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Abstract

We introduce the concept of neighborhood systems as a generalization
of directed, reflexive graphs and show that the prime factorization of
neighborhood systems with respect to the the direct product is unique
under the condition that they satisfy an appropriate notion of thinness.

Keywords: products, set systems, prime factor theorem
AMS Subject Classification (2000): 05C20, 05C65, 05C70

1. Introduction

In this contribution we consider a special class of set systems that arises in a nat-
ural way in theoretical biology. Many central notions in evolutionary biology are
intrinsically topological: for example, one speaks of “continuous” and “discontinu-
ous” transitions in evolution of phenotypes (i.e., the organization and physical shape
of an organism). Since genetic variation is determined by mutation, recombination,
and other genetic operators acting on the sequence of the organism’s genotype (i.e.,
its DNA sequence) it becomes natural to organize the phenotypes according to their
genetic accessibility [2]. Computer models shows that the resulting finite spaces lack
e.g. a metric structure. Instead, they are most conveniently formalized by means of
generalized closure spaces, that is, structures that generalize topological spaces, see
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e.g. [3, 1]. To this end one defines the closure c(A) of a set of organisms A as the
set of organisms that can be obtained from A by application of the genetic operators
[7, 6].

In the simplest case, where only mutations are considered at the phenotypic level,
one has to deal with pretopological spaces; here the closure function is not assumed
to be idempotent, and (equivalently) a neighborhood of a point does not necessarily
contain an open neighborhood [1]. A further generalization is necessary to incorpo-
rate recombination. The resulting neighborhood spaces are defined by neighborhood
systems that are no longer proper filters but are merely arbitrary isotonic set systems.

In [8] a theory is discussed in which the notion of a “biological character” is identified
with a factor of the phenotype spaces with respect to a suitable generalization of the
topological product, which reduces to direct product of directed graphs with loops
(i.e., finite pretopological spaces) in the mutation-only case. The crucial observation
for the biological interpretation is the existence of a unique prime factor decomposition
and a unique coordinatization of the graph under certain circumstances [5].

In this contribution we consider the more general case of finite neighborhood spaces.
The corresponding generalization of directed graphs, for which we propose the term
N − systems, has, to our knowledge, not been investigated so far.

2. Definitions and Preliminaries

Definition 1. An N-system consists of a nonempty finite set X and a system N

of collections of subsets of X that associates to each x ∈ X a collection N(x) =
{N1(x), N2(x), . . . , Nd(x)} of d(x) ≥ 1 subsets of X with the following properties:

(N0) N(x) 6= ∅.
(N1) N i(x) ⊆ N j(x) implies i = j.
(N2) x ∈ N i(x) for 1 ≤ i ≤ d(x).

We also call an N-system neighborhood system and denote it by (X, N).

Remark. If d(x) = 1 for all x ∈ X then (X, N) describes a directed graph with loops.
In this case N(x) = {N 1(x)} for every x and N 1(x) is the neighborhood of x.

Definition 2. Let (X1, N1) and (X2, N2) be two N-systems. We define their direct
product (X1, N1) × (X2, N2) in the following way:

(1) The vertex set is X = X1 × X2.
(2) The neighborhoods N(x1, x2) are the sets {N ′×N ′′|N ′ ∈ N1(x1), N ′′ ∈ N2(x2)}.

Lemma 3. The direct product of two N-systems is an N-system.

Proof. Clear. �
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If N1(x1) = {N(x1)} and N2(x2) = {N(x2)} then N(x1, x2) = {N(x1) × N(x2)}.
Hence, if (X1, N1) and (X2, N2) both represent graphs, then their product also rep-
resents a graph, which is the direct product of graphs in the usual sense.

Definition 4. Let Γ(X, N) be the directed graph (with loops) with vertex set X and
edge set

E =







(x, y)

∣

∣

∣

∣

y ∈

d(x)
⋃

i=1

N i(x)







(1)

We say that (X, N) is connected if Γ(X, N) is connected.

Lemma 5. Γ((X1, N1) × (X1, N1)) = Γ(X1, N1) × Γ(X2, N2).

Proof. The vertex set of both graphs is X1 × X2. In order to see that the edge sets
are the same it suffices to observe that

(

⋃

i

Ni(x)

)

×

(

⋃

j

Nj(y)

)

=
⋃

i

⋃

j

(Ni(x) × Nj(y)) (2)

is true in general. �

Let Γ be a directed graph (X, E). We say two vertices u, v of Γ are equivalent, in
symbols uRv, if (u, x) ∈ E ⇔ (v, x) ∈ E and (x, u) ∈ E ⇔ (x, v) ∈ E. The graph Γ
is thin if R is the identity relation on X.

It is clear what we mean by Γ/R and that Γ/R is always thin. For us the following
relation is of particular importance

(X × Y )/R = X/R × Y/R.

For thin connected reflexive relations (i.e., thin digraphs with loops at each vertex)
we have the strong refinement property (McKenzie [5]), which guarantees a unique
coordinatization with respect to the direct product. In fact, McKenzie’s result guar-
antees the existence of a common refinement for any two decompositions with respect
to the direct product, but this of course implies unique prime factorization for finite
structures.

3. The main result

Theorem 6. If the N-system (X, N) has a thin, connected digraph Γ(X, N). Then
(X, N) has a unique prime factorization with unique coordinatization.

Proof. McKenzie’s result guarantees a unique decomposition of Γ(X, N) with unique
coordinatization. If (X1, N1) is a factor of (X, N), then Γ(X1, N1) is a factor of
Γ(X, N). However, it is possible that (X, N) or any of its N-factors (Xi, Ni) is in-
decomposable (as an N-system) but that Γ(X, N) or Γ(X1, N1) can be further de-
composed as a graph. It follows that the decomposition of (X, N) will in general be
coarser than the decomposition of Γ(X, N).
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Since the coordinatization is unique (up to the order of the factors), the projections
Nk

i (xi) of Nk(x) to the prime factors Γi are unique. This implies that an N-system
(X, N) will be prime in the case of a decomposable Γ(X, N) if there is an N k(x) that
is not the product

∏

i
Nk

i (xi) of its projections into the factors Γi. In this case Nk(x)
is a proper subset of

∏

i N
k
i (xi).

Since the decomposition of (X, N) is coarser in general we need to show that there is
a unique finest decomposition of (X, N). For this it suffices to show that there is a
common N-refinement to any two N-system decompositions of (X, N).

Suppose X = Y ×Z and X = U × V are two such decompositions. Clearly there is a
Γ-refinement with factors YU , YV , ZU , and ZV , such that Y = YU ×YV , Z = ZU ×ZV ,
U = YU × ZU , and V = YV × ZV . Given a vertex v ∈ X we call the subgraph of X
that is induced by the set of vertices that differ from v only in the Y -coordinate the
Y -layer of through v. Clearly every Y -layer Y v is the product of its projections into
YU and YV ,

Y v = pYU
(Y v) × pYV

(Y v).

Let A be an arbitrary N i(x). By assumption

A = pY A × pZA = pUA × pV A.

Clearly pY A is a subset of pUpY A× pV pY A. We have to show that equality holds. It
is equivalent to the statement that every Y -layer of A is the product of its projections
into U and V . In other words, every Y -layer of A is a subproduct of A with respect
to the decomposition A = pUA × pV A.

Suppose this is not the case for the Y -layer (pY A)v of A. Then there exists a vertex
w = (wU , wV ) 6∈ (pY A)v and vertices a, b ∈ (pY A)v, where aU = wU and bV = wV .
Note that w 6∈ Y v since pY Av = Y v ∩ A. Furthermore a and b have the same Z-
coordinate. Thus,

a = (wU , aV ) = (wZU
, wYU

, aZV
, aYV

), b = (bU , wV ) = (bZU
, bYU

, wZV
, wYV

).

Their Z-coordinates are aZ = (wZU
, aZV

) and bZ = (bZU
, wZV

). Since they are equal,
they are equal to (wZU

, wZV
), which is the Z-coordinate (wZU

, wZV
) of w. This is not

possible because w 6∈ (pY A)v. Hence, the Γ-refinement is also an N-refinement and
N-prime factorization is unique for thin structures. �

We call two vertices u, v of a neighborhood system equivalent, in symbols uRv, if
N(u) = N(v) and if u ∈ N i(z) ⇔ v ∈ N i(z) for all z ∈ X and all i ∈ {1, . . . , d(z)}.
(X, N) is thin if R is the identity relation.

Note that (X, N) can be thin, even when N(u) = N(v) for certain pairs of vertices.
In such a case there must exist an N i(z) that contains exactly one of the vertices u, v.

Conjecture 7. If (X, N) is connected, then it has a unique prime factor decomposi-
tion with respect to the direct product of N-systems. If (X, N) is thin and connected,
then we also have unique coordinatization.
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With methods from [4] we can show that the conjecture holds if N(u) = N(v) implies
u = v, but the proof is long and tedious.
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