
ar
X

iv
:c

on
d-

m
at

/0
50

64
93

 v
1 

  2
0 

Ju
n 

20
05

Statistics of cycles in large networks
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We present a Markov Chain Monte Carlo method for sampling cycle length in large graphs. Cycles
are treated as microstates of a system with many degrees of freedom. Cycle length corresponds to
energy such that the length histogram is obtained as the density of states from Metropolis sampling.
In many growing networks, mean cycle length increases algebraically with system size. The cycle
exponent α is characteristic of the local growth rules and not determined by the degree exponent γ.
For example, α = 0.76(4) for the Internet at the Autonomous Systems level.

PACS numbers: 89.75.Hc,02.70.Uu,89.20.Hh

Physics research into graphs and networks has begun
to provide a common framework for the analysis of com-
plex systems in diverse areas including the Internet, bio-
chemistry of living cells, ecosystems, social communities
[1, 2, 3]. The graph representation of these systems as
discrete units coupled by links (nodes and edges) exhibits
a large set of scaling phenomena including fractal dimen-
sion [4] and hierarchy of modules [5].

A fundamental observation is the scale-free nature of
many networks [6]. The fraction of nodes with a given
number of connections, called degree k, decays as a power
law, P (k) ∼ k−γ for large k. For typical exponents γ <
3, the highly inhomogeneous density of connections can
give rise to efficient information transfer [7] and enhanced
failure tolerance [8].

Beside the degree distribution and node-node dis-
tances, the presence of cycles is a relevant property of
networks. A cycle is a closed, not self-intersecting path.
Initially, mainly cycles of the minimal length h = 3 were
considered since high abundance of triangles is taken
as a sign of a clustered structure [9]. Longer cycles
gained attention recently. Approximations for the sys-
tem size scaling of the number c(h) of cycles of length h
have been derived for various types of artificial networks
[10, 11, 12, 13, 14]. It has been speculated [15] that for
generic networks the distribution c(h) becomes sharply
peaked in the limit of large networks, N → ∞. For the
position of the peak, an algebraic growth has been con-
jectured 〈h〉 ∼ Nα with an exponent α ≤ 1 as the leading
characteristic [15].

Verification of these fundamental conjectures, validity
checks of the analytical approximations, and comparisons
with real-world networks have been difficult so far, since
an efficient method for finding the cycle length distribu-
tion of a given network has been lacking. Direct enu-
meration of all cycles is feasible only for small networks
because the number of cycles increases exponentially with
the number of nodes in most cases. Approximation by
efficient sampling appears the only possibility to numer-
ically investigate the cycle structure in the general case.
Taking a step in this direction, Rozenfeld and co-authors
have introduced a stochastic search for cycles [15] as self-

avoiding random walks on the network. Although the
method allows for a quick scan of cycles on small net-
works, larger systems cannot be treated as the probabil-
ity of finding a given cycle is strongly suppressed with
growing cycle length. Therefore we suggest an alterna-
tive method that does not involve random walks on the
network.

FIG. 1: (a) Summation of two cycles resulting in a new cycle.
Edges contained in either addend are contained in the sum.
Edges present in both addends (dashed lines) cancel out. (b)
Example of a sum of two cycles that is not a cycle itself.

We approximate the cycle length distribution by a
Monte Carlo algorithm that considers cycles as discrete
microstates of a physical system. Elementary transi-
tions between cycles, the analogues of single spin flips
in a spin system, are defined as addition or removal of
short detours with minimal change to cycle length. By
considering cycle length as energy, generic Monte Carlo
procedures from statistical mechanics become applicable.
Temperature is defined in the usual way and allows to
tune the sampling on preferably long or short cycles. Af-
ter introducing the algorithm in detail, we test its accu-
racy for a set of networks where the cycle length distri-
bution is directly accessible for comparison. We apply
the algorithm to models of growing networks and find
the growth exponent of the mean cycle length. Finally,
we test scaling of the number of cycles in the growing
Internet.
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The formulation of the algorithm uses the following
basic notions of cycle space. We treat a subgraph X as
the set of edges it contains. If X is a cycle, the cardinality
|X | is the cycle length. The sum of two subgraphs X and
Y is defined as X⊕Y = (X∪Y )\(X ∩Y ), i.e. an edge is
contained in the sum if it is in one of the addends but not
in both. The sum X ⊕ Y of two cycles X and Y is again
a cycle if X and Y intersect in a suitable way, see Fig. 1.
We generate a Markov chain of cycles (C0, C1, C2, . . .) as
follows. The initial condition is the empty graph C0 = ∅
at t = 0. At each step a cycle S is drawn at random
from a set M of initially known cycles (the choice of M
is described below). If the proposal C′ = Ct⊕S is a cycle
or the empty graph, it is accepted with probability

Paccept = min{exp[−β(|C′| − |Ct|)], 1} . (1)

In case of acceptance we set Ct+1 = C′, otherwise
Ct+1 = Ct. This is the Metropolis update scheme [16]
with inverse temperature β and energy as cycle length.
Subgraphs that are not cycles are treated as states with
infinite energy E = ∞ if β > 0 (or E = −∞ if β < 0,
respectively), such that they are always rejected.

Throughout this paper, we take M as the set of short

(isometric) cycles of the given graph. A cycle S is short
if for all vertices x and y on S, a shortest path between x
and y lies also in S. As a non-short cycle has at least one
short-cut between two of its vertices, it can be decom-
posed into two shorter cycles that overlap on the short-
cut. Typically for each non-short cycle C one finds cycles
S and C′ such that S is short and |C′| < |C|. Applying
the decomposition recursively, one sees that every cycle
C occurs in a sequence 0, C1, C2, . . . with Ci ⊕Ci+1 ∈ M
and |Ci| < |Ci+1|. Thus taking as the possible “moves”
M the set of short cycles not only ensures that every
cycle can be reached (ergodicity). In this case, the re-
sulting energy landscape does not have any local min-
ima other than the unique global minimum, which is the
empty graph at E = 0. There are exceptional graphs
where the decomposability does not hold for one partic-
ular cycle. The exceptions appear to be irrelevant for
the applications here as our numiercal results remain un-
changed when M is expanded to include more and longer
(non-short) cycles.

Let us first test the algorithm on a set of networks
where exact computation of c(h) is feasible. The pseudo-
fractal scale-free web by Dorogovtsev and Mendes [17]
grows deterministically by iterative triangle formation as
follows. Start at generation n = 0 with two vertices con-
nected by an edge. To obtain generation n + 1, for each
edge xy present in generation n add a new vertex z and
the edges xz and yz, such that each existing edge xy
becomes part of an additional triangle xyz. The calcula-
tion of c(h) is particularly simple because each cycle has
a unique predecessor in the previous generation, given
by following direct links xy instead of the additional “de-
tours” via z. A cycle of length h in generation n produces
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FIG. 2: Number c(h) of cycles of length h estimated by the
MC sampling algorithm (thick dashed curves) and the ex-
act values from iterating Eq. (2) (thin solid curves). Stud-
ied networks are generations n = 4, . . . , 8 (system sizes
N = 42, 123, 366, 1095, 3283 vertices) from the deterministic
growth model [2]. Given a network, a histogram is generated
for each inverse temperatures β ∈ [−5.0, . . . , +3.0] in steps of
∆β = 0.1. Each histogram is based on the lengths of the last
108 cycles of a Markov chain of total length 2×108. Then his-
tograms are merged by choosing relative normalization such
that the sum of squares of deviations in the overlapping region
of adjacent histograms are minimized. The normalization of
the final histogram is chosen such that c(0) = 1. Results are
robust against variation of the chain length.

2h cycles in generation n+1 as the result of h binary de-
cisions to follow the detour or the original direct edge.
The histogram of cycle lengths iterates as

c(n+1)(h) =

h
∑

l=3

(

h

h − l

)

c(n)(l) (2)

for l ≥ 4 and c(n+1)(3) = c(n)(3) + 3n. The result of the
numerical iteration of these equations up to generation
n = 8 is shown in Fig. 2, together with the results from
the Monte Carlo method. The relative deviation of the
sampling estimate of c(n)(h) from the exact value is below
25% for all cycle lengths h and all generations n. In
particular, the unique cycle of maximum length hmax =
3 × 2n is detected. The method approximates the true
numbers of cycles with large precision.

Now we apply the algorithm to study the system size
dependence of the cycle length distribution of stochas-
tically growing artificial networks. All networks initiate
as two vertices coupled by an edge. The networks grow
by iterative attachment of vertices until a desired size N
is reached. At each iteration, one new vertex z and two
new edges xz and yz are generated. We are interested in
the influence different attachment mechanisms have on
the cycle length distribution. Therefore we distinguish
four probabilistic rules for selection of the nodes x and
y to which the new node z attaches. Independent ho-
mogeneous (IH) attachment: Draw x and y randomly
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FIG. 3: System size dependence of the cycle length distribu-
tion in growing networks. (a) Mean cycle length for the four
stochastic attachment rules (�,©,∇,△) and the determin-
istic attachment rule (♦). For the Internet (∗), system size
N has been rescaled by factor 20 to fall into the displayed
range. Dashed straight lines indicate growth exponents 1 and
ln 2/ ln 3 ≈ 0.63 for comparison. (b) Relative variance of the
cycle length distribution for the same networks (same symbols
as in (a)). In both panels, data points the stochastic growth
models are averages over 10 network realizations each. Error
bars indicate standard deviation over realizations.

(with equal probabilities) and independently from the
set of nodes; if x = y, discard this choice and repeat.
Independent preferential (IP) attachment: Draw an edge
randomly (all edges having equal probability) and take
as x one of the end vertices chosen with equal probabil-
ity; draw another edge to find y analogously; if x = y,
discard this choice and repeat. Triangle forming preferen-
tial (TP) attachment: Draw an edge randomly and take
its two end vertices as x and y. Triangle forming ho-
mogeneous (TH) attachment: Draw an edge randomly,
take x and y as its end vertices and accept this choice
with probability 1/(deg(x) deg(y)); otherwise reject and
repeat.

Rule IP is equivalent to choosing nodes with probabil-
ity proportional to degree [6], so-called preferential at-
tachment. It generates scale-free networks with degree
exponent γ = 3. Rule TP implements preferential at-
tachment with the additional constraint that x and y

TABLE I: Networks with different attachment rules and the
resulting scaling exponents γ for the tail of the degree distri-
bution and α for the growth of the cycle lengths. The last
column displays the symbol used in Fig. 3.

rule indep / tri hom / pref α γ

IH [6] independent homogeneous 1.010(4) ∞ �

IP [6] independent preferential 0.969(5) 3 ©

TH triangle homogeneous 0.722(5) ∞ ∇

TP [18] triangle preferential 0.644(9) 3 △

PF [17] triangle preferential 0.635(1) 2.59 ♦

Internet 0.76(4) 2.22(1) ∗

be connected; it is the stochastic version of the pseudo-
fractal (PF) scale-free web [18] defined above. The result-
ing networks are scale-free with γ = 3. The homogeneous
attachment rule (IH) [6] leads to networks with exponen-
tially decaying degree distribution (γ = ∞). The fourth
rule (TH) introduced here combines triangle formation
with homogeneous attachment by explicitly canceling out
the degree dependence in the selection probability. We
have checked that this rule generates an exponential de-
gree distribution.

As shown in Fig. 3(a) the mean cycle length increases
algebraically with system size,

〈h〉 ∼ Nα , (3)

with the exponent α ∈ [0, 1] depending on the attach-
ment rule. The variance of the cycle length distribution
increases algebraically with the same exponent α. There-
fore the ratio between variance and mean is practically
constant, see Fig. 3(b). Considering the degree expo-
nent γ and the cycle growth exponent α for each type of
network (Table I), several observations are worth men-
tioning. Homogeneous attachment with triangle forma-
tion leads to a non-trivial cycle growth exponent α ≈ 0.72
even in the absence of scaling in the degree distribution
γ = ∞. Networks grown stochastically with triangle for-
mation and preferential attachment (rule TP) have the
same exponent α ≈ 0.64 as the deterministic counter-
part (rule PF) while the degree exponents under these
two rules are clearly different. Analogously, in the ab-
sence of triangle formation (rules IH and IP) the same
cycle growth exponent α ≈ 1.0 is obtained regardless of
the degree exponents γ ∈ {3,∞}.

Finally we consider cycles in an evolving real-world
network. The Internet at the level of Autonomous Sys-
tems is a growing scale-free network with degree expo-
nent γ = 2.22(1) [20, 21]. Here we analyze snapshots of
the network with sizes from N = 3015 nodes (Novem-
ber 1998) to N = 10515 nodes (March 2001) [19]. We
find that during this time the mean cycle length grows
from 264.9 to 757.8, as plotted in Fig. 3(a). As in the
artificial growing networks, the growth is algebraic. The
growth exponent is estimated as α = 0.76(4) by a least
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FIG. 4: Evolution of cycles in the growing Internet at
the Autonomous Systems level. (a) The number of cy-
cles of given length h as a function of system size N for
h = 10, 20, 30, . . . , 100 (squares, bottom to top). The straight

lines are best fits of the form c(h, N) ∝ Nξ(h). (b) Growth
exponents ξ(h) as defined in Eq. (4) obtained as slopes of the
fitted lines in (a). Error bars of exponents indicate standard
error from the fit. Dashed lines have slopes 1.0 and 0.9.

squares fit. More detailed analysis is performed on the
number c(h, N) of cycles of given length h at system size
N plotted in Fig. 4(a). We observe a scaling

c(h, N) ∼ N ξ(h) . (4)

with an exponent ξ(h) that depends linearly on h with a
slope close to unity. Figure 4(b) shows that

ξ(h) ≈ h . (5)

for not too small lengths h ≥ 10. The scaling behavior
is in qualitative agreement with the prediction from the
first order approximation by Bianconi et al. [22], assum-
ing that the Internet is a random network with a given
scale-free degree distribution.

In summary, we have introduced a method for sam-
pling cycles in large graphs. We have identified cycle
space with the state space of a system with many de-
grees of freedom, thereby making Monte Carlo techniques
from statistical mechanics applicable. In this framework,
we have analyzed the evolution of cycles in growing net-
works. While the mean cycle length grows with a char-
acteristic exponent α the relative width of the length
distribution tends to zero as the system size increases.
Thus, in agreement with an earlier speculation [15], the
exponent α is found to be the most relevant quantity for
the evolution of cycle space. In the scale-free model by
Barabási and Albert [6] as well as the growth model with
random homogeneous attachment, cycles are space-filling
(α = 1.0), i.e. cycle length is proportional to system size.

In model networks with explicit formation of triangles
and in the Internet, however, cycles grow slower than the
system as a whole. This class of networks having α < 1
also includes single-scale networks with γ = ∞. Our
study suggests that the cycle growth exponent may serve
as a characterization of growing networks independent
of the degree exponent γ. An open question concerns
universality. Can α be altered continuously by tuning
parameters or does it assume distinct values, separating
growing networks into universality classes?

We are grateful to C. P. Bonnington, J. Leydold, and
A. Mosig for inspiring discussions. This work was sup-
ported by the DFG Bioinformatics Initiative BIZ-6/1-2.
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