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Abstract

Given an undirected graph G(V, FE) and a vertex subset U C V the U-
space is the vector space over GF(2) spanned by the paths with end-points
in U and the cycles in G(V, E). We extend Vismara’s algorithm to the
computation of the union of all minimum length bases of the U-space. While
the size distribution of subgraphs is the same in all minimum length bases,
the number of cycles and paths may differ.
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1. Introduction

In recent years, the structure of a many diverse large “real-world” graphs — in-
cluding those of social and technological networks, of the metabolic and regulatory
networks of a cell, and chemical reaction networks — has been elucidated exper-
imentally, see e.g. [6]. This has lead to a renewed interest in efficient algorithms
for computing graph properties that can be used to characterize and classify large
network graphs [1].

While most work concentrates on the path structure (which relates directly to
transport phenomena in the network), the cycle structure is equally important for
an understanding of robustness and resilience since cycles determine the “detours”
when edges or vertices are removed [12]. For example, in [4] the distribution is cycle
lengths is used to discriminate the off-equilibrium scale-free networks from equilibrium
models. In this context short cycles, i.e., short detours, are of particular interest since
they convey information on the local ordering in complex networks. Data from real
world networks, for instance, reveal the presence of locally grid-like structures through
the frequency of quadrangles [7].

From the mathematical point of view, it is natural to consider minimum cycle
bases. They have direct applications in diverse areas of science and engineering, such
as the static analysis of rigid framework structure [16], chemical structure storage
and retrieval systems [2, 9], and electric circuit theory [8]. Flux Analysis in chemical
reaction networks [10, 20] considers stationary fluxes as kernel vector of the stoichio-
metric matrix, which in the case of a network of isomerization reactions reduces to
the incidence matrix of a directed graph. Stationary “flux modes” then reduce to
cycles in this graphs [12].

Often, a network contains a special subset U of vertices that e.g. interact with
the environment. In such a setting it becomes natural to consider those paths that
connect vertices in U with each other in addition to cycles. This becomes particularly
apparent for metabolic networks: The nodes in U represent food and waste materials;
stationary flux modes then correspond to both cycles and certain paths that begin
and end in U. The latter form the so-called biochemical pathways on which our
understanding of a cell’s metabolism is based. In the case of undirected graphs,
Hartvigsen’s concept of U-path bases [13] adds exactly these paths to the cycle space.

A disadvantage of minimum length cycle and path bases, however, is the fact that
they are in general not unique. Using the union of all minimum cycle bases solves
this problem in many cases. In 1997, Vismara [22] published an efficient algorithm
for computing this set of relevant cycles. In this contribution we extend Vismara’s
algorithm to computing the union of all minimum bases of the U-path space and
discuss some simple properties of this set.

2. Preliminaries

Let G(V, E) be a simple graph with vertex set V' and edge set E. A cycle in G is
a subgraph of GG in which each vertex has even degree. A cycle is elementary if it is
connected and all its vertices have degree 2. Thus a cycle is an edge-disjoint union of
elementary cycles.

A uv-path P, u # v, in G is a connected subgraph that has exactly two vertices of
odd degree, u and v, called its endnodes, while all other vertices, called the interior



MINIMUM PATH BASES OF UNDIRECTED GRAPHS 3

vertices of P have even degree. A wuwv-path is elementary if all its interior vertices
have degree 2. If a uv-path is not elementary, then removing an elementary uv-path
from it leaves only vertices of even degree, and hence a cycle. Thus a uv-path is an
edge-disjoint union of an elementary uv-path and a collection of elementary cycles.

We reserve the symbol P,, for a shortest path between z and y, while Plx,y]
denotes the sub-path from x to y of a given elementary path or cycle P.

The incidence vector H of a subgraph H of G is indexed by the edges of G and
has coordinates H, = 1 if e is an edge of H and H. = 0 otherwise. We use the same
symbol H for a subgraph of G, its edge set, and the corresponding incidence vector.
It is customary to consider H as a vectors over GF(2). Hence vector addition, C'® D,
corresponds to the symmetric difference of the edge sets of subgraphs C' and D of G.
The incidence vectors of the cycles span the well-known cycle space €(G) of G, see
e.g. [5].

The weight |H| of a subgraph H is simply the number of edges in H. The length
of a basis B of a vector space U of subgraphs of G is

(B)=>"|H]|. (1)

HeB

We remark that all of the discussion below remains valid when we set [H| = )" ., w(e)
for arbitrary edge weights w(e) > 0.

3. U-Path Spaces

Let U C V be a nonempty set of vertices, |[U| > 2, and consider the vector space {U*
generated by the incidence vectors of the uv-paths, for all u,v € U. This construction
is of interest for example in the context of chemical reaction networks, where a subset
U of all chemical species V is fed into the system from the outside or is harvested
from the system. The uv-paths hence correspond to productive pathways [10, 12, 21].
Hartvigsen [13] introduced the U-space (G) as the union of 4* and the cycle space
¢(G). He gives an algorithm for computing a minimum length basis of U(G), a
manimum $4-basis for short, in polynomial time that extends a previous algorithm by
Horton [15] for minimum length bases of the cycle space €(G). The following result
shows that these two vector spaces are equal on proper graphs.

Lemma 1. If G is biconnected, then U* = U(G).

Proof. Let u,v € U. Since €(G) is spanned by the elementary cycles, it is sufficient to
show that any elementary cycle C' is the sum of some uv-paths. We show that there
exist two vertices x and y in C, not necessarily distinct, and two paths D; and D,
from u to x and from v to y, respectively, such that D;, D,, and C' are edge-disjoint.
We also can split the elementary cycle C' into two paths €'y and C5 with z and y as
their endnodes, such that C' = C @ Cs. If some of the points u, v, x, and y coincide,
then some of these paths are empty, i.e. they have no edges. Now P, = D ® C; ® D,
and P, = D1 ® Cy ® Dy are two uv-paths with C = P; @& P», as proposed.

To construct the paths Dy and D, we start with an elementary cycle D that contains
u and a vertex in C'. Such a cycle exists by the biconnectedness of G. Obviously, C'
contains two vertices 2 and y such that the paths D; = Dlu, x| and Dy = D|u, y] are
edge-disjoint and have no edge in common with C'. Furthermore, since G is connected,
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there must be a path H from v to some vertex ¢’ in C' that also has no edge in common
with C. If Dy and H are edge-disjoint we can replace y by vy’ and Dy by H and we
are done. Analogously, we replace Dy by H if Dy and H are edge-disjoint but D; and
H are not. Otherwise Dy and H must have a vertex h in common such that the sub-
path H[v, h] has no edge in common with the sub-paths Ds[h,y] and D; (otherwise
we change the role of Dy and Dy). Thus D) = Hlv, h| ® Ds[h,y| is a path from v to
y that has no edge in common with D; and C. Hence we replace Dy by D) and we
are done. U

Remark. Notice that in the above proof u and v need not be distinct. As a conse-
quence €(G) is spanned by all cycles through a given vertex u € U, provide that G is
biconnected. It is therefore meaningful to extend the definition of {* to the special
case |U| = 1. Then U* is the cycle space of the biconnected component that contains
u € U. One could therefore define a uu-path as a connected cycle through the vertex
u. However this would complicate the notation in the following.

Remark. Lemma 1 is not necessarily true for general connected graphs. Extending
the argument of the proof above it is easy to see, however, that for each biconnected
component H of G we have either €(H) C U* or €(H)NU* = (), depending on whether
a U-path passes through H.

The U-path space U(G) of a graph G(V, E) can be transformed into the cycle space
of a graph G*(V*, E*) that is constructed by adding a vertex z* and edges {z*,u} of
weight zero for each u € U. U-paths then correspond to cycles through z*: every uv-
path can be transformed into a cycle in G* by adding the path (u, z*,v); conversely,
by deleting z* every cycle containing z* becomes the union of cycles and uwv-paths in
G where u, v are neighbors of z*, i.e., a U-path. The length of a uv-path is obviously
equal to the length of the corresponding cycle. As an immediate consequence we get
the dimension of the U-path space. The dimension of the cycle space of a connected
graph is the cyclomatic number u(G) = |E| — |[V| + 1. Hence the dimension of the
U-space is given by u(G*) = |E*| — |[V*|+1 = (|E|+ |U]) — ([V|+ 1) + 1, see also
[14, Prop. 6.5].

Theorem 2. If G is connected then dim(G) = u(G) + |U| — 1 = |E| — |[V| + |U].

Notice that this result also holds for graphs G that are not connected provided that
each component of G contains at least one vertex of U. In [14] a more general model
is considered, where U;-paths connect endpoints within one or more disjoint subsets
U; C V. We may deal with this construction in the same way as above by adding a
distinct extra vertex for each set U;.

4. Minimum {{-Bases and Relevant {-Elements

Definition 3. Let U be a vector space of subgraphs of G. We say that A is relevant in
U (for short V-relevant) if there is a minimum length basis B of B such that A € B.

In other words, the set of U-relevant subgraphs is the union of all minimum length

bases of J.

Lemma 4 (Vismara [22]). A € U is relevant if and only if A cannot be written as
the ®&-sum of strictly shorter elements of *U.
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Horton’s [15] minimum cycle basis algorithm is based on an easy-to-check necessary
condition for relevance: A cycle is edge-short if it contains an edge e = {z,y} and a
vertex z such that C*¥* = {z,y} U P,, U P,, where P,, and P,, are shortest paths.
Hartvigsen [13] generalized this notion to paths: A wv-path P is edge-short if there
is an edge e = {x,y} in P such that both Plu,z| is a shortest ux-path and P[y,v]
is shortest yv-path. Horton and Hartvigsen furthermore showed that it is sufficient
to consider the cycles C*¥* and paths P5LY = P,, U{z,y} U P,, for a fized choice of
the shortest paths P,, between any two vertices of G. Thus a minimum cycle basis
and a minimum -basis can be obtained in polynomial time by means of the greedy
algorithm, see [13, 15].

A different approach based on the exchange property of matroid is pursued in [3, 18].
In the case of directed graphs it appears oftentimes more appropriate to consider
linear independence over Q instead of GF(2). In this setting, the minimum cycle
basis problem can be solved by analogs of both Horton’s and Berger’s approaches,
see [19, 17].

The related problem of computing all relevant cycles or i-elements can in general
not be solved in polynomial time because the number of relevant cycles may grow
exponentially with |V| in some graph families, see [22, Fig. 2] for an example. It is
possible, however, to define a set of prototypes for the relevant cycles that grows only
polynomially with |V|. Each relevant cycle C' can be then represented in the form

C=CPDdS S-Sy (2)

where C? is a prototype cycle, with |C?| = |C| and cycles S; that are strictly shorter
than C'. Lemma 4 shows that either both C' and C? are relevant or neither cycle
is relevant. Furthermore, a minimum cycle basis contains at most one of these two
cycles. Vismara [22] describes a construction of prototypes for cycles:

Fix an arbitrary ordering of the vertex set of G. Consider an edge-short cycle C
such that r is the largest vertex in C' w.r.t. this ordering. If there is a vertex x in
C such that C' consists of two different shortest paths from = to r we say that C is
even-balanced. The two vertices adjacent to x in C are denoted by p and ¢q. We write
CP*4 for this situation. If C' contains an edge {p, ¢} such that |P,.|, |P,-| < |C|/2 then
C is odd-balanced and we write C?4. The cycle family associated with a balanced
cycle C' consists of all those cycles that share with C' the vertex r, the edge {p, ¢} or
the path (p, z, ¢), respectively, and that contains shortest paths P, and P,, such that
each vertex in P, and F,, precedes r in the given ordering. Vismara shows that the
members of a cycle family are related by equ.(2) and that the relevant cycle families
form a partition of the set of relevant cycles. Any minimum cycle basis contains at
most one representative from each cycle family.

This idea can be extended to U-paths. Thus the notion of even-balanced and odd-
balanced paths is completely analogous and we define the U-path family associated
with a prototype P as follows:

Definition 5. The U-path family F(P) belonging to the prototype P is the set of all
balanced U-paths P' such that |P'| = |P| and P’ consists of the vertices u and v, the
edge {z,y} or the path (x,w,y) and two shortest paths P, and P,,.

Hence, two U-paths P and P’ belonging to the same family F(P) differ only by
the shortest paths from u to x and/or from v to y that they include. Consequently,
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even U-path - P odd U-path

P=P®S,®S:®-- @S, where the S; are cycles (or edge-disjoint unions of cycles),
see Fig. 1.

The relevant i-elements can be computed using the two-stage approach proposed
by Vismara [22]. This can be done by solving the equivalent Minimum Cycle Basis
Problem for the extended graph G*(V*, E*) but with fixing the additional vertex z* as
the largest element in the arbitrary ordering. We do not need to consider all balanced
U-paths. It is sufficient to consider those that are obtained from balanced cycles
through z*. The U-path prototypes are then obtained by deleting z*. Algorithm 1
compiles the necessary steps.

Vismara [22] showed that the prototypes for the relevant cycles can be computed in
O(u(G*)|E*]?) steps. Since |U| < |V| < |E|, this is the same as O((u(G) + |U))|E|?),

i.e., the inclusion of the U-paths does not substantially increase the complexity.

Algorithm 1 Relevant i-elements.

Input: Connected graph G(V, E), set U.
1: Create extended graph G*(V*, E*) (VU{z'}, EUU,ep{{z" u}}).
Fix ordering of vertices with z* as largest element.
Compute shortest path P,, for all u,v € V*.
Compute cycle prototypes C?? and CP*?, see [22], and store in P*.
Sort P* by length and set R = (.
For each length k, check if @) € P* with |@| = k is independent of all shorter
elements in R. If yes, add @ to R.
Replace each prototype in R that contains z* by corresponding U-path.
8: List all relevant U-elements by recursive backtracking from R.

=1

In practice one checks linear independence only against a partial minimum basis.

In the second part the relevant U-elements are extracted by means of a recursive
backtracking scheme. For each cycle prototype, C?? (which corresponds to a U-path iff
r = z*) we have to replace the paths C*?[p, r] and C?%[q,r] by all possible alternative
paths with the same length. These can be generated using the recursive function
List Paths() from [22], where we have to obey additional constraints that r is the
vertex with largest index in the given ordering.
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5. Exchangeability of i-Elements

In [11] a partition of the set of relevant cycles is introduced that is coarser than
Vismara’s cycle families. This construction generalizes directly to the U-space:

Definition 6. Two relevant U-elements C',C" € Ry are interchangeable, C' « C”,
if (i) |C'] = |C"| and (i) there exists a minimum linearly dependent set of relevant
i-elements that contains C' and C” and has no element that is longer than C'.

Interchangeability is an equivalence relation. The theory developed in [11] does
not depend on the fact that one considers cycles; indeed it works for all finite vector
spaces over GF'(2) and hence in particular for U-spaces. Hence we have the following:

Proposition 7. Let B be a minimum length $4-basis and let VW be a «-equivalence
class of relevant U-elements. Then knar(W) = |[W N B| is independent of the choice
of the basis B.

The quantity knar(JV) = |[W N B| has been termed the relative rank of the equiva-
lence class W in [11]. Tt is tempting to speculate that the «>-partition might distin-
guish between cycles and paths. As the example below shows, however, this is not
the case:

Here U = {1,2} and the relevant {-elements are the paths P, = (1,3,7,6,2), P, =
(1,3,4,5,6,2), and the cycle C' = (3,4,5,6,7,3). with |P;| = 4 and |P| = |C| = 5.
Furthermore C = P, & P, i.e., the path P, and the cycle C' belong to the same
—-equivalence class.
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