Using RNA Secondary Structure in Phylogeny

Alexander Donath ${ }^{1}$, Steve Hoffmann ${ }^{1}$, and Peter F. Stadler ${ }^{1,2,3,4}$
${ }^{1}$ Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
${ }^{2}$ RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology (IZI), Leipzig, Germany
${ }^{3}$ Department of Theoretical Chemistry, University of Vienna, Austria
${ }^{4}$ Santa Fe Institute, Santa Fe, New Mexico, USA

Email: \{alex,steve,studla\}@bioinf.uni-leipzig.de WorldWideWeb: http://www.bioinf.uni-leipzig.de/

Application

Overall Goal:
Utilization of RNA secondary structure to infer phylogeny.

Approach:

- Usage of clade-specific features (e.g. large insertions) as molecular morphological characters.
- Given a sequence/structure alignment and a proposed phylogeny:
- Is it possible to obtain motifs in primary and/or secondary structure that either support or reject the given phylogeny?

Workflow:

1. Motif discovery and evaluation in primary and secondary structure (e.g. RNAsalsa, noisy, Vienna RNA package, MEME).
2. Evaluation of the tree given these patterns.
3. If phylogeny is rejected - find the best tree that supports the pattern distribution.

Problems:

- Reliable structure prediction of large RNA molecules (RNAsalsa).
- Definition and weighting of patterns.
- Pattern evolution (e.g. 7SK 5' stems).
noisy
(Dress et al., 2008)
Overall Goal:
Identification of phylogenetically uninformative sites in a multiple alignment.

Approach:

- Detection of homoplastic characters using circular orderings.

Workflow:

1. Construction of the circular ordering.
2. Calculation of a reliability score q for each character.
3. Removal of characters smaller than a given threshold.

Results:

Fig. $3 . \mathrm{MP}$ trees of spatangoid sea urchins from combined $28 \mathrm{~S} \mathrm{rRNA}, 16 \mathrm{~S} \mathrm{rRNA}$, and mitochondrial CO sequences -(Stockey etal., 2005). L...s. from original data, r.h.s. from a reduced alignment with cutoff $q=0.8$. The atiter tree manually reduced alignment. (HI = homoplasy index, RC $=$ rescaled consistency index, $\mathrm{FI}=$ retention ind
noisy is available under the GNU Public Licence from: http://www.bioinf.uni-leipzig.de/Software/noisy/

> RNAsalsa
> (Stocsits et al., 2008 (in press))

Overall Goal:

Performing improved RNA structure predictions as well as alignments of structural RNA sequences. Utilization of the slower evolution of structural features as a reproducible source of information.

Approach:

- Utilization of prior knowledge about structural patterns.
- Direct thermodynamic folding via adapted constraints.
- Using of structure information for adjusting and refining of the sequence alignment and vice versa.

Workflow:

Results:

- Complete individual secondary structures for each sequence.
- A final alignment by taking both structure and sequence information of each position into account.
- A sequence alignment with a consensus structure that allows the application of RNA substitution models in the conserved paired regions of the considered RNA genes.

Biological Examples

7SK (Gruber et al., 2008a, 2008b)
The 7SK snRNA is a key player in the regulation of polymerase II transcription and highly conserved across vertebrates. Homologs in basal deuterostomes, a few lophotrochozoans, and arthropods were only recently reported.

Patterns:

Fig. 6. Comparison of structural motits of 7SK snRNAs. Conserved nucleotides in stems are shown in red. Ocher (green) indicates two three) difiterent supporting compensatory mutations. Pale colored base-pairs cannot be
formed by all sequences. Lower case leters imply a deletion in some sequences. The variable-size regions close tormed by all sequencos. Lower case leters imply a deelion in some sequen
to the hairin loops, drawn as dashed ellipses, have no clear consensus folds.

Fig. 7. Phylogenetic distribution of 75 KK candidiate sequences. Bulutes indicate a match in the genomic seauence,
hexagoons refer to partial ESTs. hexagons refer to partial ESTs. Aligned blocks are shown in black, gray bars indicate alignment gaps, missing
sequence data appears white. The underly 1 ging tree is composed trom the genome-wide near intron positions (Krauss seauence eata appears white. The underlying iree is composed irom the genome-wide near iniron postitions (Krauss
etal., 2008), a mosauitoe phylogny (Harbach and Kitching, 1998) and two reeent studies of arthropod phylogeny
(Cameron et al. 2004: Kier, 2004). Cameror et al., 2004; Kjer, 2004).

Other Examples:
-16S rRNA

- 5S, 18S RNA
- RNAse P RNA
- other SSU and LSU rRNAs

Acknowledgements:

Financial support by the DFG SPP 1174 "Deep Metazoan Phylogeny".

