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Abstract. We show that replicator equations follow naturally from the expo-
nential affine structure of the simplex known from information geometry. It is
then natural to call replicator equations linear if their fitness function is affine.
For such linear replicator equations an explicit solution can be found. The
approach is also demonstrated for the example of Eigen’s hypercycle, where
some new analytic results are obtained using the explicit solution.

1. Introduction

In mathematical biology, replicator equations play a fundamental role in describ-
ing evolutionary game dynamics and population dynamics (see [HS]). These
equations are given for the dynamics t 7→ x(t) on the standard simplex in R

n,
where the extremal points correspond to the individual pure strategies or species
labelled by i = 1, 2, . . . , n:

(1) ẋi = xi

(

fi(x)−

n
∑

j=1

xjfj(x)

)

.
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2 NIHAT AY AND IONAS ERB

For each i, the function fi describes the fitness of i, and xi measures its relative
frequency. In many applications, mainly linear fitness functions are studied.
These functions are given by a matrix A = (ai,j)1≤i,j≤n:

(2) fi(x) =

n
∑

j=1

ai,j xj.

Although this ansatz is intended to give the easiest description, the resulting
replicator equation (1) is quadratic, and only in some specified situations complete
solutions are known. In this article, we introduce the notion of linearity that is
new in the context of replicator dynamics but naturally appears in information
geometry (see [AN]). The present approach allows to analyse linear replicator
equations with a variety of interesting properties. In particular, the solution
curves for such equations can be written down explicitly.
The basic idea has already been pursued in the literature [J, SG]: A logarithmic
ansatz instead of (2) leads to a system that is linear in new variables. Let us
briefly illustrate this by an easy example. We consider the matrix

A =





0 −2 2
1 1 −2
−1 1 0





and, as mentioned, instead of the ansatz (2) we now make the following corre-
sponding logarithmic replicator ansatz

ẋ1 = x1(−2 ln x2 + 2 lnx3 − c)(3)

ẋ2 = x2(ln x1 + ln x2 − 2 lnx3 − c)(4)

ẋ3 = x3(− ln x1 + ln x2 − c),(5)

with

c = x1(−2 lnx2 + 2 ln x3) + x2(lnx1 + ln x2 − 2 lnx3) + x3(− ln x1 + ln x2).

In order to solve this system of differential equations, we define T3 to be the
subspace of R3 consisting of all vectors whose coordinates sum up to zero and
consider the diffeomerphism T3 → S3 that maps the coordinates v1,v2, and v3 of
a vector in T3 to the point in the simplex with the coordinates

xi =
evi

ev1 + ev2 + ev3

, i = 1, 2, 3.

A straightforward calculation shows that, pulling the vector field that corresponds
to the equations (3), (4), and (5) back, we get a vector field on T3 that corresponds
to the following system of linear differential equations:

v̇1 = −2v2 + 2v3,(6)

v̇2 = v1 + v2 − 2v3,(7)

v̇3 = −v1 + v2,(8)
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This system is easy to solve. In figure 1 the phase portrait for such a system is
shown. Both the dynamics in the variables v and x are plotted.

This paper is organized as follows: In section 2, the abstract mathematical frame-
work is presented. It is shown how the affine structure of the simplex is defined, in
what respect replicator equations can be considered linear ODE’s and what their
solutions are. In section 3 we consider Eigen’s catalytic hypercycle. The knowl-
edge of a complete solution allows for a linear dynamical-systems approach. This
leads to simple observations regarding the behaviour of the system in different
dimensions.
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e2

e3

e1

Figure 1. Example of dynamics on T3 and S3
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2. How replicator equations follow from an affine structure

2.1. The logarithmic linearity. We consider the elements of Rn as columns,
and the map † : (x1, . . . , xn) 7→ (x1, . . . , xn)† transposes rows into columns. The
canonical basis of Rn is written as ei, i = 1, . . . , n. Consider the open simplex
Sn ⊂ Rn,

Sn :=

{

x = (x1, . . . , xn)† ∈ R
n : xi > 0 for all i,

n
∑

i=1

xi = 1

}

,

and its tangent space

Tn :=

{

v = (v1, . . . , vn)
† ∈ R

n :
n
∑

i=1

vi = 0

}

.

The exponential map exp : Sn × Tn → Sn,

(x, v) = ((x1, . . . , xn)†, (v1, . . . , vn)†) 7→ exp(x, v) :=
n
∑

i=1

xi · e
vi

∑n
j=1 xj · evj

ei,

defines an affine structure on Sn. We will also use the restrictions

expx := exp|{x}×Tn
, x ∈ Sn.

For each two points x and y, the difference vector that translates x into y is
given by

vec(x, y) = exp−1
x

(y) =
n
∑

i=1

(

ln
yi

xi

−
1

n

n
∑

j=1

ln
yj

xj

)

ei.

Definition 2.1. A map f : Sn → Rn is called affine, if there is a linear map
f0 : Tn → Rn

f
(

exp
x
(v)
)

= f(x) + f0(v) for all x ∈ Sn, v ∈ Tn.

Here, f0 is uniquely determined. The set of all affine maps Sn → Rn is denoted
by Aff(Sn, Rn).

Let c denote the point ( 1
n
, . . . , 1

n
)† ∈ Sn, and let Lin(Tn, Rn) denote the set of

linear maps Tn → Rn. There is a one-to-one correspondence between Aff(Sn, R
n)

and Rn × Lin(Tn, Rn). For each pair (a, f0) ∈ Rn × Lin(Tn, Rn) we assign the
affine map

(a, f0) 7→ f := a + f0

(

vec(c, ·)
)

.

Extending the linear part f0 to an endomorphism on Rn allows to give a matrix
representation of f :

(9) f = a + A vec(c, ·), A ∈ M(n, R).
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Here, M(n, R) denotes the set of (n × n)-matrices with real entries. In order
to describe this representation more precisely, we consider the inclusion map
ι : Tn → Rn. Its pseudo inverse with respect to the canonical scalar product is
given by the orthogonal projection π : Rn → Tn onto Tn. Denoting the set of
endomorphisms on R

n by End(Rn), these maps induce

ι∗ : End(Rn) → Lin(Tn, Rn), g 7→ ι∗(g) := g ◦ ι = g|Tn
,

π∗ : Lin(Tn, Rn) → End(Rn), g 7→ π∗(g) := g ◦ π.

Using the representation ρ of endomorphisms on Rn by matrices with respect to
the canonical basis, we have the following diagram:

M(n, R)
ρ
−→ End(Rn)

ι∗
−→
π∗

←−
Lin(Tn, Rn)

Proposition 2.2.
(1) The kernel of the map ι∗ ◦ ρ is given by

V(Tn) =











b1 · · · b1
...

. . .
...

bn · · · bn



 : b1, . . . , bn ∈ R







.

Therefore, if a matrix A solves the equation (9), then A + V(Tn) represents the
whole solution set.
(2) The map ρ−1 ◦ π∗ represents the canonical representation of linear maps
Tn → Rn. Its image is given by

V(T⊥
n ) =

{

A = (ai,j)1≤i,j≤n ∈ M(n, R) :
∑n

j=1 ai,j = 0 for all i
}

.

(3) We have the orthogonal decomposition

M(n, R) = V(T⊥
n )⊕ V(Tn),

and the projection onto V(T⊥
n ) along V(Tn) is given by





a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n



 7→







a1,1 −
1
n

∑n
j=1 a1,j · · · a1,n −

1
n

∑n
j=1 a1,j

...
. . .

...
an,1 −

1
n

∑n
j=1 an,j · · · an,n −

1
n

∑n
j=1 an,j






.
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2.2. The logarithmic derivative and replicator equations. In this article,
a curve t 7→ x(t) in Sn is called (∗)-differentiable in t0 if the limit of

1

t− t0
vec(x(t0), x(t))

exists for t → t0. In that case, the limit d∗x

dt
(t0) is called the (∗)-derivative of

t→ x(t) in t0. For the derivative that is induced by the additive affine structure
of R

n we use the usual notations dx

dt
(t0) or ẋ(t0). We have the following relation

between these two notions of differentiation:

Proposition 2.3. A curve t 7→ x(t) in Sn is (∗)-differentiable if and only if it
is differentiable. Furthermore, the following relation holds:

(10)
d∗

x

dt
=

n
∑

i=1

(

1

xi

dxi

dt
−

1

n

n
∑

j=1

1

xj

dxj

dt

)

ei.

Consider a vector field f : Sn → Tn, which assigns to each point x of the simplex
Sn a vector of the tangent space Tn. We are interested in solution curves t 7→ x(t)
of the ordinary differential equation

(11)
d∗

x

dt
= f ◦ x.

Proposition 2.3 implies the following statement:

Proposition 2.4. Let f : Sn → Tn be a differentiable vector field. Then a
differentiable curve t 7→ x(t) is a solution of the equation (11) if and only if
t→ v(t) := exp−1

c

(

x(t)
)

solves the equation

v̇ = f ◦ exp
c
◦ v.

Definition 2.5. Given a map f : Sn → Rn, x 7→ f(x) = (f1(x), . . . , fn(x))†, the
equation

(12) ẋi = xi

(

fi(x) −
n
∑

j=1

xjfj(x)

)

, i = 1, . . . , n,

is called replicator equation. The replicator equation (12) is called linear if f is
affine in the sense of definition 2.1.
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The following theorem establishes a relation between the equation (11) and the
corresponding replicator equation.

Theorem 2.6. Let f : Sn → Tn be a differentiable map. A differentiable curve
t 7→ x(t) = (x1(t), . . . , xn(t))† in Sn is a solution of the equation (11) if and only
if it solves the corresponding replicator equation (12).

Theorem 2.6 allows to interpret replicator equations as ordinary differential equa-
tions with respect to the (∗)-affine structure. But this correspondence is not one-
to-one. Obviously, the replicator equation (12) does not change if we replace f
by f + g, where g is a map Sn → T⊥

n . We choose the natural representative of f

f c : Sn → Tn, x 7→ f c(x) :=

n
∑

i=1

(

fi(x)−
1

n

n
∑

j=1

fj(x)

)

ei.

Then, according to Theorem 2.6, the replicator equation (12), which is induced
by a map f with values in Rn, is equivalent to

d∗
x

dt
= f c ◦ x.

In the following, we consider linear replicator equations. In that case f ∈
Aff(Sn, Rn), and f has a unique representation

f = a + f0

(

vec(c, ·)
)

,

where a ∈ Rn and f0 ∈ Lin(Tn, Rn). One easily sees

f c = π(a) + (π ◦ f0)
(

vec(c, ·)
)

.

If we start with a matrix representation of the linear part of f ,

f0(v) = A v for all v ∈ Tn,

A =





a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n



 ,

then (π ◦ f0)(v) = Ac
v, where Ac is given by

Ac :=





a1,1 −
1
n

∑n
i=1 ai,1 · · · a1,n −

1
n

∑n
i=1 ai,n

...
. . .

...
an,1 −

1
n

∑n
i=1 ai,1 · · · an,n −

1
n

∑n
i=1 ai,n



 .

Thus, in addition to the freedom of choice stated in Proposition 2.2 (1), we have
further possibilities in describing the same dynamics, namely due to the replace-
ment of A by Ac.
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The following theorem summarizes our results on our notion of linear replicator
equations:

Theorem 2.7. Let a ∈ Rn and A ∈ M(n, R), and consider the affine map

f : Sn → R
n, x 7→ f(x) := a + A vec(c, x).

Then the corresponding linear replicator equation is given by
(13)

ẋi = xi

(

ai +

n
∑

j=1

ai,j ln
xj

(x1 · · ·xn)
1

n

−

n
∑

k=1

xk

(

ak +

n
∑

j=1

ak,j ln
xj

(x1 · · ·xn)
1

n

))

.

A differentiable curve t 7→ x(t) = (x1(t), . . . , xn(t))† in Sn is a solution of the
equation (13) if and only if t→ v(t) := exp−1

c

(

x(t)
)

solves the equation

v̇ = π(a) + Ac
v.

For the initial condition v(0) = v0 ∈ Tn, we get the following solution for the
replicator equation (13):

x(t) = expc

(

v(t)
)

,

(14) v(t) = etAc

v0 +

∫ t

0

e(t−τ)Ac

π(a) dτ.

Thus to solve the replicator equation, we only have to find the solution v(t) for
the linear system. We identify Ac with a complex matrix that has entries with
vanishing imaginary part. Particularly easy to solve are systems where we can
find a basis of Cn that puts the matrix Ac in diagonal form, i.e. where we can
find linearly independent eigenvectors. If λk = αk + iβk is a complex eigenvalue
to eigenvector v

k = u
k + iwk, so is λ̄k = αk − iβk to eigenvector v̄

k = u
k − iwk

(since Ac has real entries). Notice that by definition Ac has the eigenvector 1 to
eigenvalue 0. We have the following implications of Theorem 2.7 for homogeneous
systems where Ac can be diagonalized:

Corollary 2.8. Let a = 0 and let Ac be such that it can be diagonalized in Cn.
We denote eigenvectors of Ac by 1, v1, . . . , vn−1, their eigenvalues by 0, λ1, . . . ,
λn−1. Then there exist Ck following from the initial condition v

k(0) such that the
(real) solution on Tn is given by

v(t) =

n−1
∑

k=1

v
k(t).

In case of a real eigenvalue λk,

v
k(t) = Cke

λkt
v

k.
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In case of an eigenvalue λk = αk + iβk with βk 6= 0 to eigenvector v
k = u

k + iwk,

v
k(t) = Cke

αkt
(

cos(βkt)u
k + sin(βkt)w

k
)

.

Theorem 2.7 and its Corollary 2.8 make the intuitive idea that is sketched in the
introduction more precise. In a complete classification of the generic cases for
linear (and homogeneous) systems in the two-dimensional simplex, the corollary
covers all cases except the one with one-dimensional eigenspace. The classification
(analogous to the one in [Br]) is shown in figure 2. By generic we mean that
eigenvectors do not have equal components and thus their coordinate lines end in
corners of the simplex. For a description of the dynamics for the original ansatz
(2) see [St].
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in different corners

in the same corners

in the same corners

λ1,2 = α± iβ

left: α 6= 0

right: α = 0

left: coordinate lines ending

λ1 < λ2 < 0

right: coordinate lines ending

λ1 < 0 < λ2

in different corners

right: coordinate lines ending

λ1 = λ2 6= 0

right: 1-dim eigenspace

left: 2-dim eigenspace

left: coordinate lines ending

Figure 2. Generic phase portraits for S3



12 NIHAT AY AND IONAS ERB

Figure 3. A hypercycle of eight species

3. Hypercycle equations

In the following we will present some results for a model example that follow
immediately from our approach. They are only intended to demonstrate the way
analytic results can be obtained and are certainly not all one can do (see also
[J, Ar]). For a more general approach to the hypercycle see [HMS].

3.1. Our approach to the hypercycle. Eigen’s self-reproductive catalytic hy-
percycle [Ei] is a system of n species where each catalyses the existence of the
consecutive species until the cycle is closed. Figure 3 shows the graph of this
kind of interaction for eight species. The matrix representation of the hypercycle
is given by

A =

















0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

















In [HS], this matrix leads to the following replicator equation:

(15) ẋi = xi

(

xi−1 −

n
∑

k=1

xk xk−1

)

,

where the indices are counted mod n: x0 := xn. Although the qualitative aspects
of this dynamical system are well understood (see [HS]), it is generally not possible
to provide an explicit formula for the corresponding solution curves. Using (13)
in our Theorem 2.7, the matrix A and a := 0 lead to the following alternative
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replicator equation:

(16) ẋi = xi

(

ln xi−1 −
n
∑

k=1

xk lnxk−1

)

.

A similar solvable model is already being used in [J]. In the following, we will
show that the qualitative aspects of this ansatz remain close to the original model
(15). Based on the fact that our equations are explicitly solvable, we will provide
further analytical results. These are obtained using the centred version of A, the
matrix Ac. We obtain it by replacing the 0 entries of A by −1/n and the 1 entries
by (n−1)/n. Eigenvalues and eigenvectors of matrices with a cyclic permutation
of the rows are easily obtained [HS]:

Lemma. An n×n matrix whose entries in the first row are c0, . . . cn−1 and whose
following rows are cyclically permuted by a shift to the right has eigenvalues and
eigenvectors given by

(17) λk =
n−1
∑

j=0

cjγ
kj, v

k = (1, γk, γ2k, . . . γ(n−1)k)†, k = 0, . . . n− 1,

where the shorthand γ := ei2π/n is used.

Eigenvalues and eigenvectors of Ac (see equation (23) in the appendix) together
with Corollary 2.8 now lead to a complete solution of (16):

Proposition 3.1. We set ϕk := 2π
n

k, αk := cos ϕk and βk := sin ϕk, where
k = 1, . . . , n−1. The explicit solution for the hypercycle model (16) is then given
by x(t) = expc(v(t)), where

v(t) =
n
∑

i=1

bn
2
c

∑

k=1

eαkt
(

Ck sin(βkt + ϕk(i− 1)) + Cn−k cos(βkt + ϕk(i− 1))
)

ei.

Here, the Ck are real numbers following from the initial-condition vector v(0) on
Tn, and brc stands for the largest integer smaller than or equal to a given real
number r.

Let us now consider some special cases in lower dimensions.
n=2: T2 is spanned by the eigenvector (1,−1)† belonging to the eigenvalue −1.
This will be called the stable eigenspace in Proposition 3.2 below. The solution
on the simplex S2 is x(t) = exp(v(t)). Using Proposition 3.1, for v(t) we find

(18) v(t) = C1e
−t

(

1
−1

)

.
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Letting t go to infinity, we reach (0, 0)†, which is mapped by expc to (1/2, 1/2)†,
the centre of the simplex. This is the stable restpoint of the dynamics.
n=3: T3 is spanned by two eigenvectors belonging to eigenvalues with negative
real part (stable eigenspace). The solution on T3 is

(19) v(t) = e−t/2









C1 sin
√

3
2

t + C2 cos
√

3
2

t

C1 sin
(√

3
2

t + 2π
3

)

+ C2 cos
(√

3
2

t + 2π
3

)

C1 sin
(√

3
2

t + 4π
3

)

+ C2 cos
(√

3
2

t + 4π
3

)









.

Because of the exponentially decreasing prefactor, v(t) will again go to 0 as
t → ∞. Solution curves are spirals towards the origin. On the simplex S3, the
centre is again a stable rest point (see figure 4).

e1 e2

e3

Figure 4. The hypercycle dynamics on S3

Whether the spiraling is clockwise or anticlockwise is determined by the direc-
tion of the hypercycle: (Ac)† models the hypercycle in opposite direction. The
transformed matrix has the same eigenvectors but with λ1 and λ2 swapped.
n=4: T4 is spanned by an eigenvector belonging to eigenvalue−1 (stable eigenspace)
and two eigenvectors belonging to eigenvalues with vanishing real part. These
two span the centre eigenspace defined in Proposition 3.1 below. The solution on
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T4 is

(20) v(t) =









C1 sin t + C3 cos t + C2e
−t

C1 cos t− C3 sin t− C2e
−t

−C1 sin t− C3 cos t + C2e
−t

−C1 cos t + C3 sin t− C2e
−t









.

One can see that certain sums of components, namely v1(t)+v3(t) and v2(t)+v4(t),
tend to zero for t → ∞. This asymptotic behaviour translates via the exponen-
tial map to x1(t)x3(t) = x2(t)x4(t) for x(t). Points fulfilling this condition form
a saddle surface in the simplex (which is called Wright manifold in a different
context [HS]). The asymptotic behaviour of the solutions is described by closed
curves on this surface (see figure 5).

e1

e2

e3

e4

Figure 5. Hypercycle dynamics on S4 for large t

For n ≥ 5, there are always eigenvalues with strictly positive real parts, i.e. there
exists an unstable eigenspace and the system in some sense loses stability.

Proposition 3.2. Let Eu, Es, Ec denote the unstable, stable and centre eigenspace,
i.e. the subspaces of Tn which are spanned by the eigenvectors v

k belonging to
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eigenvalues with strictly positive, strictly negative and vanishing real part αk re-
spectively. v

k and αk are given by (23). The dimensions of the eigenspaces are

dim(Eu) =

{

2(n
4
− 1) if n/4 ∈ N,

2bn
4
c othws.

dim(Ec) =

{

2 if n/4 ∈ N,
0 othws.

dim(Es) = n− 1− 2b
n

4
c.

This leads to an immediate corollary where a precise statement about the stabil-
ity of the hypercycle is made. We have the following standard definitions: A rest
point is stable if for any of its neighbourhoods U there are neighbourhoods W
such that x ∈ W implies x(t) ∈ U for all t ≥ 0. We speak of asymptotic stability
if in addition x(t) converges to the rest point for all x ∈ W . If all orbits in the
state space converge to the rest point, we speak of global stability.

Corollary 3.3. For n ≤ 4, the centre c of Sn is a stable restpoint. For n = 2, 3,
c is even globally stable. For n ≥ 5, c is unstable.

This result is very similar to the one obtained for the original ansatz (15) in
[HS], where the rest point also is unstable for n ≥ 5 but is globally stable up to
n = 4. Intuitively it is clear that for n ≥ 5 for many initial conditions the dynam-
ics will spiral away from the centre and will get closer and closer to the boundary
of Sn. Following the direction of the cycle, each concentration will successively
approach 1 while the others vanish. We will give a result in Proposition 3.5.
Since there is always a stable eigenspace, we can also choose initial conditions
such that x(t) converges to the barycentre of the simplex, i.e. all concentrations
stay constant for long enough times. For n dividable by four we have a centre
eigenspace, so in addition to the cases mentioned, there will be periodic orbits
where at no time a concentration approaches zero or one (see figure 6):

Corollary 3.4. For n such that n/4 ∈ N there are periodic orbits where for
all times the concentrations of the species stay outside neighbourhoods of zero
and one. On the centre eigenspace Ec ⊂ Tn these orbits are circles of radius
√

n
2
(C2

n
4

+ C2
3n
4

).

Proposition 3.5. We define the ω-limit set of x as

ω+(x) := {y ∈ Sn| there exists tm ↗∞ such that x(tm)→ y for m→∞}.

Then for n ≥ 5, there are x for which the corners of the simplex belong to ω+(x).
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Figure 6. n=8: one component of x(t) for different initial conditions
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3.2. Generalisation of the model. Let us now consider a model where one
species not only catalyses the following one but the following m species. In the
rows of the matrix A the 0’s to the left of the single 1 entry are replaced by fur-
ther 1’s. The form of the solution of this system is not altered. While for m = 1
the eigenvalues were just equal to the last component of their eigenvectors, here
the eigenvalues are the sum of the last m components:

Proposition 3.6. The solution of the generalized hypercycle model where each
species catalyses the m following ones is of the same form as given in Proposition
3.1, where αk and βk are to be replaced by

αk(m) =
m
∑

l=1

cos(ϕkl), βk(m) =
m
∑

l=1

sin(ϕkl).

From this it is clear that we know again the stable, unstable and centre eigenspaces
for all m and n. For some cases it is easy to find explicit expressions for their
dimensions. In the following propositions we give results for m = 2 and for m
close to n. The stability of the system increases with m:

m least n for existence of Eu

1 5
2 7

n-3 13
n-2 -

Proposition 3.7. For m = 2, the dimensions of the eigenspaces are given
by

dim(Eu) =

{

2(n
6
− 1) if n/6 ∈ N,

2bn
6
c othws.

dim(Ec) =







3 if n/6 ∈ N,
1 if n/6 /∈ N, n/2 ∈ N,
0 othws.

dim(Es) = n− 1−

{

(2n
6

+ 1) if n/2 ∈ N,
2bn

6
c othws.

.
Clearly, similar corollaries as Corollary 3.3 and 3.4 follow. Here, we have an ad-
ditional phenomenon in that v

n
2 , whose components are alternating 1’s and -1’s,

belongs to the centre eigenspace now. If we choose initial conditions on its coor-
dinate line, the system will stay there forever, the concentrations do not change.
For m = n−2, the only centre eigenspace possible consists of this coordinate line.
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Proposition 3.8. For the generalized hypercycle model for m close to n there
are the following expressions for the dimensions of the eigenspaces:
For m = n − 1 all eigenvalues are −1, so there is only a stable eigenspace of
dimension n− 1.
For m = n − 2, the centre eigenspace is spanned by v

n
2 (if n is even). Thus

the dimension of the centre eigenspace is 1 whenever n is even and 0 otherwise.
There is no unstable eigenspace, so the dimension of the stable eigenspace is n−2
for n even and n− 1 for n odd.
For m = n− 3 the dimensions of the eigenspaces are

dim(Eu) =

{

2( n
12
− 1) if n/12 ∈ N,

2b n
12
c othws.

dim(Ec) =







4 if n/12 ∈ N,
2 if n/4 /∈ N, n/3 ∈ N or n/3 /∈ N, n/4 ∈ N,
0 othws.

dim(Es) = n− 1−

{ (

2b n
12
c + 2

)

if at least one of n/3, n/4 ∈ N,
2b n

12
c othws.
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4. Proofs

Proof of Proposition 2.2.
(1) It is easy to see that a matrix A ∈ M(n, R) satisfies

(ι∗ ◦ ρ)(A)(v) = Av = 0 for all v ∈ Tn

if and only if A ∈ V(Tn).
(2) Let A be an image element of ρ−1 ◦ π∗. Thus, there exists a map g ∈
Lin(Tn, Rn) with

(21) A = (ρ−1 ◦ π∗)(g) = ρ−1(π∗(g)) = ρ−1(g ◦ π).

If we choose v ∈ T⊥, that is v = (a, . . . , a)† for some a ∈ R, then (21) implies

Av = ρ−1(g ◦ π)v = (g ◦ π)(v) = g(π(v)) = g(0) = 0.

This implies A ∈ V(T⊥
n ). It remains to prove that each element A of V(T⊥

n ) is an
image element of ρ−1 ◦ π∗: We choose g : Tn → Rn, v 7→ g(v) := Av. For each
v ∈ Tn, and for each w ∈ T⊥

n , this implies

(ρ−1 ◦ π∗)(g)(v + w) = ρ−1(g ◦ π)(v + w) = ρ−1(g(v))

= ρ−1(Av) = Av = A(v + w).

(3) Let A = (ai,j)i,j ∈ V(T⊥
n ), and B = (bi,j)i,j = (bi)i,j ∈ V(Tn). Then

〈A, B〉 =
∑

i,j

ai,j bi,j =
∑

i,j

ai,j bi =
∑

i

bi

∑

j

ai,j = 0.

Therefore, V(T⊥
n ) and V(Tn) are orthogonal with respect to the canonical scalar

product 〈·, ·〉. The fact that each matrix (ai,j)i,j can be written as

(

ai,j −
1

n

∑

k

ai,k

)

i,j

+

(

1

n

∑

k

ai,k

)

i,j

completes the proof. 2

Proof of Proposition 2.3. We fix x(t0) and consider the map Sn → Tn, x 7→
vec(x(t0), x). This is a diffeomorphism in the usual sense. For this reason,
the curve t 7→ x(t) in Sn is differentiable if and only if the composition t 7→
vec(x(t0), x(t)) in Tn is differentiable. The latter property is equivalent to the
(∗)-differentiability of the curve in Sn. This proves the first statement of the
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Proposition 2.3. We now prove (10):

d∗
x

dt
(t0) = lim

t→t0
t6=t0

vec(x(t0), x(t))

t− t0

= lim
t→t0
t6=t0

n
∑

i=1

(

lnxi(t)− ln xi(t0)

t− t0
−

1

n

n
∑

k=1

ln xk(t)− ln xk(t0)

t− t0

)

ei

=
n
∑

i=1

(

d(ln ◦xi)

dt
(t0)−

1

n

n
∑

k=1

d(ln ◦xk)

dt
(t0)

)

ei

=
n
∑

i=1

(

1

xi(t0)

dxi

dt
(t0)−

1

n

n
∑

k=1

1

xk(t0)

dxk

dt
(t0)

)

ei.

2

Proof of Proposition 2.4. The differential of exp−1
c

with respect to the (∗)-
structure is nothing but the identity map on Tn:

(22) d∗exp−1
c

(x, v) = v.

This implies

v̇(t0) =
d(exp−1

c
◦ x)

dt
(t0)

= d∗exp−1
c

(

x(t0),
d∗

x

dt
(t0)

)

(22)
=

d∗
x

dt
(t0)

= (f ◦ x)(t0)

= (f ◦ exp
c
◦ exp−1

c
◦ x)(t0)

= (f ◦ exp
c
)
(

v(t0)
)

.

2

Proof of Theorem 2.6. Assume that equation (11) holds. With (10) we get

fi(x) =
ẋi

xi
−

1

n

n
∑

j=1

ẋj

xj
,

which is equivalent to

ẋi = xi

(

fi(x) +
1

n

n
∑

j=1

ẋj

xj

)

.
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Using ẋ ∈ Tn, this implies

1

n

n
∑

j=1

ẋj

xj

= −
n
∑

j=1

xjfj(x).

Therefore (12) holds.
Now assume that (12) is satisfied. We obtain (11) in the following way:

d∗
x

dt

(10)
=

n
∑

i=1

(

ẋi

xi

−
1

n

n
∑

j=1

ẋj

xj

)

ei

(12)
=

n
∑

i=1

((

fi(x)−
n
∑

k=1

xkfk(x)

)

−
1

n

n
∑

j=1

(

fj(x)−
n
∑

k=1

xkfk(x)

))

ei

=
n
∑

i=1

(

fi(x)−
1

n

n
∑

j=1

fj(x)

)

ei

f∈Tn
=

n
∑

i=1

fi(x) ei = f(x).

2

Proof of Theorem 2.7. Although this theorem represents the central statement of
our article, it is an immediate consequence of the Proposition 2.4 and a general
formula for the solutions of linear differential equations which is well-known in
dynamical system theory (see for example [Ro]). 2

Proof of Proposition 3.1. The solution on the tangent space Tn is obtained from
the eigenvalues λk and eigenvectors v

k of Ac according to Theorem 2.7 and Corol-
lary 2.8. We obtain them using the lemma in section 3.1. Leaving out λ0 = 0,
v

k = 1, which are not relevant for the solution (we have no dynamics in the
direction perpendicular to Tn), one finds (see (26) for m=1)
(23)
λk = αk−iβk, vk

i = cos(ϕk(i−1))−i sin(ϕk(i−1)), k = 1, . . . n−1, i = 1, . . . n,

where ϕk, αk and βk are defined in the proposition. According to Corollary 2.8,
for the pairs1 of complex eigenvalues λk,n−k = αk ∓ iβk, the corresponding real
solutions are

(24) Ck,n−ke
αkt
(

cos(βkt)u
k ± sin(βkt)w

k
)

,

where u
k and w

k are the real and imaginary parts of v
k. In case of even n also

the single real eigenvalue λn
2

= −1 occurs. Its solution Cn
2
e

λ n
2

t
v

n
2 can also be

1For such pairs we write λk,l = α± iβ meaning that the sign above belongs to λk , the sign
below to λl.
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expressed in the above way. The general solution on Tn can thus be written as

(25) v(t) =

bn
2
c

∑

k=1

eαkt
(

Ck

(

sin(βkt)u
k + cos(βkt)w

k
)

+ Cn−k

(

cos(βkt)u
k − sin(βkt)w

k
))

.

Finally using cos x cos y − sin x sin y = cos(x + y) and sin x cos y + cos x sin y =
sin(x + y), we obtain the proposition. 2

Proof of Proposition 3.2. For αk = cos ϕk < 0 we need π/2 < ϕk < 3π/2 i.e.
n/4 < k < 3n/4. If αk = 0 then k = n/4, 3n/4. All the rest of the k’s, i.e.
k < n/4 and k > 3n/4 yield αk > 0. Now there is exactly one eigenvector to
each eigenvalue. Using λk,n−k = αk ∓ iβk, we see that for αk > 0 we have pairs
k, n− k and the condition k < n/4 is equivalent to n− k > 3n/4. The dimension
of Eu is thus twice the number of k’s being smaller than n/4. The dimension of
Ec is two whenever n/4, 3n/4 are natural numbers. Since 1 ≤ k ≤ n − 1, the
dimension of Es is (n− 1)−dimEu−dimEc. 2

Proof of Corollary 3.4. As used in the proof of Proposition 3.1, solutions on Ec

are given by

v
c(t) = Cn

4
(sin t u

n
4 + cos t w

n
4 ) + C 3n

4

(cos t u
n
4 − sin t w

n
4 )

The components of this expression differ only w.r.t. being even or odd. We thus
find
∑

i

(vc
i )

2(t) =
n

2
(Cn

4
sin t + C 3n

4

cos t)2 +
n

2
(Cn

4
cos t− C 3n

4

sin t)2 =
n

2
(C2

n
4

+ C2
3n
4

).

The square root of this is the norm of v
c(t). 2

Proof of Proposition 3.5. For the corners we show that for certain time series
tm, m ∈ N, the dynamics tends to one of the corners as m → ∞. For this, we
choose initial conditions to our convenience: Let k be such that αk > 0 (and thus
βk 6= 0). Let Cl = 0 for all l 6= k and let Ck > 0. The components of v(t) are
then given by

vi(t) = eαktCk sin (βkt + ϕk(i− 1)) .

We now construct tm(k, j) = 1/βk(π/2− ϕk(j − 1) + 2πm) for m ∈ N. Inserting
this in the above equation yields

vi(m) = ecot ϕk(π/2−ϕk(j−1)+2πm)Ck sin
(π

2
+ 2πm + ϕk(i− j)

)

.
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The sine is one whenever (i − j)/n ∈ Z, which can only be the case for i = j.
Thus the j-th component is largest and the sequence of points in Sn

x(m) =
n
∑

i=1

1

1 +
∑

l 6=i e
vl(m)−vi(m)

ei

will tend to ej as m→∞ because the exponent in the above equation will tend
to −∞ for all l 6= i only in case of i = j. 2

Proof of Proposition 3.6. Using (17), we find that the eigenvectors do not change
and that the eigenvalues are given by

(26) λk(m) =

n−1−m
∑

j=0

(

−
1

n

)

γkj +

n−1
∑

j=n−m

n− 1

n
γkj =

n−1
∑

j=0

(

−
1

n

)

γkj +

n−1
∑

j=n−m

γkj =

m
∑

j=1

γ−kj,

where the last equality is obtained using that the first sum on the LHS is zero
and γn−k = γ−k. We have again pairs λk,n−k(m) =

∑m
j=1 cos ϕkj ∓ i

∑m
j=1 sin ϕkj

and for n even, λn
2
(m) is 0 or −1 for m even or odd respectively. 2

Proof of Proposition 3.7. Since αk(2) = cos ϕk+cos 2ϕk = 2 cos (3ϕk/2) cos (ϕk/2),
we only have to check for how many k’s the cosines of 3ϕk/2 and ϕk/2 have dif-
ferent sign to find out the dimension of the stable eigenspace. 1) 0 < ϕk/2 < π/2:
it follows that 0 < 3ϕk/2 < 3π/2, we have different signs if π/2 < 3ϕk/2 < 3π/2
i.e. n/6 < k < n/2. 2) π/2 < ϕk/2 < π: we have 3π/2 < 3ϕk/2 < 3π, we have
different signs if 3π/2 < 3ϕk/2 < 5π/2 i.e. n/2 < k < 5n/6. So taking 1) and
2) together we find that αk(2) < 0 whenever k 6= n/2 and n/6 < k < 5n/6.
Since there are pairs k, n − k giving the same cosine and k < n/6 is equivalent
to k > 5n/6, dimEs = 2|{k ∈ N : k < n/6}|. For αk(2) = 0, 3ϕk/2 = (1/2 + l)π
for l = 0, 1, 2, so k = n/6, n/2, 5n/6. Clearly, the rest of the k’s belongs to
eigenvalues with positive real parts. 2

Proof of Proposition 3.8. The sum over the eigenvector components is 0, and
λk(m) is the sum of the last m components of the respective eigenvector. We can
also use the fact that the first component of all eigenvectors is 1, so λk(n−1) = −1
for all k. It also follows that λk(n−2) = −1−vk

2 , so αk(n−2) = −1− cos ϕk ≤ 0
where the equality can only hold in case of k = n/2. Accordingly, for m = n−3 we
use αk(n− 3) = −1− (cos ϕk +cos 2ϕk) = −1−αk(2). So when is αk(2)+1 ≤ 0?
We write cos ϕk + cos 2ϕk + 1 = cos ϕk + 2 cos2 ϕk. Taking the root of this
quadratic equation we get that cos ϕk is 0 or −1/2 for αk(2) = −1. Thus
ϕk = π/2, 2π/3, 4π/3, 3π/2 giving the k’s that span Ec. Since d/dϕk(αk(2))
is negative for ϕk = π/2, by continuity αk(2) < −1 for π/2 < ϕk < 2π/3.
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Similarly, for 4π/3 < ϕk < 3π/2 we have αk(2) < −1 since d/dϕk(αk(2)) is
negative for ϕk = 4π/3. Now we have again pairs k, n − k: π/2 < ϕk < 2π/3
is equivalent to 4π/3 < ϕn−k < 3π/2, so dimEu = 2|{k ∈ N : n/4 < k < n/3}|. 2
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