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ABSTRACT

In bioinformatics there exist research topics that cannot be
uniquely characterized by a set of key words because relevant
key words are (i) also heavily used in other contexts and (ii)
often omitted in relevant documents because the context is
clear to the target audience. Information retrieval interfaces
such as entrez/Pubmed produce either low precision or low
recall in this case. To yield a high recall at a reasonable
precision, the results of a broad information retrieval search
have to be filtered to remove irrelevant documents. We use
automated text categorization for this purpose.

In this study we use the topic of conserved secondary RNA
structures in viral genomes as running example. Pubmed re-
sult sets for two virus groups, Picornaviridae and Flaviviri-
dae, have been manually labeled by human experts. We
evaluated various classifiers from the Weka toolkit together
with different feature selection methods to assess whether
classifiers trained on documents dedicated to one virus group
can be successfully applied to filter literature on other virus
groups. Our results indicate that in this domain a biblio-
graphic search tool trained on a reference corpus may sig-
nificantly reduce the amount of time needed for extensive
literature recherches.
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1. INTRODUCTION

An important part of bioinformatics research is the com-
parison of computational results with experimental results.
These are, unfortunately, often hidden in the vast body of
molecular biology literature. More often than not, the data
that are of interest for a particular computational study are
mentioned only in passing and in a different context in the
experimental literature. As a concrete example we consider
here the survey of conserved RNA secondary structures in
viral genomes' that has been initiated a few years ago by the
Vienna group [9, 14, 11]. To our surprise, the bibliographic
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search for experimental evidence of and further information
on RNA secondary structures in a given group of virus —
a seemingly rather straightforward task — turned out to
be more tedious than the work on the actual sequence and
structure data.

There are several reasons for this difficulty: (i) RNA sec-
ondary structure is usually referred to only as secondary
structure or simply as structure since the context RNA
is clear. The term secondary structure, however, appears
much more frequently in the context of protein structures
for the same virus group because proteins are usually dis-
cussed more frequently and in much more detail. (ii) RNA
secondary structures are rarely the main topic of research
papers on viruses. Rather, only one or a few paragraphs
are devoted to them. (iii) With few exceptions there is no
well-established nomenclature of RNA features in viruses so
that keyword searches for specific structural motifs are not
very effective. (iv) Relevant articles are written by authors
from rather diverse scientific communities, from clinical vi-
rologists to structural biologists.

Our target topic of “conserved RNA secondary structure
in viral genomes” consists of several subtopics, each dedi-
cated to a specific group of RNA viruses (e.g., Picornaviri-
dae, Flaviviridae, Coronaviridae, or Hepadnaviridae). For
some of these subtopics, manually labeled document corpora
exist. The question addressed in this exploratory study is
whether classifiers trained for one subtopic can be applied
successfully to other subtopics. This would be in particular
attractive for subtopics with a large amount of available lit-
erature, e.g., on the HIV virus in the case of Retroviridae. In
our context, successful means a high recall (e.g., 80%) with
a not too low precision (e.g., 30%) because the emphasis is
on finding most of the relevant literature with a tolerable
overhead caused by false positives.

Our goal is to make bibliographic search more effective by
using classifiers trained on sample corpora in a system that
filters and ranks search results from bibliographic databases
such as Pubmed. This kind of application is known as docu-
ment filtering. The filtering part is essentially a binary text
categorization problem. Ranking comes for free in conjunc-
tion with distribution classifiers because they return proba-
bilities that can be used as document scores. The vast body
of literature on automated text categorization is surveyed
in [8]. In the Information Retrieval community, much work
(from [6] to [1, 3, 4, 10, 15]) has been done on adaptive
document filtering, where relevance feedback from users is



Table 1: The training corpora.

Corpus | Source Size | Positive
picorna Pubmed query: 40 68%
picornavirus RNA secondary
structure
picorna2 | picorna + 24 extra docu- 64 58%
ments
flavi Pubmed query: 153 8%
RNA AND (IRES OR
"secondary structure” OR
"conserved structure” OR
"5'utr”  OR "3utr” OR
"coding  region”) AND
("hepatitis C virus” OR
"hepatitis G virus” OR
pestivirus OR dengue OR
" japanese encephalitis
virus” OR "yellow fever
virus” OR "tick-borne
encephalitis virus")
flavi2 flavi + 34 extra documents | 187 12%
hepadna | Pubmed query: 16 69%
(Hepadnaviridae OR " Hep-
atitis B” OR "HBV") AND
(RNA secondary structure)
NOT delta

employed to adjust document filters.

The preliminary results presented here indicate that a
classifier trained on one virus group can be applied success-
fully to search the literature on other virus groups. There-
fore, a system for supporting bibliographic search based on
automated text categorization seems feasible for our target
topic.

The remainder of this article is organized as follows: in
Sec. 2 we present the data sets used for this work. The
methods and tools used are described in Sec. 3. Our exper-
iments and their results are presented in Sec. 4. Finally we
give in Sec. 5 a conclusion and outline our future research.

2. DATA SETS

Training data has been obtained from searching the Pubmed
collection via the entrez interface® and then downloading the
referenced articles as PDF documents (as far as available).
The search queries (see Table 1) have been specified by our
domain experts (PFS, CT, CW). The resulting corpora are
referred to as picorna, flavi, and hepadna. They are dedi-
cated to the virusgroups Picornaviridae, Flaviviridae, and
Hepadnaviridae, respectively.

Since corpus picorna is quite small and corpus flavi con-
tains only few positive examples, we decided to add more
documents. These documents were provided by our do-
main experts from their private bibliographical collections.
The resulting corpora are referred to as picorna2 and flavi2.
The small corpus hepadna is only used for testing classifiers
trained on the latter two corpora.

A document is considered a positive example within its
corpus if it contains information on the secondary structure
of the RNA of viruses belonging to the virus group the cor-
pus is dedicated to.

Zhttp:/ /www.ncbi.nlm.nih.gov/Entrez/

3. METHODS
3.1 Data Preparation

The PDF documents where converted into text using the
Unix tools pdftotext and ps2ascii. The ConceptComposer text
analysis suite [2] was used to build a full text index of the
resulting text documents in a relational database (mysql).

Based on this index, the documents were transformed into
vector representation using a SQL script. We computed
term weights according to the standard tfidf method (see
e.g. [7]). Each corpus is stored in a separate mysql database.

For feature selection we implemented the term relevance
measures Odds Ratio and Mutual Information (see [8]). In
addition we implemented derived term relevance measures
where the original relevance value for a term is weighted with
its frequency in the test database that is used for evaluation.

3.2 Text Categorization

We built the Java application litsift on top of the Weka 3
machine learning software [13] to classify the document cor-
pora. This enabled us to experiment with the variety of
classifiers provided by Weka. Further parameters that can
be varied are

e the term relevance measure to use for feature selection
e the number of features to be taken into account

e the target recall when evaluating a classifier on the test
corpus

e classifier specific parameters

The application reads class labels for documents and their
term weights for the selected features from the training data-
base and creates a set of Weka instances from it. This in-
stance set is either used for cross evaluation on the training
corpus or it is used to train a classifier that is evaluated
on a separate test corpus. In the latter case, only those
documents are classified as positive whose predicted class-
membership probability exceeds a certain threshold. This
threshold is adjusted automatically to achieve at least the
chosen target recall (if possible at all) in a trade-off with
the achieved precision. The threshold is found by comput-
ing histograms on the number of positives and true positives
over the predicted probabilities.

4. RESULTS

Before we assess the applicability of classifiers trained on
one corpus to another corpus, we present cross-evaluation
results on each corpus as a base line for comparison.

4.1 Feature Selection

To assess the performance of different term relevance mea-
sures, we varied the number N of features. From the corpus
we filtered those documents that contained at least one of
the N best terms of the chosen measure. Then we com-
puted precision and recall of this filter by counting the se-
lected documents as positives and the rest of the corpus as
negatives. The results are shown in Table 2. It shows that
10-30 features are always sufficient to retrieve all positive
examples. Moreover it shows that the corpora picorna and
picorna2 are quite trivial since they can be classified com-
pletely and correctly by using just the first 20 (picorna) or
30 (picorna2) features selected by Mutual Information.



Table 2: Filtering results for different corpora, and
relevance measures (column “msr”), with target re-
call 100%. The relevance measures Mutual Informa-
tion and Odds Ratio are abbreviated as “MI” and
“OR”, respectively. Column “pavg” shows the av-
erage precision over all feature counts where the
target recall is exceeded. Column “pmax” shows
the maximum precision. The minimum feature
count at which this maximum precision is reached
is labeled“d”. The recall achieved with this number

of features is shown in column “r”.
corpus | msr Pavg Pmax r d
flavi MI 11.2% 23.1% | 100.0% | 20
flavi OR 7.8% 7.9% | 100.0% | 10
flavi2 MI 20.2% 40.7% | 100.0% | 20
flavi2 OR 11.8% 11.8% | 100.0% | 10
picorna | MI 76.7% || 100.0% | 100.0% | 20
picorna OR 67.6% 69.2% | 100.0% | 10
picorna2 | MI 69.3% || 100.0% | 100.0% | 30
picorna2 | OR || 58.0% 59.7% | 100.0% | 10

4.2 Cross Evaluation on Each Corpus

As a base line for comparison we cross-evaluated several
classifiers from the Weka toolkit, namely C4.5 (“J48”), Sup-
port Vector Machine (“SMQO”), and Naive Bayes (“N.B.”),
in combination with the available term relevance measures
on each corpus. The results are shown in Table 3. It shows
that

1. on flavi and flavi2 the target recall of 80% can be
reached only by the NaiveBayes classifier

2. with few exceptions, less than 50 features are needed
to achieve maximum recall

3. corpora picorna and picorna2 can be almost perfectly
classified in most cases

4. J48 seems sensitive with respect to the relevance mea-
sure: on flavi2, Odds Ratio performs much better, on
picorna2, Mutual Information performs much better.

4.3 Validation on a Separate Test Corpus
We first present some exemplary experiments with SMO

and then give in an overview of all experiments in form of a
table.

4.3.1 Training on flavi, Validation on picorna

A SMO classifier trained on flavi with Odds Ratio mea-
sure evaluated on picorna2 reaches the target recall of 80%
beginning with 30 features. The precision reaches a max-
imum of 80% at about 150 features (see Fig. la). Using
Mutual Information yields similar results.

4.3.2 Training on flavi2, Validation on picorna2

Compared to Sec. 4.3.1, the average precision of SMO
drops slightly from 74% to 66% (see Fig. 1b) which is still
quite acceptable for bibliographic search.

Table 3: Cross evaluation results for different cor-
pora, classifiers, and relevance measures, with tar-
get recall 80%. The classifiers shown in column
“class” are C4.5 (“J48”), Support Vector Machine
(“SMO”), and Naive Bayes (“N.B.”). For the mean-
ing of the remaining columns see Table 2. The aver-
age precision is ommitted in cases where the target
recall was not reached.

corpus | class | msr || pavg Pmax r d
flavi J48 MI — 85.7% 60.0% 10
flavi J48 OR —| 72.7% 66.7% 60
flavi N.B. | MI 21.3% 38.5% 83.3% 30
flavi N.B. | OR 25.2% | 44.0% 91.7% 40
flavi SMO | MI - 75.0% 30.0% 10
flavi SMO | OR - 80.0% 33.3% 30
flavi2 J48 MI - 73.7% 63.6% | 160
flavi2 J48 OR - 77.3% 77.3% 30
flavi2 N.B. | MI 28.3% | 41.9% 81.8% 80
flavi2 N.B. | OR 37.8% 58.1% 81.8% 30
flavi2 SMO | MI - 66.7% 54.5% 30
flavi2 SMO | OR - 73.3% 50.0% 40
picorna J48 MI 99.3% | 100.0% | 100.0% 10
picorna J48 OR 89.2% 92.6% 92.6% 50
picorna | N.B. | MI 79.3% | 100.0% | 95.2% | 10
picorna | N.B. | OR || 80.5% | 100.0% | 100.0% | 20
picorna SMO | MI 90.6% | 100.0% | 100.0% 10
picorna SMO | OR 91.7% | 100.0% 85.2% 30
picorna2 | J48 MI 95.3% | 100.0% | 100.0% | 10
picorna2 | J48 OR || 85.2% | 88.2% | 81.1% | 110
picorna2 | N.B. | MI 77.6% | 100.0% 96.7% 10
picorna2 | N.B. | OR 79.7% | 100.0% 94.6% 20
picorna2 | SMO | MI 93.5% | 100.0% | 100.0% | 10
picorna2 | SMO | OR || 93.1% | 100.0% | 81.1% | 40

4.3.3 Training on picorna, Validation on flavi

While SMO trained on corpus flavi can be successfully ap-
plied to the corpora picorna and picorna2, the inverse setting
is not as successful. At 80% recall, SMO achieves a maxi-
mum precision of 23% precision at 60 features (see Fig. 2a).

With Mutual Information, the precision is even lower (about
10%).

Using a derived term relevance measure (Odds Ratio, weigh-
ted with term frequencies from flavi) did not yield any im-
provement, either.

23% precision may not seem high, but in our application
to bibliographic search it is still more tolerable than in other
fields of text classification.

4.3.4  Training on picorna2, Validation on flavi2

Compared to Sec. 4.3.3, precision of SMO increases to
30% starting from 40 features (see Fig. 2b).

4.3.5 Discussion

In Table 4, all experiments with evaluation on a separate
corpus are listed. We may summarize these results as fol-
lows:

1. Corpora picorna and picorna2 can quite successfully be
classified after training on flavi and flavi2, respectively.
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Figure 1: Performance for Weka SMO with Odds

Ratio, target recall 80%: (a) on corpus picorna after
training on corpus flavi, (b) on corpus picorna2 after
training on corpus flavi2.

(a) With J48 or NaiveBayes, 100% recall can be achieved
with maximum precisions above 70%, using only
few features (10-30).

(b) Mutual Information seems to perform better than
Odds Ratio.

2. Corpora flavi and flavi2 can not as easily classified after
training on picorna and picorna2, respectively.

(a) The best maximum precision is achieved by SMO
with Odds Ratio
(b) Corpus flavi2 is easier to classify than flavi

3. Corpus hepadna can quite successfully be classified af-
ter training on picorna2 or flavi2.

(a) In both cases, SMO performs best, reaching a
maximum precision of 90%.

(b) In most cases Odds Ratio performs much bet-
ter than Mutual Information, i.e., it needs much
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Figure 2: Performance for Weka SMO with Odds
Ratio, target recall 80%: (a) on corpus flavi after
training on corpus picorna, (b) on corpus flavi2 after
training on corpus picorna2.

fewer features to achieve a better maximum pre-
cision.

4. In most cases the difference between average and max-
imum precision is quite small. This supports the ob-
servation from Figs. 1 and 2 that precision does not
depend too much on the number of features.

The asymmetry between the picorna* and flavi* corpora
can to some extent be explained by the fact that the Fla-
viviridae virus group is more heterogenous than the Pi-
cornaviridae group. For instance, while all Picornaviri-
dae genomes have so-called IRES (Internal Ribosomal Entry
Site) regions, this does not hold for all Flaviviridae. This
means that a classifier trained on a picorna* corpus only
finds those positive examples in flavi* that are similar to
those in the training corpus. In the other direction this par-
tition within a flavi* corpus seems to be sufficient to learn
the characteristics of the positive examples in the picorna*
corpora. The additional positives in corpus flavi2 might be
more “picorna”-like which would explain the better perfor-
mance when testing on flavi2 instead of flavi.



Table 4: Transfer results for different training and test corpora, classifiers, and relevance measures, with target
recall 80%. The classifiers shown in column “class” are C4.5 (“J48”), Support Vector Machine (“SMO”), and
Naive Bayes (“N.B.”). For the meaning of the remaining columns see Table 2.

training | test class | msr Pavg Pmax r d
flavi picorna J48 MI 69.1% 76.7% | 100.0% 30
flavi picorna J48 OR 67.3% 67.5% | 100.0% 10
flavi picorna | N.B. | MI 69.1% | 76.7% | 100.0% | 30
flavi picorna | N.B. [ OR | 67.5% | 67.5% | 100.0% | 10
flavi picorna SMO | MI 74.4% 80.6% 92.6% | 160
flavi picorna SMO | OR 74.0% 84.6% 81.5% | 150
flavi2 picorna2 | J48 MI 65.8% | 100.0% 80.0% 10
flavi2 picorna2 | J48 OR 57.8% 57.8% | 100.0% 10
flavi2 picorna2 | N.B. | MI 65.9% | 83.3% | 100.0% | 10
flavi2 picorna2 | N.B. | OR | 57.8% | 57.8% | 100.0% | 10
flavi2 picorna2 | SMO | MI 68.3% 83.3% | 100.0% 10
flavi2 picorna2 | SMO [ OR || 66.2% | 73.2% | 81.1% | 150
picorna flavi J48 MI 12.6% | 16.4% | 91.7% | 90
picorna flavi J48 OR || 13.7% | 15.7% | 91.7% | 60
picorna flavi N.B. | MI 9.5% | 14.7% | 83.3% | 10
picorna flavi N.B. | OR 9.4% | 12.2% | 100.0% | 30
picorna flavi SMO | MI 12.3% | 20.0% | 83.3% | 110
picorna flavi SMO | OR || 18.6% | 22.7% | 83.3% | 60
picorna2 flavi2 J48 MI 15.1% 22.6% 86.4% | 130
picorna2 flavi2 J48 OR 16.3% 19.3% | 100.0% 40
picorna2 | flavi2 N.B. | MI 16.1% | 20.0% | 100.0% | 20
picorna2 | flavi2 N.B. | OR || 14.0% | 15.4% | 95.5% | 180
picorna2 | flavi2 SMO | MI 18.7% | 23.8% | 86.4% | 130
picorna2 | flavi2 SMO | OR || 26.2% | 32.7% | 81.8% | 180
flavi2 hepadna | J48 MI 78.4% 81.8% 81.8% | 180
flavi2 hepadna | J48 OR 68.8% 71.4% 90.9% 20
flavi2 hepadna | N.B. | MI 78.4% | 81.8% | 81.8% | 180
flavi2 hepadna | N.B. | OR 68.8% 68.8% | 100.0% 10
flavi2 hepadna | SMO | MI 75.0% 75.0% 81.8% | 200
flavi2 hepadna | SMO | OR 73.6% 90.9% 90.9% 50
picorna2 | hepadna | J48 MI 76.6% | 83.3% | 90.9% | 90
picorna2 | hepadna | J48 OR | 70.1% | 71.4% | 90.9% | 40
picorna2 | hepadna | N.B. | MI 76.6% | 83.3% | 90.9% | 90
picorna2 | hepadna | N.B. | OR || 69.6% | 75.0% | 81.8% | 170
picorna2 | hepadna | SMO | MI 76.7% | 81.8% | 81.8% | 90
picorna2 | hepadna | SMO | OR || 77.9% | 90.0% | 81.8% | 70

4.3.6 Usefulness

How useful could a bibliographic search tool based on au-

tomated classification be for a scientist who wants to per-
form a literature recherche? To assess this, we consider the
following scenario: the scientist wants to identify relevant
literature with minimal effort without loosing to many rel-
evant articles. For a fixed recall r, the amount of work is
determined by the number of articles that the scientist has
to inspect.

We assume a fixed corpus of articles that have been re-
turned by the bibliographic database (i.e., Pubmed). By ran-
domly selecting documents with a probability r, we achieve
also recall r since the probability for a relevant document to
be selected is r. In this case, the scientist has to inspect a
fraction Prang = 7 of all documents. This is the baseline for
a comparison with an automated classifier.

The fraction Pauto of documents selected by an automated
classifier with precision p and recall r on a corpus with a frac-

tion ¢ of relevant documents is Pauto = cr/p. Hence the work
reduction is $ = (Prand — Pauto)/Prana = 1 — ¢/p. In Table 5
the work reduction s is shown for some of the cases from
Table 4. Most work can be saved on corpora such as flavi2
with few relevant documents (assuming that the precision
does not deteriorate too much). The percentage of relevant
documents in the small corpora picorna2 and hepadna is too
high to reach large work reductions.

Table 5: Work reduction s for selected sample con-
figurations.

training | test class | msr || Pmax r s
flavi2 picorna2 | SMO | MI || 83.3% | 100.0% | 30%
picorna2 | flavi2 SMO | OR || 32.7% | 81.8% | 63%
flavi2 hepadna | SMO | OR [/ 90.9% | 90.9% | 25%
picorna2 | hepadna | SMO | OR [ 90.0% | 81.8% | 25%




S.  CONCLUSION AND OUTLOOK

The results presented in this study are rather heteroge-
neous. Nevertheless, they indicate that classifiers trained on
one subtopic can be applied to another subtopic and achieve
precisions (here 20% — 100%) that will result in cost savings
when searching for relevant literature while not too many
(here 20%) relevant documents are lost.

The complications of bibliographic search that plague the
case of RNA secondary structure features in viral RNAs
are not a restricted to this particular topic. Whenever the
available literature has to be searched for information that
is rarely the main focus of the publication keyword-based
searches tend to have either low recall or low precision. Reg-
ulatory sequences associated with certain classes of genes
may serve as another example.

We thus plan to extend the litsift application into a biblio-
graphic search tool that sends a user query to a bibliographic
database such as Pubmed, retrieves the search results and
the articles cited therein, and ranks the results according to
the predictions of a classifier previously trained using the
same tool. The user may choose to re-label some of the re-
sults manually and retrain the classifier in order to enhance
its performance. An interesting option for further improving
this tool would be to include classification techniques that
take unlabeled data into account, e.g. [5, 12].

Open questions that require further research are: (i) what
are good heuristics for choosing a number of features and (ii)
are there indicators for the transferability of a classifier to
another corpus?
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