiments indicate that using three dimensions and
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a four letter alphabet yield results that are in good agreement with well-studied biological
systems, such as RNA.

In addition, this is in good accordance with the fact that experimental as well as theoret-
ical studies have shown that the full sequence complexity of naturally occurring proteins is
not necessarily required to design a functional, rapidly folding protein. Proteins with a dras-
tically reduced set of amino acids (compared to the 20 naturally occurring ones) have been
successfully designed experimentally in the last years. Fan and Wang investigated reduced
alphabets in detail. They found that the lower bound of amino acid types required for a
protein to fold into a stable structure is around ten [5]. Govindarajan and Goldstein proposed
that evolutionary pressure is responsible for a protein to fold fast. Studying the foldability
of structures in a lattice model, they suggested that structures with larger optimal foldability
should tolerate more sequences and be more robust to mutations [9]. Within this context, it
is necessary to also consider the designability of a structure, that is, the number of sequences
that have the prescribed structure as their unique lowest-energy state. A comparative study
of different heteropolymer models addressing designability was given recently [18].

Detailed computational investigations into both foldability and designability in lattice
protein models is dependent upon an efficient method for generating and analyzing the low-
energy states. The lattice flooder approach presented here sets the stage for such a research
program.
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