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ABSTRACT

Summary: Many classes of non-coding RNAs (including
YRNAs, vaultRNAs, RNAse P and MRP RNA, as well
as a novel class recently discovered in Dictyostelium
discoideum) can be characterized by a pattern of short but
well conserved sequence elements that are separated by
a poorly conserved regions of sometimes highly variable
lenght. Local alignment algorithms such as bl ast are
therefore ill-suited suitable for the discovery new homologs
of such ncRNAs in genomic sequences. The fragrep
tool instead implements an efficient algorithm for detecting
pattern fragments that occur in a given order. For each
pattern a mismatches tolerance and bounds on the length
of the intervening sequences can be specified separately
for each pattern fragment.

Availability: The program f r agr ep can be downloaded
from http://www.bioinf.uni-leipzig.de/Software/fragrep/.
Contact: Axel Mosig, Tel: ++49 341 14951 31,

Fax: ++49 341 14951 19, axel@bioinf.uni-leipzig.de

Methods for detecting non-coding RNAs (ncRNAS)
in genomic sequence data has been a topic of intense
research. While techniques for detecting protein-coding
genes can rely on universal characteristics such as start
and stop codons, the triplet amino acid code or ribosome
binding sites, there are no corresponding characteristics
known in ncRNAs. Computational tools for ncRNAs
detection are therefore restricted to one or few particular
classes of RNA. Some classes, such as YRNAs and vaultR-
NAs, contain stem or loop regions with well-conserved
sequence patterns (Farris et al., 1999; Teunissen et al.,
2000; Kickhoefer et al., 2003)). These characteristics are
used by f r agr ep.

Supppose that our ncRNA of interest contains k
conserved sequence fragments, denoted by C4,...,Cy,
which occur in a given order in a set of known exam-
ples. In practice, the C; are obtained as the consensus
sequences of conserved blocks in a multiple alignment.
Scanning a genome T for these blocks, we expect to
find a non-conserved sequence segment X; between any
two fragments C; and C;,;. The fragrep solves he

problem of determining whether there are sequences
Xi,...,X;_1 such that C'X,CyX,5... X3 1C is a
substring of 7'. Additionally, f ragrep can take into
account two further aspects:

Gap length bounds: For each X, the user can specify
lower and upper bounds, denoted by ¢, and u;, respec-
tively, for the length of X;, so that only matches satisfying
¢; <|X;| < u; will be taken into account by f r agr ep.
Mismatches: The fragments C; do not need to match the
corresponding sequence part of T exactly; the user can
specify a number of mismatches m,. Denoting C; as
the fragment C; modified by at most m; many arbitrary
mismatches, f r agr ep will report occurences of some
C1X,CX, ... X1 C, as well.

We start by computing all occurences of the most
informative fragment C,,, i.e., the fragment that is least
likely to occur as a random subsequence of the genome
T. Then a neighborhood defined by the bounds ¢; on the
lengths of the intervening sequences X; is searched for the
other fragments C;, i # a. From this position information
a graph G is constructed such that paths of length &
in G correspond to occurences of C'q,...,C} in the
given order under the specified mismatch and gap length
constraints. These paths can be found easily by means of
dynamic programming. Starting with the most informative
sequence C,, rather than C increases the efficiency of the
search and in practice leads to a significant speedup, in
particular when short or ambiguous fragments are part of
the pattern. The Cimplementation of f r agr ep has been
optimized in several algorithmic details to improve the
runtime.

We used fragrep to studying the evolution of a
class of ncRNAs in the the slime mold Dictyostelium
discoideum that was discovered in an experimental survey
by Aspegren et al. (2004). We searched the genomic
sequence (Fey et al., 2004) for type-I ncRNASs using the
following simple pattern:

0 0 GITGRCCTTACAGCAA 2
0 120 GICAACTG 2

The first two columns contain the minimal and maximal




distance before a the pattern fragment (always O for the
first fragment, of course), the last column is the maximal
number of mismatches that is tolerated in each fragment.
We recovered 45 candidates of which 34 are sufficiently
similar to the experimentally determined sequences to be
alignable. 11 very divergent sequences were not included
in the further analysis. A neighborjoining tree summariz-
ing both known sequences and the novel candidates de-
tected by f ragr ep is displayed as Fig. 1. We find the
the class-1 ncRNAs are located in small clusters in all 6
chromosomes. Interestingly, there are two subclasses, de-
noted by A and B, that alternate in the larger clusters, even
though their direction on the chromosomes does not seem
to follow a simple rule.

In order to evaluate the performance of the algortihm
underlying fragrep, we used a query derived from
YRNA alignments in Farris et al. (1999) to scan the whole
human genome. The query consisted of four fragments
whose length varide between 5 and 17 nucleotides.
Scanning all chromosomes of the human genome took less
than 20 minutes on a standard desktop computer with a
2.4GHz processor and 1GB main memory; further results
from scanning the human as well as the mouse and the rat
genome are given in the folowing table.

Genome H.sap. M.musc. R.nov.
sizein Mb 2,980 2,561 2,640
runtime (mm:ss)  19:43 15:44 15:48
# cand. matches 44 1 1

These examples demonstrate that fragrep can be
used for systematic surveys of eukaryotic genomes. The
application of standard multiple alignment tools such
as C ust al Wor di al i gn to a relatively small set of
representatives of an ncRNA class can be used to deter-
mine conserved sequence patterns, which can be turned
into f r agr ep queries in a straightforward manner. The
f ragr ep tool can then be employed to find additional
members of the ncRNA family in related genomes. This
approach yields significant matches where other sequence
search tools such as bl ast fail to report useful results,
while structure based approaches, such as i nf er nal
are too costly. Of course, fragrep is not limited to
ncRNA detection; the search for specific constellations
of transcription factor binding sites is another potential
application.
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Fig. 1. Type-1 ncRNAs from Dictyostelium discoideum. Red num-
bers are the DdR- numbers of the expressed RNAs from the ex-
perimental survey by Aspegren et al. (2004). The sequences appear
in clusters on all chromosomes (right). The phylogenetic tree (left,
neighborjoining method) suggests that there are two major sub-
groups, labeled A and B. Below the organization of the two largest
clusters X4a and X4b located at chromosome 4. Note that type A
and type B copies alternate. The other type-1 ncRNA clusters consist
of not more than three sequences.
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