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RNA molecules that can fold into two or more predefined alternative metastable
structures can be designed rationally. We outline an algorithm for this task that
reduces the problem to vertex coloring the union of all prescribed outerplanar sec-
ondary structure graphs. Starting from an ear decomposition of this composite graph
colorings are produced by a dynamic programming procedure. Sequences can then
be optimized for particular properties by means of standard optimization heuristics.

1. Molecular Switches

RNAs play a central role within living cells performing a variety of tasks [2]. The function of a
biopolymer is predominantly determinded by its three-dimensional structure. The folding process
of a single-stranded nucleic acid-molecule is of a hierarchic nature: Initially, stable secondary
structure elements are formed which then act as a scaffold for tertiary contacts that finally
determine the assembly of the native structure. The secondary structure of RNA, see Fig. 1 for
different representations, contributes most to the free energy of the tertiary structure, hence its
computation is used as a simplified model of the real nucleic acid-structure [6].
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Figure 1. RNA secondary structure: (left) conventional representation. (right) circle representa-
tion. (below) bracket-dot-representation.
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Figure 2. Dependency graph Ψ. (left) Circle representation of secondary structures 1 and 2.
(middle) The dependency graph is constructed by super-imposing the circle representations of the
two structures. Edges that can only be found in structure 1 are green, those only in structure 2
red, edges contained in both structures are black. (right) Paths are coloured blue and green, cycles
red [3].

Nucleic acid molecules may have alternative non-native conformations with energy levels com-
parable to the ground state and high energy barriers that separate them. These meta-stable
conformations can fulfill functions completely different from that of the native structure. In
nature this important feature of RNA is used to implement molecular switches that regulate
a variety of biological processes, see e.g. [1]. Here we describe a computational approach for
the rational design of multi-stable nucleic acid-switches with two or more pre-defined secondary
structures.

2. The Computer Model

Our approach is based on the following theorem that characterizes the realizability of a collection
of M distinct secondary structures by a single RNA sequence. Let A denote the alphabet
of monomers and let B ⊂ A × A be the set of allowed basepairs. In particular, we have
the alphabet of ribonucleotides A = {A,U,G,C} and the alphabet of RNA base pairs B =
{AU,UA,GC,CG,GU,UG}. For a secondary structure Θ (described as the set of base paired
sequence positions) we write C[Θ] for the set of all sequences that are compatible with Θ in
the sense that every basepair (i, j) ∈ Θ is realized by a pair (xi, xj) ∈ B of pairing nucleotides.

The dependency graph Ψ of a collection of secondary structures {Θi} with n nucleotides consists
of n vertices and edges connecting k with l if and only if (k, l) is a basepair in at least one of
the secondary structures Θi, see Fig. 2. With this terminology we showed in [3]:

Theorem 1. (Generalized Intersection Theorem) Suppose B ⊆ A×A contains at least one
symmetric base-pair then:

(1) C[Θ1] ∩ C[Θ2] ∩ · · · ∩ C[Θk] 6= ∅ if the dependency graph Ψ = Θ1 ∪ Θ2... ∪ Θk is
bipartite.

(2) There are
∏

components ψ of Ψ

F (ψ) sequences in
⋂

j

C[Θj ].

(3) For the biophysical alphabet holds:
⋂

j C[Θj] 6= ∅ if and only if Ψ is a bipartite graph.

The design algorithm uses this result to decide whether a sequence that concurrently forms all
structures {Θi} exists. If so, we uniformly sample from these sequences and use a heuristic
optimization procedure, in the simplest case an adaptive walk, to obtain compatible sequences
that optimize a cost function Ξ that encodes additional constraints, for instance the design goal
to have similar energies on all prescribed structures Θi.

In more detail, the algorithm consists of the following steps:
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Figure 3. The dependency graph Ψ of more than two structures may consist of more complicated
connected components that need further decomposition. The left part shows two connected compo-
nents, the complex one is depicted in blue, green and red according to the biconnected components
it is later decomposed into. The second connected component conists only of a path (yellow). The
complex component (right) is decomposed at the cut-vertices x, y into two paths of the length 1, a
circle of the length 4 and a block.

(1) INPUT: Predefine a set of secondary structures.
(2) Draw the dependency graph.
(3) Test for the bipartite property of the graph Ψ using a simple breadth-first-search coloring

algorithm. Stop if Ψ is not bipartite.
(4) Decompose the graph into its connected components, then further into the biconnected

components and finally decompose also the blocks by Whitney’s Ear Decomposition.
(5) Count the number of compatible sequences.
(6) Generate sequences with uniform distribution on the set of compatible sequences.
(7) Optimize the sequence according to an energy criteria.
(8) OUTPUT: Optimized nucleic acid sequence compatible with all predefined structures.

Bipartiteness is tested using a simple breadth-first-search coloring algorithm.

In order to be able to design sequences with a uniform distribution we have to count the number
of sequences compatible with a set of structures. According to assertion 2 of the Intersection
Theorem we count them by splitting the graph into its connected components. Each connected
component is computed independently. All their combinations of possible assignments are taken
into account at the very last step of the computation of the cardinality of the intersection.

We use a depth-first-search algorithm to find cut-vertices and decompose the connected compo-
nents into their biconnected components. The classes of biconnected components are paths, cy-
cles and complex blocks. The blocks are further decomposed by Whitney’s Ear-Decomposition [5],
see Fig. 4.

3. Sequence Design as Graph Coloring

The computation of all possible sequence assignments of the connected components is non-
trivial, since we have to satisfy the constraint that cut-vertices are occupied by a given nucleotide
when we concatenate the partial sequences from the individual biconnected components. Fur-
thermore, the attachment points of the ears must be assigned with the same bases in each
concatenation step of the blocks. Further progress can be made by looking at the design prob-
lem a bit more abstractly.
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Figure 4. Graphs associated with an ear-decomposition: (top) Ear-decomposition of a block: In
each step from G6 to G0 a path (ear) is removed until a central cycle is left. (bottom) The
corresponding Gk of each step is shown. The attachment points of the ears are depicted by unfilled

vertices.

A sequence that is compatible with all secondary structures can be viewed as a coloring of the
vertices of Ψ such that adjacent vertices have colors (a, b) ∈ B. In this section we briefly outline
how this problem can be solved by a dynamic programming algorithm.

A vertex coloring of a graph G is a mapping c of the vertices V (G) onto a set of colors. The
important observation is that colorings can be obtained by putting together partial colorings:
Let H be a subgraph of G and consider U ⊆ W ⊆ V (H). The partial coloring cU of H is
simply a map from U into the color set. Let Ω be an abstract evaluation function, e.g. the
number of “legal” colorings or the list of all colorings. Then we can write

Ω(V (H), cU ) =
∨

cW\U

Ω(V (H), cU ◦ cW\U ) for all U ⊆W

Ω(V (H), cU ) = Ω(V (H1) ∪ U, cU ) ◦ Ω(V (H2) ∪ U, cU )

for all H1,H2 ⊆ H and all U such that V (H1 ∩H2) = U

(1)

∨ and ∧ are associative and commutative operators. In our example of counting conflict free
colorings ∨ is addition ∧ is multiplication.

Graph coloring is a well known NP-complete problem [4]. Of course our approach cannot
overcome this in general. We can, however, search for a decomposition of G that allows
us to apply equ.(1) with acceptable resource requirements. To this end we consider an ear
decomposition E = (P0, P1, . . . ) of G into paths and the associated series of subgraphs of G,
Fig. 4 given by

Gk =

k
⋃

i=0

Pi Gk =

µ
⋃

i=k+1

Pi Ak = Gk ∩Gk (2)

We observe that Gk is biconnected for all k > 0. By definition G0 = P0, G1 = P1, Gµ = G,

G0 = G and Gµ = ∅, the empty graph. We have therefore

Gk = Pk+1 ∪Gk+1 (3)

The graphs Ak are disconnected and consist of the attachment points of Gk on Gk. Starting
from the outer-most paths Gµ−1 and proceeding inwards until we reach G0 = G we evaluate

the number (or list) of colorings given fixed colors at the attachment points of Gk. Explicitly,
we have

Ω(Gk; cAk
) =

∨

cAk+1\Ak

[

Ω(Gk+1; cAk+1\Ak
◦ cAk+1∩Ak

) ∧ Ω(Pk+1; cAk+1\Ak
◦ cA′

k
)

]

(4)
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Figure 5. Example of a bistable switch molecule. From left to right; Dotplot: both structures have
approximately the same statistical weight within the thermodynamic equilibrium; MFE structure;
Metastable structure; note that the two structures have no base pair in common; Tree of local
minima: Shown are the two (meta-)stable conformations, that are seperated by an energy barrier
of ∼ 11.2kcal/mol.

Here A′
k denotes the end-points of Pk+1. Ak+1 \ Ak is the set of the attachment points of

Gk+1 that are buried in the interior of Pk+1 and play no role in further steps. The path Pk+1

is subdivided by the interior attachment points into |Ak+1 \ Ak| + 1 sub-paths for which the
weights can be computed recursively. We need to evaluate all possible colourings of the interior
attachement vertices for all possible colorings of the exterior attachement vertices (x ∈ Ak).
The performance of this way of coloring the graph is therefore determined by the maximal
number of attachment vertices for 0 ≤ k < µ.

4. Optimization

Uniform samples of coloring (i.e., sequences that are compatible with all secondary structures)
can be obtained by means of a standard backtracking procedure when the numbers of coloring
with given colors on the vertices Ak are tabulated for each k.

These sequences are used to initialize optimization heuristics, such as Adaptive Walks, that
search the set of compatible sequences for those that optimize a cost-function Ξ. The function
Ξ encapsulates desired properties of the molecule such as (nearly) equal energies for all prescribed
secondary structures and constraints on the energy barriers between these metastable states.
An example of such a designed RNA switch is shown in Fig. 5.
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