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Introduction
High Throughput Sequencing (HTS) has the ability to rapidly sequence millions of
individual small RNA molecules. This, for the first time, offers the opportunity to
identify known and classify new small RNAs based on unbiased data. Recently,
several strategies have been devised for that purpose [1,2].
Small RNAs are a diverse collection of molecules with several important biological
functions. Thus, exploring small RNA biology or characterizing differential expression
profiles by sequencing offers an exciting possibility to get more information about
non-coding RNAs (ncRNAs).
Some of these ncRNA classes, in particular microRNAs and snoRNAs, undergo
maturation processes that lead to the production of shorter RNAs. After mapping the
sequences to the reference genome specific patterns of short reads can be observed.
These read patterns seem to reflect the processing and thus are specific for the RNA
transcripts of which they are derived from (Fig. 1).

We explore here the potential of short read sequence data in the classification and
identification of ncRNAs.

Data Preparation
1. Map small RNAs to the human genome, using segemehl [3]

2. Cluster hits based on their genomic location (distance <100nt)

3. Divide consecutive reads into blocks, using blockbuster [4]

4. Discard clusters with <2 blocks and/or <10 reads (small information content)

We started with 355,453 unique reads that were mapped to 2,191,220 positions of
the human genome (NCBI36). After all clustering and filtering steps we identified 852
clusters . This set comprises 2,538 individual blocks and 85,459 unique reads .

Machine Learning Approach
Classifier
We implemented a highly accurate machine learning approach based on the random
forest method [5] for the classification of three types of ncRNAs: microRNAs, snoR-
NAs, and tRNAs.

Fig. 1. Non-coding RNAs exhibit specific block patterns and secondary structures. (a) The class of miRNAs often shows a block pattern of two or
three separated blocks and the sequence folds into the typical miRNA hairpin structure. (b) snoRNAs tend to have miRNA-like mature and star blocks
at their 5’ and 3’ hairpins with minor overlaps, while (c) a series of overlapping blocks and the cloverleaf structure is striking for the tRNA class.

Training Set
The classifier was trained with all clusters found within annotated ncRNAs loci [miRBase
v.12 (727 entries), tRNAscan-SE (588 entries) and snoRNAbase v.3 (451 entries)], see
Table 1.

Table 1. In total 434 of 852 clusters were found within regions of annotated miRNA, tRNA and snoRNA loci.

RNA class source loci found blocks/cluster (mean) reads/cluster (median)
microRNAs miRBase v.12 218 2.42 ± 1.04 4535.33
tRNAs tRNAscan SE 87 3.22 ± 1.92 183.95
snoRNAs snoRNAbase v.3 129 2.60 ± 1.66 127.5

Features
Based on visual inspection of the mapped reads (see Fig. 1), twelve features were
selected to train the random forest model (see Fig. 2).

Fig. 2. Box plots for 12 different features selected to train the random forest classifier.

Performance
The random forest model was repeatedly trained with randomly chosen annotated
loci (50% of each class as training set and the remaining 50% as test set) in order to
determine positive predictive values (PPV) and recall rates (see Table 2).

Table 2. Positive predictive values (PPV) and recall rates. For each set size means, medians, and standard deviations are calculated from 20
randomly sampled training sets.

PPV recall
mean sdev mean sdev

all 0.911 0.021 0.784 0.022
miRNA 0.953 0.021 0.892 0.020
tRNA 0.864 0.063 0.673 0.053
snoRNA 0.859 0.063 0.681 0.077

First Results and Outlook
Using our machine learning approach, we were able to predict 29 new miRNAs of
which 3 (hsa-mir-1978, hsa-mir-2110, hsa-mir-1974) have already been annotated in
the most recent miRBase release (v.14), as well as a novel member of the mir-548
family and another locus is the human ortholog of the bovine mir-2355. Two clusters
lie in antisense direction to annotated miRNA loci (hsa-mir-219-2 and hsa-mir-625).
22 clusters classified as miRNA remain to be confirmed. Furthermore, we created
UCSC-tracks in order to visualize the results (see Fig. 3a) and compare our data to
other HTS datasets (see Fig. 3b).

Fig. 3. Distribution of short reads at the hsa-mir-425 locus. (a) There are three clearly distinct blocks of reads: they correspond to moR (5’-end), miR*
(center) and miR (3’-end) transcripts. The conservation pattern is shown below. (b) Comparision of our hsa-mir-425 locus with other HTS datasets.

For the future we are planning to integrate more published HTS datasets in order to
improve and validate our machine learning approach. We will also use HTS data from
other species for further comparative analyses of our results.
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