
A Comprehensive Approach for
Quadratic-Time Recognition of

Permutation Graphs

Thesis submitted to the faculty of Mathematics and Computer
Science for the degree of Bachelor of Science

by Tino Fels1

13th of October 2021

1 Supervisor: Dr. N. Wieseke, Department of Computer Science,
Swarm Intelligence and Complex Systems Group

Abstract

In this thesis I present the results of an easy-to-implement algorithmic approach
designed by my supervisor and myself to recognise arbitrary permutation graphs
in O(n2) time. Additionally we propose an O(n) space data structure that allows
us to implement multiple useful algorithms for the represented permutation graphs
and their respective permutation. The recognition uses a pipeline to build up the
inspected graph in a vertex-by-vertex fashion. With the help of our data structure
we test in each step, whether the regarded subgraph is a permutation graph. In the
positive case, an admissible permutation is given as a certificate.

ii

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Related Work . 3

2 Preliminaries 5
2.1 Permutations and Permutation Graphs 5

2.1.1 Basic Graph Theory . 5
2.1.2 Permutations . 7
2.1.3 Permutation Graphs . 7
2.1.4 Important Properties . 9

2.2 Modular Decomposition . 12
2.2.1 Modules . 14
2.2.2 Strong Intervals . 14
2.2.3 Modular Decomposition Tree 15

3 Data Structure and Algorithms 21
3.1 Base Algorithm . 21

3.1.1 Outline . 21
3.1.2 Vertex Insertion for Primitive Graphs 23
3.1.3 Finding Twins . 25

3.2 Data Structure . 27
3.2.1 Finding a Representation . 27
3.2.2 Proposed Implementation . 27
3.2.3 Constructing Permutations of Representative Graphs 30

3.3 Generating Insertion Positions . 31
3.3.1 Motivation and Linking the Tree 31
3.3.2 Finding the Insertion Node 33
3.3.3 Substitution Process . 35
3.3.4 Rearranging the Tree Tq . 39

4 Conclusion 49

Glossary 51

Bibliography 54

iii

iv

1 Introduction

Permutation graphs (see Section 2.1 for a more formal introduction) are a subclass of
perfect graphs and also contain other graph classes, such as cographs, or overlap other
useful classes, e.g. (co-)interval graphs. See Figure 1 for an exemplary overview.

Their first description dates back to the work of Dushnik and Miller [1] on the
subject of partially ordered sets (posets). Three decades later Pnueli et al. [2] and
Even et al. [3], who derived their ideas from Gallai’s work [4] which first introduced
‘Transitiv orientierbare Graphen’ (transitively orientable graphs, another superclass
of permutation graphs), sketched a first recognition algorithm for permutation graphs.
For a more detailed survey, the inclined reader may refer to the books by Golumbic
[5, Chapter 9], and Brandstädt et al. [6, Section 4.7], or the more recent work of
Hartmann et al. [7] who provide a full characterization of edge-coloured permutation
graphs. The latter is at the moment of writing of this thesis only available as a
preprint, but provides an exhaustive overview of the topic.

Permutation graphs are of interest since certain problems, such as the clique
problem [5] or the treewidth and pathwidth problems [8], can be solved in polynomial
time. There exist other polynomial, or even linear time, algorithms for solving some
problems such as specific (sub-)graph isomorphisms [9]. Mondal et al. found several
optimal sequential algorithms for a variety of problems [10, 11] with even sub-linear
time algorithms under the erew pram model. Additionally, permutation graphs
have particular applications, e.g. in flight path calculations [5], specific matching
algorithms [12], or historically in memory allocation [3]. In a wider sense permutations,
and therefore permutation graphs and interval graphs in particular, can be vital
for applications in genomic rearrangement [13], as well as comparative genomics in
general [14]. There are many more applications than the ones mentioned above, for
a recent overview the reader may refer to the book by Pal et al. [15, Chapter 2].

1.1 Overview

This thesis is structured in three main chapters. Chapter 2 will ease the reader into
the mathematical necessities and provides a broad overview on the topics. I will
first present some important notions that stem from graph theory and characterise
permutations and permutation graphs. The next section will focus on modular
decomposition theory which is needed to understand the building of the data structure
and the algorithms dependent on it. The reader should direct their main focus towards
the understanding of basic modular decomposition of permutation graphs and the

1

1.1 Overview

Figure 1: Some perfect graph families and their relations [6, 16]. Note that sizes are
not to scale and do not reflect the relative size of the respective graph classes.

labelling of inner nodes. Also of great importance are the contained lemmas 1-3 as
well as the basic definition for permutation graphs.

In Chapter 3 I first present the naïve insertion algorithm for primitive permutation
graphs and explain why on its own it does not suffice to recognise non-primitive
permutation graphs. What follows is a description of the proposed data structure
and Algorithm 2 to build the needed tree. Throughout that chapter I tried to
stress certain points by providing exemplary figures for the described algorithms, so
the reader might refer to a concrete example when trying to follow specific steps
along the way. Algorithms are woven into the text, because I deemed it important
to have a formal algorithmic description side-by-side to a textual one. The final
part of Chapter 3 follows the algorithmic approach for dynamic permutation graph
recognition by Crespelle and Paul [17].

Chapter 4 concludes the thesis and outlines the findings presented in the previous
chapter by providing an overview of a pipeline to utilise the proposed algorithms and
recognise any permutation graph by computing an admissible permutation for it.

2 1 Introduction

1.2 Related Work

Appended to the main matter of this thesis the reader will find a glossary, where
I tried to give brief descriptions of the most important terms. I hope altogether
the reader is provided with sufficient tools to follow the arguments and algorithms
presented in this thesis and thus they have an enjoyable journey into the topic.

1.2 Current and Past Algorithmic Approaches

G is a permutation graph if and only if there exists an admissible permutation π of
G. To verify whether π is an admissible permutation of G, we test if only the edges
given by π, and no less, also occur in G. This verification can be clearly done in
O(|E|) time, since we can test for each vertex, whether or not it possesses the edges
admitted by π.

As shown by McConnell and Spinrad [18], it is possible to recognize permutation
graphs, and thus generate their permutation, in O(|V | + |E|) = O(n + m) time.
The algorithm uses modular decomposition of a given graph and its complement to
compute their respective transitive orientations, and from these construct two linear
orders. Since for complete graphs |E| ∈ O(|V |2), optimal algorithms must also run
in quadratic time, like ours, although there exist some cases (sparse graphs) where
|E| u |V | and algorithms relying on transitive orientation, for example, become
superior, since they infer the permutation from edges in G. Confusingly, O(n+m)
is often called ‘linear time’, although it is quadratic in |V | = n. In this thesis I will
therefore only use the term ‘linear’ if we are indeed in O(n).

Most recognition algorithms for related graph classes (other perfect graphs),
however, use ‘fully dynamic’ recognition, in the sense that the underlying data
structure, in most cases some kind of modular decomposition tree, is maintained
under vertex insertion and deletion. Like line graphs by Degiorgi and Simon [19] and
Mancini and Heggernes [20]; proper interval graphs by Hell et al. [21]; chordal [22,
23], split [24], and interval graphs [23] by Ibarra; and more recently, papers about
P4-sparse graphs by Nikolopoulos et al. [25] and circular-arc graphs by Soulignac [26].
The work of Crespelle and Paul on fully dynamic permutation graph recognition [17],
even inspired the solution presented in this thesis. However, their approach was
mainly of theoretical nature and the algorithmic part fell too short in our opinion.
Also the core algorithm InsPrime of their paper did seem a little bit too complicated
for an easy implementation.

Like our approach, fully dynamic graph recognition algorithms often use the same
concept of modular decomposition (see Section 2.2), sometimes called substitution
decomposition. This concept is outlined by Möhring [27], and Möhring and Raderma-
cher [28] who give an excellent and exhaustive overview of the matter at that time,
resulting in the well-known modular decomposition theorem [28]. Later, Cournier
and Habib [29] described a modular decomposition algorithm of arbitrary undirected
graphs in a depth-first manner and O(n + m) time. There are other tree-based
recognition algorithms as well, cographs (P4-free permutation graphs), for example,
can utilize cotrees [30] which are isomorphic to their modular decomposition trees.

More recent works include the repeated LBFS algorithm by Dusart and Habib
[31] for cocomparability graphs, a superclass of permutation graphs, in O(|V | · |E|) =

1 Introduction 3

1.2 Related Work

O(n ·m) time. For circular-arc graphs, an overlapping sibling-class of permutation
graphs, Kaplan and Nussbaum [32] proposed a linear-time recognition algorithm
which they claim improves on the non-dynamic recognition algorithms by McConnell
and Spinrad [33] and another by Eschen and Spinrad [34].

4 1 Introduction

2 Preliminaries

Before we proceed to the main part of this thesis, the data structure and algo-
rithms, I will try to ease the reader into the theoretical foundations of permutations,
permutation graphs and their modular decomposition.

If not deemed necessary the formal definitions can be skipped. I do recommend,
however, to at least skim the examples and figures of this chapter, to get familiar
with the most important terms and notations.

2.1 Permutations and Permutation Graphs

This section is mainly concerned with mathematical and graph-theoretic principles
which lead to the main subject of permutation graphs and their permutations. For
a much more detailed overview and other classes of perfect graphs, the reader may
refer to the textbooks of e.g. Brandstädt et al. [6] and Golumbic [5, especially chapter
7, p. 157 sqq.], or to the characterisation of edged-coloured permutation graphs by
Hartmann et al. [7], only regarding the 2-coloured case (edges and non-edges). The
latter is, at the time of writing of this thesis, only available as a preprint.

2.1.1 Basic Graph Theory

First, let me define a graph (see also Brandstädt et al. [6, Definition 1.1.1 sqq.]) as
follows:

Definition 2.1 (Vertices, Edges, Graphs). Let V be a finite set of elements (vertices)
and let E ⊆ P2(V) be a set of edges, where P2(V) denotes the two-element subsets
of V .
G = (V,E) is then called an (undirected) graph.

Notation. Since V and E are finite sets, their respective sizes can be denoted as
n = |V | and m = |E|.

Throughout this thesis only finite, undirected graphs that are loop-free and without
parallel edges will be regarded, namely simple graphs.

Notation. For two vertices x, y ∈ V , xy will denote the undirected edge {x, y} ∈ E.
I will denote the neighbourhood of a vertex x ∈ V as N(x) that is every vertex y,
such that y ∈ N(x) if and only if xy ∈ E. For a subset N ⊆ N(x), xN ⊆ E denotes
the set of edges that connect x to any element in N .

5

2.1 Permutations and Permutation Graphs

There are several basic derivative notions which simplify notations and related
definitions of graphs. For example we can restrict a given graph to only a subset of
its vertices and remove all edges that do not connect elements of the given subset.
This leads to the following definition:

Definition 2.2 (Induced Subgraph [6, Definition 1.1.3.]). Given a graph G = (V,E),
an arbitrary subset of its vertices S ⊂ V defines the induced subgraph G[S] =
(S,E[S]), where E[S] ⊆ E for E[S] = {xy ∈ E | x, y ∈ S}.

Notation. For special (super-)subgraphs, where only a single vertex x (and its
neighbouring edges xN(x)) is removed (respectively added), I denote G− x as the
induced subgraph G[S], with S = V \ {x} (resp. G+ x = (V ∪ {x}, E ∪ xN(x))).

Now let us direct our focus towards the relation between vertices of a graph and
structures that set constraints to their respective edge sets.

Definition 2.3 (Connectivity, Twins [17]). Two vertices x, y ∈ V are connected
or adjacent if and only if y ∈ N(x) (x ∈ N(y) respectively), otherwise they are
disconnected. Two subsets of vertices S1, S2 ⊆ V are adjacent if every vertex v ∈ S1
is connected to every vertex u ∈ S2.
Moreover, two vertices are called twins if and only if N(x) \ {y} = N(y) \ {x}.

The non-neighbourhood between all vertices also defines a graph which is called
complementary graph or just complement of G.

Definition 2.4 (Complement). Let G = (V,E) be an undirected graph. G = (V,E)
defines the complementary graph, where E = {xy 6∈ E | x, y ∈ V } = P2(V) \ E.

Looking at specific graphs we can identify two trivial cases of connectivity between
their respective vertices. Namely the complete graph Kn = (V,P2(V)) of n = |V | ≥ 2
vertices and the complementary empty graph Kn = (V, ∅).
Furthermore, we can generalise these concepts to induced subgraphs of any given
graph.

Definition 2.5 (Clique, Stable Set [6, Definition 1.1.8]). Let G = (V,E) be a graph.
If a given subset of vertices C ⊆ V induces a complete subgraph G[C] = K|C| it is
called a clique.
Conversely, if the induced subgraph is empty it is called a stable or independent set.

Another important concept, and a crucial structure for future notions, are trees.
For the sake of completeness, let me also give a definition for these special graphs:

Definition 2.6 (Cycle-Free, Tree [6, Porposition 1.1.1]). A graph G = (V,E) is
cycle-free if there is no closed path from any edge to itself, i.e. for any sequence of
connected vertices (path) p = (v1, . . . , vk), where vivi+1 ∈ E, 1 ≤ i < k ≤ n, it holds
that v1 6= vk.
A maximal (with respect to edge insertion), cycle-free graph is called a tree.

Note that because trees are maximal with respect to edge insertion, i.e. adding any
edge will result in a cycle, there exist no stable subsets.

6 2 Preliminaries

2.1 Permutations and Permutation Graphs

2.1.2 Permutations

After building the foundations, I will now proceed to define permutations and their
graphs. The reader should keep this and the next section handy, since they provide
definitions and remarks to comprehend these two core concepts.

An algebraic understanding of permutations is not crucial for this thesis overall.
Only a basic combinatoric notion of the matter should suffice. Consider an ordered
sequence (i1 i2 . . . in) of arbitrary objects, represented by natural numbers. [1 : n]
will denote the (unordered) set of these objects {1, . . . , n}.

Definition 2.7 (Permutation, Rank [7]). Given a set [1 : n] of totally ordered
objects, a permutation π = (π(1) π(2) . . . π(n)) of these elements is a bijective
mapping π : [1 : n]→ [1 : n] that assigns to each element i ∈ [1 : n] a unique element
π(i) ∈ [1 : n].
The rank i or inverse of an element j in a given permutation of [1 : n] is then defined
by the natural inverse mapping π−1(j) = i if and only if π(i) = j.

Thus, permutations can be regarded as defining ‘another ordering’ between these
objects.
Notation.
(i) n = |π| denotes the size, or length of π.
(ii) The sequence (1 2 . . . n) is also called the identity permutation (of length n)

and will be denoted as id n.
Similarly to graphs, I will also use the following notations:
(iii) π will denote the reversed permutation, i.e. (π(n) π(n − 1) . . . π(1)), where

π(i) = π(n+ 1− i)
(iv) π[i : j] or π[X] are the sliced (sub-)permutations that are restricted to a sub-

sequence [i : j] or an arbitrary subset of its elements X. The order between
the chosen elements, as defined by π, will be preserved.

For case (iv) the sliced permutation π[X] is often normalised in such a way that it
only contains consecutive elements in the given order, starting with 1.

After looking at permutation graphs, the reasoning behind those notations will
become more apparent. But let me give some examples, first.

Example 1. Given a sequence of objects [1 : 4], we can define the following
permutation π1 = (3 1 4 2).
Where, e.g. π1(1) = 3, π1(3) = 4, and π−1

1 (1) = 2, π−1
1 (3) = 1. One could also reverse

the permutation, resulting in π1 = π2 = (2 4 1 3), or only regard the sub-sequences
π1[1 : 3] = (3 1 2) or π2[{1, 3, 4}] = (4 1 3) that both normalise to (3 1 2).
It should be mentioned that at first glance, the latter sub-permutation seems not
very useful, since it does not consist of consecutive elements (‘2’ is missing). But we
will later see, that in some instances a carefully defined subset of elements will make
sense and this notation gives us the opportunity to do so.

2.1.3 Permutation Graphs

Permutations allow us to depict a defined order of arbitrary objects, and if these
objects are the vertices of a graph, the graph is said to be transitively orientable [4], or

2 Preliminaries 7

2.1 Permutations and Permutation Graphs

called a comparability graph. Dushnik and Miller [1] and Brandstädt et al. [6, Theorem
4.7.1, p. 56] characterise permutation graphs as ‘A graph G is a permutation graph
if and only if G and G are comparability graphs’. This characterisation, however,
makes us unable to visualise the essence of permutation graphs, and I will therefore
try to show a more comprehensive approach with the next couple of definitions and
examples that roughly follow the reasoning of Hartmann et al. [7, Definition 3.1 sqq.].

Intuitively, it should be obvious that an arbitrary graph G = (V,E) is a per-
mutation graph if we can find two distinct total orders on its vertices, respectively
describing the neighbourhood and non-neighbourhood for each vertex (by transitive
orientation [4], that is constructing a digraph from (V,E) in such a way that two
vertices u, v ∈ V are connected by a directed edge (u, v) if there exists a third vertex
w ∈ V such that (u,w) ∈ E and (w, v) ∈ E). By assigning a label between [1 : n],
n = |V | to each vertex, we can depict the first ordering as the ascending sequence
(1 2 . . . n) = idn and the second as a permutation π of length n. This fact is
summarised by the following definitions:

Definition 2.8 (Labelling [7, Definition 3.1]). A labelling λ of a graph G = (V,E)
is a bijective mapping λ : V → [1 : n] that associates each vertex v ∈ V with a
unique natural number λ(v) ∈ [1 : n] ranging from 1 to n = |V |.

Given this approach, we can characterise permutation graphs via this labelling and a
permutation of the natural order of the labels [1 : n]. Where two vertices u, v ∈ V are

2413

1 2 3 4

π1 :

1 3 2 4

(a) Line graph and labelled permutation graph Gπ1 .

3142

1 2 3 4

π2 :

2 1 4 3

(b) Line graph and labelled permutation graph Gπ2 .

Figure 2: Visualisation for the construction of Gπ1 = (P4, λ1), a permutation graph of
the permutation π1 = (3 1 4 2), and its complementary graph Gπ2 = Gπ1 = (P4, λ2)
from their respective line graphs. Their labellings are given on the right-hand-side.
Intersection points resulting in edges are highlighted red.

8 2 Preliminaries

2.1 Permutations and Permutation Graphs

connected if and only if the order of their labels Dλ(u, v) := λ(u)− λ(v) is reversed
by the permutation (Dπ(v, u) := π−1(λ(v))− π−1(λ(u))).
Notation. The notations Dλ(u, v) := λ(u) − λ(v) (resp. Dπ(u, v) := π−1(λ(u)) −
π−1(λ(v))) will be used for the differences of the labels (of the ranks in permutation
π resp.) of two vertices u, v ∈ V .

Note, that Dπ(u, v) = −Dπ(v, u). The same holds for Dλ.

Definition 2.9 (Permutation Graph, Connectivity [2, 6]). Given a graph G = (V,E),
a labelling λ on its nodes and a permutation π = (π(1) . . . π(n)) such that for all
distinct u, v ∈ V it holds that

uv ∈ E ⇐⇒ c(u, v) = Dλ(u, v)Dπ(v, u) > 0

G is called permutation graph of π.
The exact value of the connectivity c(u, v) is irrelevant, only whether it is positive
or negative.

Note, that the connectivity can never equal zero, since both mappings are bijective
and the respective differences are therefore always non-zero values.
Notation. If not obvious from context, I will use Gπ = (G,λπ) to refer to the
permutation graph of permutation π and just λ for its labelling. In a slight abuse
of the formal notation π−1(v) will denote a shorthand for the rank π−1(λ(v)) of
vertex v ∈ V in permutation π, inferring that v can only be referenced by its label
λ(v)(= λπ(v)) in π. With that, e.g., the equivalence in Definition 2.9 can be expanded
into

uv ∈ E ⇐⇒ c(u, v) = Dλ(u, v)Dπ(v, u) = (λ(v)− λ(u))(π−1(u)− π−1(v)) > 0

Definition 2.9 leads to a neat depiction for permutation graphs as line graphs or
intersection graphs of two parallel lines, one being idn, representing the natural order
of the labelling λ, and the other its permutation π. For an example see Figure 2
(also called matching diagrams) [5, 6]. Other authors use the term realiser [17] or
two-dimensional poset [6] for the pair of these two linear orders R = (λ, π) that are a
certificate for a permutation graph GR. The only difference to our notation is the
fixed ordering of λ as ascending natural numbers.

2.1.4 Important Properties of Permutation Graphs

The following lemma plays an important part to prove certain properties of permuta-
tion graphs and their permutations.

Lemma 1 ([4, 5, 17], see especially Hartmann et al. [7, Lemma 3.3, p. 7]). The class
of permutation graphs is hereditary. That is, given a permutation graph Gπ, any
induced subgraph Gπ[S], S ⊆ V is also a permutation graph.

It follows from the fact that comparability graphs (and by extension permutation
graphs as well) are closed under substitution decomposition, a result shown by Gallai
[4]. This also becomes apparent, since removing any vertex from a permutation

2 Preliminaries 9

2.1 Permutations and Permutation Graphs

graph Gπ does not change the transitive orientation of the remaining edges, and
therefore also the ordering of its other vertices. Example 2 together with Figure 3
tries to build a visual intuition for that.

Another important result arising from that property, is the fact that given a
permutation graph Gπ, the permutation for any induced subgraph Gπ[S] can be
constructed by slicing π accordingly into π[S]. To strictly match the given definitions,
resulting gaps between the sliced elements need to be closed by decrementing each
necessary label, while preserving their natural order. See Example 2.

Example 2. Consider the permutation π3 = (8 3 1 4 2 6 5 7) and its permutation
graph Gπ3 as shown in Figure 3a and 3b. In π3 we have the sub-sequence π3[1 : 4] =
(3 1 4 2), and if we have a look at the induced subgraph Gπ3 [1 : 4] as seen in Figure 3c,
one can easily spot that it is isomorphic to the graph of a path of length 4, or P4
for short, which we already looked at in Figure 2. We can also determine the exact
permutation for the given subgraph labelling by just slicing out the permutation
π3[1 : 4], which also proves by Lemma 1 that P4 is a permutation graph.

In Figure 3d, we can see the permutation graph induced by the remaining vertices
S2 = [5 : 8]. The respective slicing of π3 would yield π3[5 : 8] = (8 6 5 7). However,
this sub-permutation does not start at 1. We can relabel all elements by regarding
the sorted list [5 6 7 8] and re-map these labels into (5 7→ 1, 6 7→ 2, 7 7→ 3, 8 7→ 4)
resulting in permutation (4 2 1 3) for our graph Gπ3 [S2].

This relabelling process is not very cost-effective, since the optimal sorting
algorithm takes an average of O(n logn) time (where n is the length of the sub-
sequence), but we will later see that our proposed data structure with Procedure getPi,
only spends O(n) time for this process, since the given sub-sequences contain only
consecutive numbers.

As seen in Figure 2 topologically identical graphs can have different permutations.
This relies on the fact that a mirrored line graph of a permutation still results in
the identical graph, but with different labelling. In Figure 2, for example, we have
horizontal mirror images of one another resulting in an isomorphic permutation
graph. I will now show how to retrieve the permutations and labellings from these
mirroring processes.

Lemma 2. Given a graph Gπ = (G,λ), we can construct Gh = (G,λh) as an
isomorphic graph with different labelling and permutation πh. Where for any node
v ∈ V , λh(v) := π−1(λ(v)) and [πh]−1(λh(v)) := λ(v).
We call Gh

π the horizontally mirrored graph and its permutation πh.

Proof. Trivially, [πh]−1 (the square brackets are for better readability and serve no
other purpose), λh and πh are bijective, since their defining mappings are. Each
domain also remains the same. Therefore, it suffices to show that the connectivity
c(u, v) between two arbitrary vertices u, v ∈ V is retained.

Using Definition 2.9, we have ch =
(
λh(u)−λh(v)

)(
[πh]−1(λh(v))− [πh]−1(λh(u))

)
.

By Lemma 2, ch =
(
π−1(λ(u))− π−1(λ(v))

)(
λ(v)− λ(u)

)
= c(u, v). �

Lemma 3. Given a graph Gπ = (G,λ), we can construct Gv = (G,λv) as an
isomorphic graph with different labelling. Where for any node v ∈ V , λv(v) :=

10 2 Preliminaries

2.1 Permutations and Permutation Graphs

8

7 6

5

1

3 2

4

(a) Labelled permutation graph Gπ3 . Induced subgraph Gπ3 [S1] for S1 =
[1 : 4] is highlighted.

5

5

6

6

7

7

8

8

1

1

2

2

3

3

4

4

(b) Line graph belonging to Gπ3 . Elements of sub-
permutation π3[S1] are highlighted.

1 3 2 4

1

1

2

2

3

3

4

4

(c) Induced subgraph Gπ3 [S1] = Gπ1
∼= P4

and its line graph.

4

3 2

1

1

1

2

2

3

3

4

4

(d) Induced subgraph Gπ3 [S2] and its
line graph with permutation π3[S2] =
(8 6 5 7) ∼= (4 2 1 3), where each
label has been decremented accordingly.
S2 = [5 : 8].

Figure 3: Visualisation of Example 2, where induced subgraphs are constructed from
the permutation graph given by π3 = (8 3 1 4 2 6 5 7).

2 Preliminaries 11

2.2 Modular Decomposition

n+ 1− λ(v) and [πv]−1(λv(v)) := n+ 1− π−1(λ(v)) with n = |V | being the length of
π. We call Gv

π the vertically mirrored graph of permutation πv.

Proof. Both mappings remain bijective with identical domains, since they are only
relabelled (shifted) and reordered reversely, i.e., 1 7→ n, 2 7→ n − 1, . . ., n 7→ 1,
etc. It follows by Definition 2.9, that for two vertices u, v ∈ V cv =

(
λv(u) −

λv(v)
)(

[πv]−1(λ(u))− [πv]−1(λ(v))
)
, and with the definitions from Lemma 3 we can

write
(
(n+ 1− λ(u))− (n+ 1− λ(v))

)(
(n+ 1− π−1(λ(v)))− (n+ 1− π−1(λ(u)))

)
=

(λ(u)− λ(v))(π−1(λ(v))− π−1(λ(u)) = c(u, v), which shows that u, v are connected
in Gv if and only if they are in Gπ. �

Notation. Naturally, combining the operations from Lemma 2 and 3 will result in
another isomorphic graph, which I will denote as Gm = (G,λm) and its permutation
as πm.
Remark. The process in Lemma 2 can also be described as transposing the two
orderings of λ and π, i.e., a vertex labelled i with rank j in π, will have label j and
rank i in πh. We can therefore retrieve the rank of a vertex labelled i in π by simply
referring to πh(i) instead of π−1(i).
Both algorithms sketched in Lemma 2 and 3 clearly have O(n) time- and space-
complexity. For example the labellings for each vertex can be updated one after
another, and then be inserted into an empty array at the position according to
their rank [πh]−1, resulting in the respectively mirrored permutation. An exemplary
implementation for a specific purpose is given in Procedure mirror.

It was already mentioned that transitive orientation of a graph G and its com-
plement G [4] leads to a permutation, as described by Pnueli et al. [2] for example.
This leads to the following proposition.

Proposition 2.1 ([4]). The permutation π of a primitive prime permutation graph
Gπ together with the resulting labelling λ is unique except for reversals (horizontal
and/or vertical mirroring). The graphs Gτ resulting from τ ∈ {π, πh, πv, πm} are
isomorphic, except for their labellings.

Depicted in Figure 4 is an exemplary graph and each of the resulting permutations.
Another important property relies on the fact that sub-sequences of π identify

specific structures (modules, see Section 2.2.1 and Section 2.2.2) in their respective
permutation graph Gπ.

Proposition 2.2 ([7, Proposition 3.4] and particularly [5, Remark p. 159]). Let (G,λ)
be a permutation graph with permutation π. The cliques (resp. independent sets) of
Gπ are exactly the descending (resp. ascending) sub-sequences in π. Furthermore, if
π is an descending (resp. ascending) sequence, Gπ is a complete (resp. empty) graph.

2.2 Modular Decomposition
A crucial part of most recognition algorithms, or more precisely their underlying data-
structures, is modular decomposition, sometimes called substitution decomposition [6].
Since our algorithmic pipeline relies on some claims proven by Crespelle and Paul

12 2 Preliminaries

2.2 Modular Decomposition

a

5

6

2

1

b

6

3

1

4
c

4

4

3

3d

2

5

5

2

e

3

1

4

6

f

1

2

6

5

(a) Graph G (primitive) and its labelled versions. Each node a, . . . , f can be labelled according
to a given permutation (clockwise: Gπ, Gv

π, G
m
π , G

h
π). For example the resulting labelling λπ

of the graph Gπ is: a 7→ 5, b 7→ 6, c 7→ 4, d 7→ 2, e 7→ 1, f 7→ 3

1 1

11

1 1

11

2 2

22

2 2

22

3 3

33

3 3

33

4 4

44

4 4

44

5 5

55

5 5

55

6 6

66

6 6

66

↑
h
↓

← v→

(b) Line graphs of permutation π = (3 1 6 4 2 5) (upper left) and its derived permutations
(clockwise: π, πv, πm, πh) from the mirroring operations. For each operation the connecting
lines in the line graph are ‘mirrored’ and the resulting graph is relabelled according to the
fixed order 1, 2, . . . , 6. The dashed red lines are virtual ‘mirror axes’ that help visualising
each operation. πm can be therefore found across the diagonal.

Figure 4: Permutations π, πh, πv, πm are different ‘mirror images’ of each other,
resulting in differently labelled but topologically isomorphic permutation graphs.

[17] together with their recognition algorithm, I will define the most important terms
in this section, and, in the end, combine both, the properties of permutation graphs
with modular decomposition theory. A good intuition for the last part is especially
crucial, because we are going to use this together with Bergeron et al. [35] algorithms
in our pipeline as well.

2 Preliminaries 13

2.2 Modular Decomposition

For a broader overview of this topic, the reader can again refer to the afore-
mentioned textbook of Brandstädt et al. [6, Section 1.5], or the characterisation
of edge-coloured permutation graphs by Hartmann et al. [7]. Another extensive
survey, not only from a graph-theoretic perspective, deliver the works of Möhring
and Radermacher [28], as well as Möhring [27, ‘Modular Decomposition Theorem’],
which are commonly cited on this subject.

2.2.1 Modules

Generally speaking, a module is an equivalence class of vertices with respect to
connectivity to any vertex outside the regarded module, i.e. every vertex contained
in a module has the same connectivity to vertices outside the module [6, p. 13 sqq.].
This notion is formalised by the following definition.

Definition 2.10 (Uniform, Module, Linked [6, Definition 1.5.1]). Let G = (V,E)
be an undirected graph. A subset M ⊂ V is uniform with respect to x ∈ V \M if
M ⊆ N(x) (linked), or M ⊆ N(x) (notlinked); otherwise it is mixed.
If M is uniform to all vertices v ∈ V \M , then it is called a module.
The vertex set V and the singleton sets {v} ⊆ V are called trivial modules of G.

This property alone does not yet suffice for modular decomposition in general.
The definition needs to be narrowed a little, because we want to to use modules of a
graph to construct a modular decomposition tree.

Definition 2.11 (Overlap, (Maximal) Strong Module [6, 17]). Let G = (V,E) be an
undirected graph and M1,M2 ⊆ V two arbitrary subsets of its vertices. M1 and M2
overlap each other if M1 ∩M2 6= ∅ and if M1 and M2 are mutually exclusive, i.e.,
M1 6⊆M2 and M2 6⊆M1.
A given module M1 is strong if it does not overlap any other module M2 ⊂ V .
If M1 is also maximal with respect to inclusion, and distinct from V , it is called a
maximal strong module.

Notation. Mstr(V) will denote the set of strong modules and Mmax(V) the maximal
strong modules of a graph G = (V,E).
The trivial modules and (co-)connected components of a graph are always strong
modules, the latter even being exactly the maximal strong modules of any graph [17].

2.2.2 Strong Intervals

The time-complexity of modular decomposition algorithms for arbitrary graphs is only
linear (i.e. O(n), n = |V |) if a factorizing permutation of the given graph is known [35,
36]. But since permutation graphs are themselves defined over such a permutation,
we can follow for example the outline given by Bergeron et al. [35, section 6.] to
construct a modular decomposition tree in O(n). Before we introduce the main
notion needed for Bergeron et al.’s algorithms, strong intervals, we have to define
intervals, sometimes called common intervals, that are sub-sequences containing only
consecutive elements of a given permutation π.

14 2 Preliminaries

2.2 Modular Decomposition

Definition 2.12 (Interval, Strong Intervals [17, 37]). For a given permutation π, we
define an interval as a sub-sequence of consecutive elements π[i : j], 1 ≤ i ≤ j ≤ n
in arbitrary order. If an interval does not overlap any other intervals in π it is called
strong.

Intuitively, this definition seems similar to Definition 2.11. As we can see, for
example, in Figure 2, the strong modules of a graph always contain consecutively
labelled vertices. These facts lead to the following proposition:

Proposition 2.3 ([17, Proposition 1] and [38]). Let Gπ = (G,λ) be a permutation
graph and π its permutation. The strong intervals in π are in exact one-to-one
correspondence with the strong modules in Gπ.

Remark. This is an important equivalence, because then, several properties that
apply to strong intervals can be applied to the strong modules of a permutation
graph and vice versa. For example, the number of strong modules |Mstr(V)| in a
graph G is in O(n) [39], as is the number of strong intervals in a permutation [35]
Notation. After identifying the strong modules/intervals of a permutation graph, we
can mark them with ‘(’, ‘)’ in the permutation, e.g., see Example 3. For the sake
of better readability, I will sometimes omit the brackets for singleton modules. A
permutation written this way will be called a bracketed permutation Π.

2.2.3 Modular Decomposition Tree

I will now proceed to give definitions for terms depicted in Figure 5. As mentioned
above, we can understand any strong module M ∈Mstr(V) as an equivalence class
of its elements. Also Mmax(V) is a congruence partition of V (i.e., by definition
Mmax(V) divides V in mutually exclusive subsets, that are also equivalence classes
in V) [7, 17]. This allows for the following definition:

Definition 2.13 (Quotient Graph [4, 17] and [7]). Let G = (V,E) be an arbitrary
graph and Mmax(V) the set of its maximal strong modules. By choosing one
representative vertex vi ∈Mi and its equivalence class [vi] ≡Mi for each maximal
strong module Mi ∈ Mmax(V), we can construct G/Mmax(V) = G[Vmax], Vmax =
{vi | [vi] ≡Mi ∈Mmax(V)} the quotient graph of G.

Since, by definition, strong modules of a graph G = (V,E) mutually do not
overlap, we can order them by inclusion in a so called modular decomposition tree
(e.g., Figure 5b), where the trivial modules are represented by the root (V) and the
leaves (singletons, {v} ⊂ V), respectively.

Proposition 2.4 ([28, ‘Modular Decomposition Theorem’]). Let G = (V,E) be a
graph. There exists exactly one unique modular decomposition of its vertices Mstr(V)
where each element is a strong module. These modules Mi ∈Mstr(V) can be ordered
by inclusion in a so called modular decomposition tree TG = (V (TG) = {pi | [pi] =
Mi ∈ Mstr(V), pi ∈ V }, E(TG) = {pipj | [pi] ⊂ [pj]}), where each node pi ∈ V (TG)
represents a strong module [pi] = Mi ∈Mstr(V (G)) and two nodes pi, pj representing
strong modules Mi,Mj ∈ Mstr(V (G)) are connected by an (undirected) edge if one
module contains the other.

2 Preliminaries 15

2.2 Modular Decomposition

8

7 6

5

1

3 2

4

(a) Graph Gπ3 . Its strong modules
are M1 = [1 : 4], M2 = [5 : 6] and
M3 = [1 : 7].

V
S

[v3]
||

[v2]
S

[v1]
P

{8} {3} {1} {4} {2} {6} {5} {7}

(b) Typed modular decomposition tree of Gπ3 .
The identifiers for each inner node, representing
module Mj , are the respective representative
vertices vj .

7

v2

v1

(c) Quotient graph ‖ GM3 with v1 and v2
representing its maximal strong modules
M1 and M2 respectively.

1

3 2

4

(d) Quotient graph P GM1
∼= P4.

6 5

(e) Quotient graph S GM2 .

8 v3

(f) Quotient S graph GV , where v3 rep-
resents its maximal strong module M3.

5

5

6

6

7

7

8

8

1

1

2

2

3

3

4

4
V

M3
M1

M2

(g) Line graph with marked strong intervals for
each strong module (singleton modules are omit-
ted). The bracketed permutation is therefore Π3 =
((8) (((3) (1) (4) (2)) ((6) (5)) (7)))

Figure 5: Gπ3 and its modular decomposition tree. See also Example 3.

16 2 Preliminaries

2.2 Modular Decomposition

Each inner node represents a strong module [vj] ≡ Mj ∈ Mstr(V) and possesses a
quotient graph GMj = G[Mj]/Mstr(Mj) representing the induced subgraph G[Mj].

Before proceeding with some properties of modular decomposition trees of per-
mutation graphs, let us introduce the following notation and subsequent definition.
Notation. Given a modular decomposition tree TG = (V (TG), E(TG)) of a graph
G = (V,E). The set of children of a node p ∈ V (TG) is denoted C(p), while the set
of all leaves below p is denoted L(p). It should be noted that in a slight abuse of
notation, we say that a vertex v ∈ V is an element of L, when we actually mean that
the leaf `v ∈ V (TG) representing the singleton set Lv = {v} is.

Definition 2.14 (Lowest Common Ancestor). Given a modular decomposition tree
TG = (V (TG), E(TG)) of a graph G = (V,E) and three of its nodes p, q, r ∈ VT
representing the modules P,Q,R ⊆ V . Node r is an ancestor of another node p
if there exists a path (r, c1, . . . , ck, p) ∈ Ek+2

T such that c1 ∈ C(r), ci+1 ∈ C(ci) and
p ∈ C(ck) p ≺TG r denotes that p lies below r in TG, i.e., it holds that r is an ancestor
of p and p is a descendant of r, thus P ⊆ R.
Furthermore, r = lca(p, q) defines the lowest common ancestor of two nodes, that
is the lowest node r in TG such that p �TG r and q �TG r.

Remark. Note, that if p is a descendant of q, then P is a strong module of G[Q].
Notation. Given an inner node p of a modular decomposition tree TG, where Gπ is
a permutation graph with permutation π. The leaves below p define a vertex set
{l ∈ L(p)} = P ⊆ V and therefore Gp will denote the quotient graph G[P]/Mmax(P)
of the maximal strong modules of G[P] and πp = π[Vmax(p)], λp its permutation and
labelling respectively. Given a vertex set N ⊆ V , Np = {u | u ∈ V (Gp) and [ui] ∈
Mmax(P), 1 ≤ i ≤ |P |} denotes the vertex set of representative vertices in V (Gp)
with respect to N .
Note that the the permutation πp is different from π[P], where we slice π with respect
to all vertices in P ⊆ V (a strong interval in π) and obtain a permutation of G[P].

Furthermore, we can assign a type to each of the inner nodes (including the
root V) of the modular decomposition tree, depending on the following types of its
quotient graph.

Proposition 2.5 (Series, Parallel, Prime [4, (1.8) Satz], [6, Prop. 1.5.1 sqq.,
especially Thm. 1.5.1] and [28, ‘Modular Decomposition Theorem’ Thms. 4.1.2 sqq.]).
Let G = (V,E) be an arbitrary undirected graph. Each inner node p of its modular
decomposition tree TG, representing a strong module P ∈Mstr(V), can be assigned
exactly one of these mutually exclusive types, depending on its representative quotient
graph Gp = G[P]/Mmax(P):

P prime, if and only if Gp and Gp are connected,
S series, if and only if Gp is not connected, or
‖ parallel, if and only if Gp is not connected.

If a node (or a module respectively) is not prime (i.e., S or ‖) it is called degenerate.
Another important aspect for the modular decomposition of permutation graphs
is the fact that for example quotient graphs are also primitive graphs, sometimes

2 Preliminaries 17

2.2 Modular Decomposition

called simple decomposable graphs, or, confusingly prime graphs, with very helpful
properties. The latter name, prime, stems from the fact that these kind of graphs
turn out to be indecomposable by modular decomposition and are therefore the
elementary ‘building-blocks’ for all graphs. To avoid confusion with the label prime
or P given in Proposition 2.5 the term primitive will be used from now on.

Definition 2.15 (Primitive Graph, [7, Definition 2.5]). A graph G = (V,E) is called
primitive if and only if its modular decomposition tree is a star, i.e., G only has
trivial modules and |Mmax(V)| = |V |.

From this we can deduce that all quotient graphs are indeed primitive graphs by
definition [7].

Furthermore, if G is also a permutation graph Gπ = (G,λ) with permutation π,
there exists a simple way to deduce its type, or more precisely the type of its root
node in TG. Be reminded of Proposition 2.2 where it was shown that ascending and
descending sequences correspond to empty and complete graphs, respectively. By
using this proposition, we can deduce the following lemma:

Lemma 4. A primitive permutation graph Gπ = (G,λ), Mmax(V) = ∅ with permu-
tation π of length n > 1 can be typed as follows:
(i) series if π(1) = n,
(ii) parallel if π(1) = 1,
(iii) prime otherwise.

Proof. Using proof by contradiction, let Gπ = (G,λ) be a primitive permutation
graph of either ‖ or P type, but with π(1) = n. Proposition 2.2 shows that G can
be no parallel graph. We can therefore assume G to be prime. By Definition 2.9 the
vertex v = λ−1(n) at rank 1 will be connected to any other vertex u ∈ V \{v}, because
it has the greatest possible label. Since G is primitive, it only has trivial modules
(Definition 2.15) and in particular π contains no strong intervals (Proposition 2.3),
other than [1 : n] (the whole permutation), and [i : i] (singletons), 1 ≤ i ≤ n.
Because we choose G not to be series, π(2) 6= n − 1. But this already contradicts
our assumption that π(1) = n, as then π[1 : n − 1] = (π(2) π(3) . . . π(n)) would
constitute a strong interval of π (they all connect to v). So G must be series.

By an analogous reasoning we can show that π(1) = 1 implies that G is parallel,
and since the three types are mutually exclusive, the third case follows. �

Corollary 1. The number of nodes |V (TG)| in a modular decomposition tree TG of
a graph G = (V (G), E(G)), |V (G)| = n, is in O(n).

Proof. For a primitive graph the number of nodes is exactly n+ 1, i.e., the root and
singleton modules. This is the lower bound for |V (TG)|.
An upper bound is given by the structure of TG. In the worst case, that is the most
number of nodes, TG is a binary tree, since each non-trivial strong module must
contain at least two strong children modules by definition. Therefore, with a binary
tree having n leaves the upper bound becomes 2n − 1 and we have proven that
|V (TG)| ∈ O(n). �

18 2 Preliminaries

2.2 Modular Decomposition

Example 3. Going back to the graph Gπ3 introduced in Example 2 and depicted
again in Figure 5a. Without using the exact algorithm of [35], or with any regard for
time complexity, we can identify the strong intervals of its permutation, as shown in
Figure 5g. The trivial ones: V = [1 : 8] and the singletons [1 : 1] , [2 : 2], etc. As
well as the non-trivial strong intervals, resulting in the inner nodes of its modular
decomposition tree: M1 = [1 : 4], M2 = [5 : 6] and M3 = [2 : 7]. Note, that intervals
like [1 : 6], indeed represent modules, but since they overlap [5 : 7], for example, they
are not strong.

We can then extract the permutation for each quotient graph π[Mj], j ∈ {1, 2, 3},
by choosing one representative element for each maximal strong module of its induced
subgraph, e.g., for π[M3] = π3(((3) (1) (4) (2)) ((6) (5)) (7)) we choose {3, 5, 7} to
represent each maximal strong module of Gπ3 [M3], which yields π[{3, 5, 7}] = (3 5 7).
We decrement each element in this permutation while maintaining their order, until
we obtain a permutation of [1 : 3] with π[M3] = (1 2 3). By Lemma 4, M3 can then
be typed as parallel ‖ .

The process for V (S), M1 (P), and M2 (S) is similar and left to the reader, if
they choose to check the results of Figure 5.

2 Preliminaries 19

20

3 Proposed Data Structure and
Algorithms

After finishing the theoretical introduction we can now proceed to the algorithmic
part of this thesis. In this chapter I will outline the pipeline and its algorithms which
are intertwined with our proposed data structure. Each algorithm, and especially
the data structure, should be reviewed with an object-oriented paradigm in mind.

I will give pseudo code for each of our algorithms, and also for the construction of
the modular decomposition tree (our data structure) from a bracketed permutation.
Other algorithms on the other hand, like the ones of Bergeron et al. [35], will at
most be sketched briefly. Their application for our purposes and their place in our
proposed pipeline, however, will be part of this chapter.

Therefore I will introduce the outline of our proposed pipeline in the first section,
where I also discuss the original notion that led to the base algorithm and why it
needs to be extended by additional concepts. The subsequent section will draft the
data structure, a typed modular decomposition tree, which is built utilising results
on modular decomposition from permutations by Bergeron et al. [35] and is used for
generating a permutation for primitive prime graphs. Generating such a permutation
follows some results presented by Crespelle and Paul [17] in their work about dynamic
permutation graph recognition.

3.1 Base Algorithm

3.1.1 Outline

The original notion that the reader should have in mind is that of Lemma 1, the
heredity property of permutation graphs. Given a permutation graph Gπ = (G,λ)
we can remove any vertex x (and its connecting edges) and still end up with a
permutation graph Gπ − x. This leads to the following question:
Can we recognise a permutation graph as such, by successively building it up from the
empty graph in a vertex-by-vertex fashion, and while maintaining a valid permutation
at each insertion step?
The answer is: Almost. The algorithms 1a and 1b proposed in Section 3.1.2 only work
for certain types of permutation graphs, e.g. only graphs that are primitive and prime,
or in general, permutations that allow a maximum of two neighbouring insertion

21

3.1 Base Algorithm

Algorithm 1a: First part of the insertion algorithm. Scans given permuta-
tion for a valid insertion position and constraints for the inserted label.
Input: permutation π of permutation graph Gπ = (V,E, λ),

bijective mapping λ : V 7→ [1 : n] of vertices and labels in V , and
neighbourhood N(x) ⊆ V of the vertex x about to be inserted in G

Output: updated permutation π+x and mapping λ+x, or
the result that G+ x is not a permutation graph

1 /* initalize arrays at starting positions of the iterations,
where no neighbours are present */

2 lowerB_r[|π|+ 1] ← 0
3 upperB_r[|π|+ 1] ← |π|+ 1
4 lowerB_l[1] ← 0
5 upperB_r[1] ← |π|+ 1
6 /* start iterations to find insertion position and label by

checking the neighbours */
7 for i = 2, . . . , |π|+ 1 do // from left to right
8 yLabel ← π(i− 1) // vertex label at (i− 1)-th position
9 y ← λ−1(yLabel) // lhs neighbour of x in π

10 if y ∈ N(x) then
11 upperB_l[i] ← min{upperB_l[i− 1], yLabel}
12 lowerB_l[i] ← lowerB_l[i− 1]
13 else
14 lowerB_l[i] ← max{lowerB_l[i− 1], yLabel}
15 upperB_l[i] ← upperB_l[i− 1]
16 end
17 end
18 for i = |π|, |π| − 1, . . . , 1 do // from right to left
19 yLabel ← π(i) // vertex label at i-th position
20 y ← λ−1(yLabel) // rhs neighbour of x in π
21 if y ∈ N(x) then
22 lowerB_r[i] ← max{lowerB_r[i+ 1], yLabel}
23 upperB_r[i] ← upperB_r[i+ 1]
24 else
25 upperB_r[i] ← min{upperB_r[i+ 1], yLabel}
26 lowerB_r[i] ← lowerB_r[i+ 1]
27 end
28 end

positions. For that reason, we need to check the graph’s modular decomposition
beforehand. This process and the algorithmic principles leading to it, are discussed
in Section 3.2.

In the negative case, where our algorithm does not find an insertion position,
however, we compute the modular decomposition tree and manipulate a certain set
of its nodes using results of Crespelle and Paul [17]; leading to either a modular

22 3 Data Structure and Algorithms

3.1 Base Algorithm

Algorithm 1b: Second part of the insertion algorithm. Finalizes mappings
according to the found insertion position.

27 /* combine constraints and search for possible insertion
position, only the leftmost position will be returned */

28 for i = 1, . . . , |π|+ 1 do // check validity of each position
29 upperBound← min{upperB_l[i], upperB_r[i]}
30 lowerBound← max{lowerB_l[i], lowerB_r[i]}
31 if upperBound = lowerBound + 1 then
32 xLabel ← upperBound
33 increment all labels in π and λ greater or equal than xLabel by 1
34 π+x ← insert xLabel at position i in π
35 // shift rhs elements of i in π to the right
36 λ+x ← λ ∪ {xLabel 7→ x}
37 return π+x, λ+x
38 end
39 end
40 return G+ x is not a permutation graph.

decomposition tree from which we can construct π+x, or to the result that G+ x is
not a permutation graph. That topic is discussed in detail in Section 3.3.

3.1.2 Vertex Insertion for Primitive Graphs

3 1 4 2

i = 1 2 3 4 5

> 0
≤ 5

> 0
≤ 3

> 1
≤ 3

> 4
≤ 3

> 4
≤ 3

≤ 5
> 0

≤ 2
> 0

≤ 2
> 0

≤ 1
> 0

≤ 1
> 3

Figure 6: Example run of Algorithm 1a on π = (3 1 4 2) with N(x) = 3. i marks the
possible insertion positions, whereas the constraints of x’s label are updated with
each step of the respective for-loop. The element in π leading to the respective
constraints is the one depicted closest to each pair, e.g., at insertion position 2 it is
π(1) = 3 for 0 < λ(x) ≤ 3 and π(2) = 1 for 0 > λ(x) ≤ 1. 2 is also one of the two
possible insertion positions leading to the graph depicted in Figure 7 with λ(x) = 1
and permutation π+x = (4 1 2 5 3)

First, consider a given permutation graph Gπ = (G,λ), G = (V,E) of permutation
π and a vertex x with neighbourhood N(x) ⊆ V . Algorithm 1a scans every possible
insertion position two times, once for each direction, and checks whether the left-hand
side (resp. right-hand) vertex y, represented by its label λ(y), is also in N(x). Here
position 1 is left to the first element of π while position n+1 is right to the last (n-th)

3 Data Structure and Algorithms 23

3.1 Base Algorithm

element. For each step the upper and lower bound for x’s label at that position are
set according to Definition 2.9 by regarding the (non-)neighbourhood of vertex y and
comparing its label and the previously set constraints.

Let us now proceed to proving the correctness of Algorithm 1a and Algorithm 1b
(collectively called Algorithm 1). It will be shown in Theorem 1 that Algorithm 1
finds an insertion position in π and a label for the inserted vertex x if G is a primitive
prime permutation graph.

Proposition 3.1 ([17, Lemma 10]). Let π be a permutation and λ a labelling of
a primitive permutation graph G = (V,E) with |V | = n. Given a vertex x with
neighbourhood N(x) ⊆ V to be inserted into G, then G+ x is a permutation graph
if and only if ∀u ∈ N(x), Dλ(u, x) ≤ 0 iff Dπ(x, u) < 0 and ∀v ∈ N(x), Dλ(v, x) ≤ 0
iff Dπ(x, v) ≥ 0. For a label λ(x) and insertion position π−1(x) of x, to match the
definitions of Dλ and Dπ respectively.

Notation. Given a permutation graph Gπ = ((V,E), λ) with permutation π and a
vertex x 6∈ V with neighbourhood N(x) ⊆ V . We denote the permutation after
inserting x into G, if possible, as π+x(l,r). Where l is the label λ+x(x) of x in the
new permutation and r its rank π−1

+x(x) resulting from the insertion process.
The proposition above was shown by Crespelle and Paul and gives us the opportu-

nity to prove the algorithm’s correctness, simply by showing that the neighbourhoods
for all involved vertices is retained. We will show that Algorithm 1 finds a matching
label and rank for x, called insertion position by Crespelle and Paul, that satisfies
the conditions above. This leads to the following theorem:

Theorem 1 (Correctness of Algorithm 1). For the neighbourhood N(x) of a vertex x
to be inserted in the permutation π of a primitive prime permutation graph, Algorithm
1 returns a label and rank for x in permutation π+x(l,r) or the result that G+ x is
not a permutation graph and stops in O(n) (n = |V |) time.

Proof. Let Gπ + x = ((V + x,E + xN(x)), λ+x) be the resulting permutation graph
of π+x and let l = λ+x(x) and r = π−1

+x(x). First consider the permutation π+x since
no vertices from G were removed, we can restrict π+x[V]. This is clearly the inverse
process of Algorithm 1b and thus all remaining vertices retain their connectivity
between each other.

Now consider a vertex y ∈ N(x). Algorithm 1a finds a label for x that is
smaller than λ(y) if π−1

+x(y) < r (line 11). Thus Dπ+x(x, y) = r − π−1
+x(y) > 0 and

Dλ+x(y, x) = λ+x(y)− l > 0 which satisfies the conditions of Proposition 3.1. The
same holds for the case, when y is to the right of x in π+x (line 22) but with all
inequalities reversed in the other direction, i.e., λ(y) ≤ l =⇒ Dλ+x(y, x) ≤ 0 and
π−1

+x(y) > r =⇒ Dπ+x(x, y) < 0. This concludes the case, if y ∈ N(x).
The last part of the correctness proof will consider the case, where y ∈ N(x) and

is somewhat analogous to the previous one. We see in lines 14 and 25 that Dπ+x(x, y)
and Dλ+x(y, x) always have opposite signs, and therefore also satisfy the conditions
of Proposition 3.1.

The algorithm clearly spends O(|π|) = O(n) time, since π is iterated over exactly
twice in Algorithm 1a and the time spend for Algorithm 1b is at most 3n (iterate

24 3 Data Structure and Algorithms

3.1 Base Algorithm

boundary-array, update π and λ), if x has to be inserted at the front position with
label 1. �

3.1.3 Finding Twins

Procedure findTwin(π+x, λ−1
+x, π−1

+x(x))
1 r ← π−1

+x(x) // better readibility
2 lx ← π+x[r] // get label at rank r
3 if r > 1 then
4 ll ← π+x[r- 1] // lhs neighbour in π+x
5 if |ll − lx| = 1 then return λ−1

+x[ll]
6 else if r < |π+x| then
7 lr ← π+x[r + 1] // rhs neighbour in π+x
8 if |lr − lx| = 1 then return λ−1

+x[lr]
9 else

10 return x has no twin
11 end

Procedure isTwin(N(x), t, λ, π)
1 foreach vertex v ∈ N(x) \ {t} do
2 if Dλ(v, t)Dπ(t, v) < 0 then // v 6∈ N(t)
3 return t is not a twin of x in Gπ
4 end
5 end
6 return t is a twin of x in Gπ

Beside performing the insertion for primitive prime graphs, Algorithm 1 can
detect the so called twin of the inserted vertex x, if it exists. Recall, that twin
vertices share the exact same neighbourhood in a graph, except for maybe each other.
(See also Definition 2.3) This means that in a given graph, twins always belong to
the same (non-trivial) strong module and are therefore of particular interest for
identifying almost trivial sub-cases for finding permutations when inserting a vertex.
To summarise, we can find those following two properties:

Proposition 3.2 (Crespelle and Paul [17] Theorem 4). Let Gπ = (G,λ), G = (V,E)
be a labelled primitive prime permutation graph and x be a vertex to be inserted into
Gπ such that V is not uniform with respect to x. There are at most two insertion
positions for x in π and at most two possible labels. x has a twin in G if and
only if there exist two insertion positions next to each other and their labels are
interchangeable and differ by one.

The result of Algorithm 1, namely the insertion rank π−1
+x(x) and insertion label

λ+x(x), together with Proposition 3.2 can be used to identify a twin in π+x. This

3 Data Structure and Algorithms 25

3.1 Base Algorithm

can be even done in constant time, given the inverse mapping of λ+x as shown
in Procedure findTwin. Or in time O(|N(x)|) for a given vertex t as shown in
Procedure isTwin.

1 3 2 4

x

2

2

3

3

4

4

x

x

1

1

Figure 7: Twins have lines next to one another in the linear orders of their line graph.
In this example x and the vertex labelled 1 are twins.

Corollary 2. Let Gπ = (G,λ) be a labelled primitive prime permutation graph and
x 6∈ V (G) a vertex that is inserted into Gπ. If x has a twin t ∈ V (G) then {x, t} is
the only non-trivial strong module of Gπ + x.

Proof. Since Gπ was primitive and prime, it had no strong modules, except for
trivial ones. By Proposition 2.3 this means that π has also no strong intervals.
Inserting x into π next to y will result in a strong interval of at least length two,
since |λ+x(x)− λ+x(y)| = 1 and |π−1

+x(x)− π−1
+x(y)| = 1 by Proposition 3.2. Suppose

now τ is the strong interval containing x and its twin t and possibly other elements.
Let v be the element next to t in π, i.e. π−1(v) = π−1(t)− 1 or π−1(v) = π−1(t) + 1
if they exist.

Without loss of generality, let π−1
+x(x) > π−1

+x(t) (x is inserted to the right of t
in π), since their labels can be swapped arbitrarily. Then u can not be an element
of τ , because its label is either incremented by 1 if it had a larger label than t in
π or, conversely, it remains the same if it was smaller. In the former case it holds
that λ+x(v) > max{λ+x(x), λ+x(t)} + 1 and λ+x(v) < min{λ+x(x), λ+x(t)} − 1 in
the latter. Thus the strong interval containing x and t has at most length two, and
we can conclude that the new (and only) non-trivial strong module of Gπ + x is
indeed {x, t}. �

Remark. This holds independent of connectivity between the twins since their labels
are interchangeable. Also the created strong module {x, t} is either ‖ or S ,
depending on said connectivity.

26 3 Data Structure and Algorithms

3.2 Data Structure

3.2 Data Structure

3.2.1 Finding a Representation

Since Algorithm 1 does only cover the cases, where the permutation π of a graph G
has an insertion position (i.e. a rank and a label) for x, the other cases have to be
covered otherwise. The most sensible approach is using modular decomposition theory
(see Section 2.2 for an introduction). It serves simultaneously as an underlying data
structure (namely the modular decomposition tree) and a guideline for the algorithmic
design. The modular decomposition tree can be built in a bottom-up manner, as
described in Algorithm 2, and traversed in linear time (O(n)), because the number
of nodes in such a tree is linear with n = |V | as was shown in Corollary 1. For
Algorithm 2 the strong modules (strong intervals) of Gπ (in π) need to be computed
to provide the bracketed permutation Π for the desired tree-structure. One can
use Bergeron et al.’s [35] linear-time algorithm that uses LIFO-queues and several
properties of permutations to obtain a string, representing the bracketed permutation
Π of π. I will not provide their algorithm here, since that would be beyond the
scope of this thesis. But essentially they iterate a constant amount of time over the
permutation to find, for each element, the indices of left and right bounds of the
strong intervals they are contained in.

Proposition 3.3 (Bergeron et al. [35, see especially Prop. 9]). Given a permutation
π then the bracketed permutation Π can be computed in O(n) = O(|π|) time. Also
the number of strong intervals and thus the length of a bracketed permutation Π is in
O(n) space.

3.2.2 Proposed Implementation

We propose Algorithm 2 to build a representation of the modular decomposition
tree TG of a permutation graph Gπ with permutation π. It relies on abstract objects
of the type Node that correspond to the nodes of TG. Each Node possesses a type
(‖ , S , P or LEAF) and is arranged in doubly-linked lists, where each parent Node
p is doubly-linked to a list of its children C(p), which are themselves arranged in
an ordered doubly-linked list, such that they represent the permutation πp of the
quotient graph Gp of their parent.

Unique to leaves is a stack of nodes [p1, . . . , pj] that contains pointers to all
ancestor nodes pi, 1 ≤ i ≤ j, where it is the minimum element (by label) of the
quotient permutation πp of pi’s parent, i.e. if λp(pi) = 1. These stacks are used
for each child to store the information of its label and rank in its parent’s quotient
permutation (see also example in Figure 8) and can be discarded after the building
process, since they are no longer needed later on. This ensures that a query for
the permutation of the quotient graph Gp of any inner node p can be resolved in
O(|C(p)|) time, where C(p) is the set of children of p.

Of each inner node p, the minimum and maximum rank in π, i.e., the bounds of
the strong interval of the represented strong module P ⊆ V , is stored. Additionally,
to also achieve fast queries for permutations π[P] of the respective induced subgraphs
Gπ[P] of a strong module P , the two mappings between vertices v ∈ V and their

3 Data Structure and Algorithms 27

3.2 Data Structure

Algorithm 2: Algorithm to build a the data structure from a bracketed
permutation Π that is derived from π of a permutation graph Gπ, e.g., given
as a char array.
Input: Bracketed permutation Π, where all strong intervals are enclosed

with brackets.
Output: root Node of a modular decomposition tree.

1 Procedure buildTree(Π):
2 root ← Node() // create return object
3 p ← root // active node
4 current_rank ← 1 // current rank in π (without brackets)
5 foreach char in Π do // skip first char, root already created
6 if char is '(' then
7 pnew ← Node() // will be set up after all its children
8 Set p as parent of pnew and add pnew to C(p)
9 p ← pnew

10 else if char is an Integer then // active Node is a leaf
11 π−1(p) ← current_rank
12 λ(p) ← char
13 current_rank ← current_rank + 1
14 else if char is ')' then // end of module, all C(p) set up
15 if p is not a leaf then
16 foreach pi ∈ C(p) do Assign respective rank π−1

parent(pi) end
17 finaliseLabelling(p) // see below
18 Assign decomposition type (‖ , P , S) to p.
19 end
20 Push p on the stack of its minimal (by label) leaf.
21 if p is not root then
22 Update parent of p by updating λmin, πmin and πmax for

leaves.
23 p ← parent of p
24 end
25 end
26 end
27 return root
28
29 Procedure finaliseLabelling(q):
30 Λ` ← λmin(q) // minimal leaf label of current iteration
31 Λc ← 1 // label assigned to child in current iteration
32 while Λc ≤ |C(q)| do
33 `v ← L(TG)[Λ`] // call by label from leafset L(TG)
34 c ← `v.stack.pop()
35 λ(c)← Λc
36 Λc ← Λc + 1
37 Λ` ← Λ` + |L(c)| // skip |L(c)| = πmax(c)− πmin(c) + 1 leaves
38 end
39 end

28 3 Data Structure and Algorithms

3.2 Data Structure

(((3) (4)) ((1) (2)))Π:

(a) Depiction of the char array for the bracketed permutation Π. The red pointer marks the
char read in the current iteration (all but the last character have been processed).

λparent : n/a

π−1
parent : n/a

λmin : 1

πmin : 1

πmax : 4

type : not set

children : [p1 | p2]

r

λparent : not set

π−1
parent : not set

λmin : 3

πmin : 1

πmax : 2

type : ‖

children : [`1 | `2]

p1

λparent : not set

π−1
parent : not set

λmin : 1

πmin : 3

πmax : 4

type : ‖

children : [`3 | `4]

p2

λparent : 1

π−1
parent : 1

λ : 3

π−1 : 1

type : LEAF

stack : [p1]

`1

λparent : 2

π−1
parent : 2

λ : 4

π−1 : 2

type : LEAF

stack : []

`2

λparent : 1

π−1
parent : 1

λ : 1

π−1 : 3

type : LEAF

stack : [p2]

`3

λparent : 2

π−1
parent : 2

λ : 2

π−1 : 4

type : LEAF

stack : []

`4

(b) MDT of data structure for permutation Π. The dotted lines mark the doubly-linked
relations of leaves, while a dashed line marks the same for children of the same parent node.
The solid lines mark the parent-child-relation.

Figure 8: Schematic visualisation of the data structure that shows the state before
the last step of an example run of Algorithm 2. The bracketed permutation Π =
(((3) (4)) ((1) (2))) was processed for the preceding 17 iterations (see Figure 8a)
and the active node now is r (root of the tree). Algorithm 2 now branches into line
14 where the rank in the quotient permutation πr is assigned to the respective child
by its position in the array of children of r ([p1 | p2] → π−1

r (p1) = 1, π−1
r (p2) = 2).

Then we can compute the labelling of the quotient as follows: First find the minimal
leaf with λmin (λ(`3) = 1 = λmin), then pop the topmost element of its LIFO-queue
(p2) and that node will be the child with label 1. Skip |L(p2)| = πmax − πmin + 1 = 2
leaves to get the label of the next leaf λ(`1) = 3. Repeat this process until all children
were assigned a label. In this example λr(p1) = 2, λr(p2) = 1. These two steps
produce the quotient permutation πr = (2 1) and we can assign the decomposition
type, S in this case, using Lemma 4 in line 18.

3 Data Structure and Algorithms 29

3.2 Data Structure

respective leaf `v ∈ L(V), v 7→ `v, `v 7→ v, should be stored as well as the permutation
π itself (without brackets). This allows fast (O(1)) referencing, e.g., to slice out
certain strong intervals (modules) from π. It should be noted that with these
mappings and the ordering of leaves according to π, the strong intervals π[P] are
in one-to-one correspondence with the ordered leafsets L(p) in the proposed data
structure.

Also note, that for a child p of a parent node q, the index of p in the doubly-linked
list C(q) is always exactly the rank of p in πq, the quotient permutation of q. So
swapping two children must always update both.

Theorem 2. The time complexity of buildTree is in O(n), n = |π|. The data
structure generated bybuildTree is in O(n) space.

Proof. Every operation in buildTree can be done in constant time, except for lines
16 and 17 (assignment of labels and ranks for the children nodes). But, by definition,
each node can only be the child of exactly one parent, hence in a the whole run of
Algorithm 2 every node will only be accessed one time in these ways and thus only a
constant amount of time. The algorithm ends after |Π| iterations of the for-loop in
line 5, and since |Π| ∈ O(n) we can conclude that buildTree has a time complexity
in O(n).

For the space complexity we can refer to Corollary 1 for the size of the modular
decomposition tree. The additional mappings can also be implemented in linear
space. �

3.2.3 Constructing Permutations of Representative Graphs

It was shown earlier that retrieving the permutation of quotients and slices π[S] of
the original permutation works intuitively from that proposed data structure. But
in the following section I will introduce rearrangement operations that change the
rank and labels of each inner node, and by extension the leafs, that would require
a costly updating of each leaf in the process. Since we have to stick to linear time
complexity, another solution is needed.

Because the rank for each leave is given by the structure of the tree, we can
construct π[S] by a top-down iteration of Ts in the order of each node’s quotient
permutation as shown in Procedure getPi.

Corollary 3. The quotient permutation πq and the permutation π[Q] of a node
q ∈ V (TG), as well as their labellings can be constructed in O(|Q|) time.

Proof. In Procedure getPi, each node or leaf is visited once and the calculation of
the leaf sums can be done in |C(q)| for each node q, which results in the desired linear
time.
The quotient permutation π[Q] can be retrieved even in O(|C(q)|) time, since the
children are arranged in a doubly linked list ordered by their ranks. �

Procedure getPi traverses the tree in a top-down manner. Since the children
are ordered by their parent’s quotient permutation this allows us ‘count’ how many
labels are already assigned to leaves in the same module in the array ΣL. If the

30 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

Procedure getPi(r)
Input: Root Node r of a (sub-)tree Tr of a graph G[R] whose permutation

π[R] is to be retrieved.
Output: Permutation π[R] and labelling λπ[R] restricted to R.

1 %← 1 // count current prosition in π (processed leaves)
2 s ← pre_order(r) // use inverse result of post_order procedure

in Algorithm 3, children are doubly-linked according to the
quotient permutation of their parent

3 while s is not empty do
4 q ← s.pop()
5 if q is root r then
6 Λ(q)← 1 // Λ is a mapping containing token labels for

inner nodes
7 else
8 p ← parent of q
9 Λ(q)← Λ(p) + ΣL(p)[λp(q)] // λp(q) is the label of q in its

parent’s quotient
10 end
11 if q is a leaf then // update (inverse-)mappings
12 λ(q)← Λ(q)
13 π(%)← λ(q)
14 %← %+ 1
15 else
16 ΣL(q)[1] ← 0
17 for i ∈ {2, . . . , |πq|} do // πq is the quotient permutation
18 c← λ−1

q (i) // child labelled i in qotient of q

19 ΣL(q)[i]← ΣL(q)[i - 1] + |L(c)| // |L(c)| = πmax(c)− πmin(c) + 1
20 end
21 end
22 end
23 return π, λ // mappings are bijective and their inverses are

also needed

inverse labelling λ−1
q in line 18 is not known, we can replace this step by iterating

once over the doubly-linked list of children outside of the surrounding for-loop and
assign the value λparent to the identical index in an array we can then refer to in line
18.

3.3 Generating Insertion Positions

3.3.1 Motivation and Linking the Tree

To generate a suitable permutation we have to rearrange the modular decomposition
tree TG in such a way that we do not add or remove any edges of the given graph

3 Data Structure and Algorithms 31

push (,)

3.3 Generating Insertion Positions

Algorithm 3: link_tree and post_order procedures.
Input: Root Node r of a modular decomposition tree TG = (V (TG), E(TG))

and neighbourhood N(x) of the inserted vertex x.
Output: Root r of linked tree TG.

1 Procedure link_tree(r):
2 s ← post_order(r)
3 while s is not empty do // initalise attribute for all nodes
4 p ← s.pop()
5 Lx(p) ← 00 // 00 ≡ not set
6 end
7 s ← post_order(r)
8 while s is not empty do
9 p ← s.pop()

10 if p is a leaf then
11 if λ−1(p) ∈ N(x) then // λ−1(p) ≡ v ∈ V (G)
12 Lx(p) ← Lx(p) & LINKED
13 else
14 Lx(p) ← Lx(p) & NOTLINKED
15 end
16 end
17 if p is not r then
18 q ← parent of p
19 Lx(q) ← Lx(q) | Lx(p) // 00 | xx = xx, 10 | 01 = 11
20 Cm(q) ∪ {p} // keep track of mixed children
21 end
22 end
23 return r
24
25 Procedure post_order(r):
26 s1.push(r) // postorder stack (LIFO-queue)
27 s2.push(r) // LIFO-queue for building s1
28 while s2 is not empty do
29 q ← s2.pop()
30 while C(q) = ∅ do // leaves have no children
31 q ← s2.pop() // remove all leaves
32 end
33 s1.push(C(q))
34 s2.push(C(q))
35 end
36 return s1

Gπ and use Algorithm 1 for specific tasks. After rearranging, we can construct π+x
from that updated tree. But the question remains, what operations we can actually
perform and how many nodes in TG need rearranging, while being constricted to

32 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

linear-time operations only. As it will turn out, the authors Crespelle and Paul [17]
in their work about permutation graph recognition were able to identify exactly
the node q in TG, they call insertion node (see also Section 3.3.2), whose subtree
Tq = (V (TG[Q]), E(TG[Q])) is the only one that requires rearranging. The obtaining
of q and the rearrangement of its sub-tree will be the topic for the ensuing sections.

Recall, that G + x describes a graph G and a vertex x that is inserted into G
according to a given neighbourhood N(x). For the following steps to work, TG needs
to be linked. Thus, consider the following notation:
Notation. For a graph G = (V,E), its modular decomposition tree TG and a vertex
x 6∈ V with neighbourhood N(x) ⊆ V that shall be inserted into G, Cnl(p) ⊆ C(p)
denotes the set of not linked children of an inner node p in TG, i.e., Cnl(p) = {pj ∈
C(p) | Pj ⊆ N(x)}. Similarly we denote Cl(p) = {pj ∈ C(p) | Pj ⊆ N(x)} as the set of
linked children. Moreover, Cm(p) = C(p) \ (Cnl(p) ∪ Cl(p)) denotes the set of mixed
children.

As seen in Algorithm 3, link_tree is a bottom-up process that uses a postorder
depth-first traversal to assign a linking-type (LINKED, NOTLINKED, MIXED) to each
node. This particular implementation uses bit masks for the four states of linking
type Lx with respect to the inserted vertex x, i.e., 00 for not set, 01 for LINKED, 10
for NOTLINKED, and finally 11 for MIXED, so each state can be set by using bit-wise
operations & and | (AND, OR).

For the postorder stack creation the procedure post_order uses two stacks (LIFO-
queues). The implementation of these stacks should support the usual operations
pop() and push(), with the only peculiarity being that if the input of push() is a
set of objects S, each element in S is pushed on the stack separately in the order
given by S, if it exists.

Corollary 4. Linking can be done in O(n) time.

Proof. In Algorithm 3 each node is visited a constant amount of time and since there
are O(n) nodes (Corollary 1), the algorithm stops after this time when all nodes are
linked. �

3.3.2 Finding the Insertion Node

The following result of Crespelle and Paul [17] shows that the insertion node q is the
only node whose strong modules need splitting up or rearranging.

Proposition 3.4 ([17, Lemma 8]). Let q be the insertion node of a vertex x in a
Graph G. Let G′ = G + x. G is a permutation graph if and only if the induced
subgraph G′[Q′] = G[Q] + x is a permutation graph. Moreover, if G′ is a permutation
graph, TG′ is constructed from TG by replacing the subtree Tq of TG with TG′[Q′], and
by replacing the (quotient) permutations of nodes in Tq with ones in TG′[Q′].

By extension this means, that if x can be inserted into G[Q] then it can also be
inserted into G as a whole.

To find the insertion node q, the given modular decomposition tree TG of a
permutation graph G needs to be built from its bracketed permutation and linked
according to the inserted vertex x by Algorithm 2 and Algorithm 3.

3 Data Structure and Algorithms 33

push (,)

3.3 Generating Insertion Positions

If we consider a uniformly linked (or notlinked) strong module P ⊆ V (G) and its
corresponding node p ∈ V (TG), it is easy to see that when augmenting G[P] with x
to G[P] + x, we can obtain a valid permutation with the following lemmas.

Lemma 5. Inserting a vertex x with neighbourhood N(x) = V in permutation graph
Gπ = ((V,E), λ) with permutation π, results in π+x(1,n+1) for the graph G+ x, i.e.
x has rank π−1

+x(x) = n+ 1 = |V |+ 1 and label λ(x) = 1.

Proof. Since the original ranks of the elements in permutation π remain unchanged
and their respective labels are incremented by 1, their connectivity does not change
as well. It also holds that inserting x into the last position of permutation π connects

Algorithm 4: Algorithm to find the insertion node q of the maximal subtree
that has to be rearranged when inserting x.
Input: Root Node r of a linked modular decomposition tree

TG = (V (TG), E(TG)).
Output: Insertion node q

1 Procedure find_inode(r):
2 q ← r
3 while q is MIXED do // if root is not mixed, no node is
4 if Cm(q) 6= 1 then return q
5 switch decomposition type of q do
6 case S do
7 foreach p ∈ C(q) \ Cm(q) do
8 if p is NOTLINKED then return q
9 end

10 {q} ← Cm(q) // there is exactly one mixed child
11 end
12 case ‖ do
13 foreach p ∈ C(q) \ Cm(q) do
14 if p is LINKED then return q
15 end
16 {q} ← Cm(q)
17 end
18 case P do
19 if x has no twin in Gq then // consider the mixed child

to be not linked
20 return q
21 end
22 {q} ← Cm(q) // the mixed child must be identical to

the twin
23 end
24 end
25 end
26 return V (G) is uniform with respect to x

34 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

this vertex to all vertices in V (G) which labels are greater than λ(x) = 1 because all
other vertices have smaller ranks. These are all other nodes, and therefore the above
statement holds. �

Lemma 6. Inserting a vertex x with neighbourhood N(x) = ∅ in permutation graph
Gπ = ((V,E), λ) with permutation π, results in π+x(n+1,n+1) for the graph G+ x, i.e.
x has rank π−1

+x(x) = n+ 1 = |V |+ 1 in π+x and label λ(x) = n+ 1.

Proof. The element in the last position (at |V |+ 1) will be connected to all vertices
that have larger labels then itself. But since x has the largest possible label, it will
have no edges and its neighbourhood is empty. �

This shows that the ranks and labels for vertices in G[P] remain unchanged, if P is
uniform with respect to x. And thus, these nodes can be disregarded as insertion
nodes.

Another trivial case is, if x has a twin in Gp as defined in Definition 2.3 and
shown in Corollary 2, since x and its twin constitute a module in Gp + x and x is
inserted into π next to its twin with a larger or smaller label, depending on whether
they are linked or not (see Proposition 3.2).

To reliably identify the insertion node q in a top-down search, Crespelle and Paul
[17] give the following definition for a property possessed by all nodes p �TG q that
covers the trivial cases mentioned above.

Definition 3.1 (Proper, [17, Definition 2]). Let x 6∈ V a vertex to be inserted into a
graph G = (V,E). A node p of a modular decomposition tree TG is proper if and
only if p has one of the following properties:
(i) p is uniform with respect to x, i.e. either LINKED or NOTLINKED, or
(ii) p is a mixed node with at most one mixed child f ∈ V (TG) such that F ∪ {x}

is a module in G[P] + x (F = V (f), P = V (p)).
Otherwise p is non-proper.

Proposition 3.5 (Crespelle and Paul [17]). Let G′ = G+ x and let q be the least
common ancestor of non-proper nodes of TG. TG′ is obtained from TG by replacing
the subtree Tq of TG rooted at q with TG′ [Q′] = TG[Q]+x.

Definition 3.1 and Proposition 3.5 allow the algorithmic approach sketched in
Algorithm 4. In a top-down approach we follow the path of mixed proper nodes
with at most one mixed child. The algorithm stops, when the current node q is
non-proper, which is the insertion node by Definition 3.1. The check whether or not
x has a twin in a regarded prime node

3.3.3 Substitution Process

After the insertion node q is found, the problem reduces to finding a valid permutation
or, by extension, valid insertion position for G[Q] + x. Substitution of elements in
π may be visualised as the inverse process of slicing depicted in the last chapter in
Figure 3. All we do, is replacing a single line in a line graph (some element y in π)
by another line graph (of another permutation τ) and obtain an augmented version,

3 Data Structure and Algorithms 35

push (,)

3.3 Generating Insertion Positions

without interfering with any intersections of lines contained in π − x or τ . The
following Definition 3.2 and Theorem 3 will be used to produce a valid permutation
for G+ x by the few steps depicted in Algorithm 5.

Algorithm 5: Brief algorithmic scheme of the idea behind the insertion
process.
Input: Root Node r of a linked modular decomposition tree TG, the

insertion node q and the neighbourhood N(x) of x in V (G).
Output: Permutation π+x.

1 Retrieve π[Q] and τ := π[V (G) \Q] from TG.
2 Insert x into τ at the former rank of the first element of π[Q] with label

λmin(q), obtaining τ+x.
3 Insert x into π[Q], obtaining π[Q]+x.
4 Substitute x in τ+x with π[Q]+x, obtaining π+x = τ

x→π[Q]+x
+x .

5 return π+x.

Definition 3.2 (Permutation Substitution). Given a permutation π of a per-
mutation graph Gπ = ((V (G), E(G)), λ) and another permutation τ of a per-
mutation graph Hτ = ((V (H), E(H)), λτ), substituting some vertex x ∈ V (G)
with H, that is connecting all vertices u ∈ V (H) to the neighbours v ∈ N(x)
and deleting x together with all its edges results in permutation graph Gx→H =
(V (H)∪V (G)\{x}, V (H)N(x)∪EH \xN(x) with substituted permutation πx→H .
To obtain πx→H , the element representing x at rank π−1(x) in π is replaced by per-
mutation τ where each label in τ = (τ(1) τ(2) . . . τ(m)) is incremented by λ(x)− 1
and each label in π that is larger than λ(x) is incremented by m− 1 = |V (H)| − 1.
Subsequently all elements to the right of the element representing x in π π(v) > π(x)
are shifted by m− 1 to the right.

Theorem 3. Let x ∈ V be a vertex of a permutation graph Gπ = (G,λ). Substituting
x with a permutation graph Hτ as described in Definition 3.2 resulting in Gx→Hτπ

with permutation πx→τ can be done in such a way that for any vertex v ∈ V (G) it
holds that λx→τ (v) ≥ λ(v).

Proof. Let πsubs and λsubs denote the permutation πx→τ and labelling λx→τ of
the graph Gx→H , where some vertex x ∈ V (G) is substituted by a permutation
graph Hτ . Let Gπ, Hτ be two permutation graphs matching Definition 3.2. Let
|V (G)| = n and |V (H)| = m. Without loss of generality let m ≥ 2 and n ≥ 1. We
show that under the substitution process the sign of each vertex pair’s connectivity
c(u, v) = Dλ(u, v)Dπ(v, u), i.e., edges in H and G− x, does not change and that all
neighbours of x are connected to each vertex in H in Gx→H .

Let u, v ∈ V (G)\{x} be two distinct vertices and let λ(u) = j and λ(v) = i be the
labels of these vertices before the substitution. Without loss of generality, assume that
i < j (for the other case, just switch the operands ofD). If it holds for both labels that
i, j > λ(x) then their new labels become λsubs(u) = j+m−1 and λsubs(v) = i+m−1
and we have Dλsubs(u, v) = (j +m− 1)− (i+m− 1) = j − i = Dλ(u, v). So in this

36 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

case Dλsubs = Dλ.
On the other hand, if i, j < λ(x) it can be trivially concluded that Dλ(u, v) =
Dλsubs(u, v) since both labels remain unchanged.
In the last case we have i < λ(x) < j, and thus Dλsubs(u, v) = j + m − 1 − i =
Dλ(u, v) + (m− 1). But since we assumed that m ≥ 2 we can conclude that Dλ > 0.
Furthermore, because a positive integer m − 1 > 0 is added it follows that also
Dλsubs > 0.
Conclusively, the above reasoning shows that under substitution Dλsubs(u, v) ≥
Dλ(u, v) for all u, v ∈ V (G).
The same reasoning can be applied for Dπsubs . If π−1(i) and π−1(j) are both smaller
or greater than π−1(x) it holds that Dπ(u, v) = Dπsubs(u, v) or in the other case if
π−1(i) < π−1(x) < π−1(j), then Dπsubs(u, v) > Dπ(u, v) (the inequality is flipped if
the operands are swapped, i.e., Dπsubs(v, u) < Dπ(v, u)).
These two results can be combined to form the expression for these two vertices’
connectivity csubs(u, v) = Dλsubs(u, v)Dπsubs(v, u). In case u and v are connected, we
have c(u, v) > 0 and Dπ(v, u) and Dλ(u, v) have the same sign. It therefore holds
under our assumption i < j that both are positive and necessarily π−1(j) < π−1(i).
Conclusively, the reasoning above yields that Dλ(u, v) ≤ Dλsubs(u, v) and Dπ(v, u) ≤
Dπsubs(v, u), which results in csubs ≥ c(u, v) and that uv ∈ E(Gx→H)

Now consider two vertices u, v ∈ V (H) from the graph that is substituted for x.
Again, let λτ (u) = i and λτ (v) = j. Since u and v are both vertices of Hτ their label
is incremented by the same amount λ(x)−1. This results in the same reasoning as the
first case above, so Dλτ (u, v) = j− i = j+ (λ(x)−1)− (i+ (λ(x)−1)) = Dλsubs(u, v).
Note, that also Dπsubs(u, v) = Dτ (u, v), since their ranks are incremented by the
same amount. So we can conclude this case with c(u, v) = csubs(u, v)

For the last combination of vertices, let u ∈ V (H) and v ∈ V (G). Therefore, the
relevant differences are Dλ(x, v) and Dλsubs(u, v). Let λ(v) = j and λτ (u) = i. Now,
assume that vx ∈ E(G). Also we assume that j < λ(x) and cover the inverse case
later. Under these conditions, it then holds that λsubs(v) = λ(v) and that Dπ(x, v)
and Dλ(v, x) must have the same sign, since c(v, x) > 0. Therefore it holds for both
Dπ(x, v), Dλ(v, x) < 0.
For Dλsubs(v, u) = λsubs(v)−λsubs(u) = λ(v)−λτ (u)−λ(x)+1 = D(v, x)−(λτ (u)−1)
we can deduce that Dλsubs(v, u) < 0 because λτ (u)− 1 is a positive integer. In case
of Dπ(x, v) < 0 it must hold that π−1(x) < π−1(v) (the element representing v
in π is to the right of x) and thus πsubs

−1(v) = π−1(v) + |V (H)| − 1. Therefore,
the following equalities hold: Dπsubs(u, v) = πsubs

−1(u)− πsubs
−1(v) = π−1(x)− 1 +

τ(u) − π−1(v) − |V (H)|+ 1 = Dπ(x, v) + τ(u) − |V (H)|. And since, by definition,
τ(u)− |V (H)| ≤ 0 we can deduce that Dπsubs(u, v) < 0.
Now let j > λ(x). In that case Dλ(v, x) and Dπ(v, x) are both positive and it holds
that Dλsubs(v, u) = Dλ(v, x). Furthermore, since Dπ(x, v) > 0 we have π−1(v) <
π−1(x) and therefore Dπsubs(u, v) = Dπ(x, v). Thus, we can conclusively state that
csubs(u, v) = c(v, x) in this case.

For the last case, consider vx 6∈ E(G). Since c(v, x) < 0, Dπ(x, v) and Dλ(v, x)
must have opposite signs. For the first sub-case we assume Dπ(x, v) < 0 and
Dλ(v, x) > 0. Therefore, π−1(x) < π−1(v) and thus Dπsubs(u, v) = π−1(x) − 1 +
τ(u) − π−1(v) − |V (H)| + 1 = Dπ(x, v) + τ(u) − |V (H)| < 0 as shown above.

3 Data Structure and Algorithms 37

push (,)

3.3 Generating Insertion Positions

The label of v is also incremented and the expression for Dλsubs(v, u) becomes
Dλsubs(v, u) = λsubs(v)−λsubs(u) = λ(v)+ |V (H)|−1−λτ (u)−λ(x)+1 = Dλ(v, x)+
|V (H)| − λτ (u). Since |V (H)| ≥ λτ (u) it holds that Dλsubs(v, u) > 0 and therefore
csubs(v, u) = Dλsubs(v, u)Dπsubs(u, v) < 0. Similar arguments hold for the other
sub-case where Dλ(v, u) < 0 and Dπ(u, v) > 0.

With the results above we have now shown that with the given substitution
procedure the connectivity between all vertices is retained and that the neighbourhood
N(u) of any vertex u ∈ V (H) is extended by only N(x). Furthermore, we can deduce
that λsubs(w) > λ(w), w ∈ V (Gx→H), since the procedure only increments given
labels or ranks of any involved vertices. �

Algorithm 6: In place substitution of an element x in permutation π with
another permutation τ .
Input: Two permutations π and τ and a vertex x ∈ V (Gπ).
Output: Permutation πx→τ where x in π is replaced by τ and its mapping

λx→τ .
1 foreach element e in π do
2 l← λπ(e)
3 if l > λπ(x) then
4 λx→τ (e)← l + |τ | − 1
5 else
6 λx→τ (e)← l
7 end
8 if π−1(e) > π−1(x) then
9 [π−1]x→τ (e)← π−1(e) + 1

10 else
11 [π−1]x→τ (e)← π−1(e)
12 end
13 end
14 foreach element f in τ do
15 λx→τ (f)← λτ (f) + λπ(x)− 1
16 [π−1]x→τ (f)← τ−1(f) + π−1(x)− 1
17 end
18 return πx→τ , λx→τ

In Algorithm 5 the retrieving of the two permutations in line 1 for example, can
be done by using Procedure getPi on the tree rooted at q for π[Q] and by leaving out
the strong interval π[Q] in π. Since Q is a module of G, it is also a strong interval in
π and therefore consists of consecutive elements. After removing π[Q] from π we can
iterate once over the resulting permutation and decrement the labels greater than
λmax(q) by |π[Q]| for each element in τ and decrement every elements’ label in π[Q]
by λmin(q).

The substitution in line 4 is the inverse process: In the former case just insert
x at rank πmin(q) with label λmin(q) into τ and then proceed substituting that

38 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

with π[Q] + x by incrementing all labels in π[Q] + x by λmin(q) and all element’s
labels greater than λmax(q) + 1 in τ by |π[Q]|+ 1 as described in Definition 3.2 and
Algorithm 6. Note, that in either case πmin(q) and λmin(q), etc. are saved for each
node p ∈ TG in the data structure.

The last step that remains is to augment the permutation π[Q] with x by inserting
it. This will be the topic of the last section in this chapter.

3.3.4 Rearranging the Tree Tq

Recall, that the insertion node q represents the last common ancestor of non-proper
modules and is itself non-proper. It therefore holds that q has one of the following
properties:

Proposition 3.6 ([17, Definition 4]). Let x be the vertex to be inserted in a per-
mutation graph Gπ. The insertion node q in TG must have one of the following
properties:
(i) q is a MIXED degenerate node (either S or ‖) with no mixed children,
(ii) q is a prime node with no mixed child, but a node t that is a twin of x in Gq,
(iii) q is a degenerate node with at least one MIXED child, i.e., Cm(q) > 0, or
(iv) q is a prime node and x has no twin in Gq.

Trivial Cases

Let us now focus on each of these properties one after another. As it turns out the
first (i) and the second property (ii) have almost trivial solutions for inserting x,
since their permutations require no rearranging of any tree. Crespelle and Paul [17]
in their work collectively call these properties that the insertion node q is cut.

Proposition 3.7 ([17, Theorem 3]). Let Gπ = (G,λ) be a permutation graph and
x 6∈ V (G) a vertex to be inserted into G. Then G + x is a permutation graph if
and only if either the insertion node q ∈ V (TG) of the modular decomposition tree
is mixed, but has no mixed children or q is a prime node with no mixed child but
one child is a twin of x, i.e., there exists some node p ∈ C(q) such that for all
v ∈ P N(x) = N(v) \ P . Otherwise G + x is a permutation graph if and only if
Proposition 3.8 and Proposition 3.9 apply.

But first, consider this following lemma.

Lemma 7. Let Gπ = ((V,E), λ) be a permutation graph of permutation π. It holds
for the vertex π(n) = u ∈ V at rank n = |V | in π that λ(u) = |N(u)|+ 1 = n−|N(u)|
and for the vertex π(1) = v ∈ V at rank 1 that λ(v) = n− |N(v)| = |N(u)|+ 1.

Proof. Consider the first element of π, namely π(1) = λ(u), λ−1(λ(u)) = u ∈
V . For every vertex y in the neighbourhood of u, y ∈ N(u), it must hold, that
Dλ(u, y)Dπ(y, u) > 0. Since π−1(u) = 1 and π−1(x) > 1 for all other vertices
V 3 y 6= u, it holds that Dπ(y, u) < 0. Therefore, Dλ(u, y) must be negative as well,
because by assumption uy ∈ E, and thus λ(u)− λ(y) < 0 =⇒ λ(u) < λ(y) for all
y ∈ N(u). Since the mapping λ is bijective, we can deduce that these vertices have
indeed the labels [1 : |N(u)|]. This also means that |N(u)| is a lower bound for λ(u).

3 Data Structure and Algorithms 39

push (,)

3.3 Generating Insertion Positions

A similar argument holds for n−|N(u)| being an upper bound of λ(u). Therefore,
λ(u) must have a value between n−|N(u)| and |N(u)| and since |N(u)|+|N(u)|+1 = n
we can deduce that λ(u) = |N(u)|+ 1 if π−1(u) = 1. The proof for the other case
when π−1(v) = n is similar. �

This means for the former case (i) that x can be inserted with label λ(x) =
|N(x)[Q]|+ 1 at position π−1(x) = n+ 1 = |Q|+ 1 and we obtain a valid permutation
π[Q]+x(|N(x)[Q]|+1,|Q|+1) for G[Q] + x. The insertion in the latter case (ii) can be
resolved according to Corollary 2 and the subsequent remark. Depending, whether
the twin is connected t ∈ N(x)[Q], or not, we insert x next to it with a label one
smaller or one larger than λ(t) and obtain π[Q]+x(π−1(t)±1,λ(t)±1). Any of these
permutations can then be re-substituted into the remaining part of the original
permutation π according to Algorithm 5 and Algorithm 6.
Remark. Lemma 7 directly implies that a vertex v with label λ(v) = n must have
rank π−1(v) = n−|N(v)|, since Lemma 7 must also hold for πh where λh = n−|N(v)|.
The same applies to λ(u) = 1 and π−1(u) = |N(u)|+ 1 respectively.

Constructing π+x with the help of Tq

We shift our focus now on cases (iii) and (iv). They require a more careful approach
and rearranging of the data structure (namely rearrangement of the doubly linked
lists of the children of each mixed node p �TG q) with the aim to get every vertex
(leaf) at its final rank in π[Q] + x with the correct label and a set insertion position
for x. After that rearrangement the tree might not be a modular decomposition tree
any more , but we use it in a final step to just retrieve π[Q] + x and can thus be
discarded afterwards.

To find the correct arrangement, we use, yet again, propositions shown by
Crespelle and Paul [17]. They give sufficient and necessary conditions for G + x
being a permutation graph, depending on the properties given in Proposition 3.6 for
the insertion node q.
Notation ([17]). Given a graph G = (V,E), the set of its maximal strong modules
Mmax(V), a node p of its modular decomposition tree TG representing a vertex
set P ⊆ V and a vertex x 6∈ V . We denote as Hp the following graph Hp =
(V [P], E[P \

⋃
c∈Cm(p) V (c)})/(Mmax(P) ∪ {{x}}) that is the quotient graph Gp + x

of G[P] + x, where the all edges leading from mixed children of p to x are removed
and {x} is part of the partition of P ∪ {x}.

Proposition 3.8 ([17, Theorem 3.1]). If Proposition 3.7 does not hold, then G+ x
is a permutation graph if and only if the insertion node q has at most two mixed
children f1 and f2 and Hq is a permutation graph such that in any of its admissible
permutations πHq λHq(x) = λHq(f1)± 1 and πHq−1(x) = πHq

−1(f2)± 1 if f1 and f2
exists respectively. Or, if q has no mixed child, that x can be inserted into Hq ≡ Gq.
Moreover, for any node p ≺TG q Proposition 3.9 has to hold.

Proposition 3.9 ([17, Theorem 3.2]). Any node p ≺TG q satisfies the following
conditions: p has at most one mixed child f and Hp is a permutation graph with

40 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

permutation πHp such that λHp(x) = λHp(f)± 1 if f exists and πHp(|V (Hp)|) = x,
i.e., x is the last element in πHp.

Due to space restrictions, and because I deemed it too similar, this thesis will not
include the proof for the correctness of this part. Instead the reader may refer to the
proof given by Crespelle and Paul [17] on what they call Theorem 3 contains detailed
descriptions how to obtain π[Q]+x in an inductive manner. Our algorithm differs
for example, because it produces permutations πp+x for each p ≺Tq q such that x
is the last element, instead of the first. Other minor details are different as well,
mainly because of restrictions given by our overall approach and data structure. As
a consequence, I will give a detailed overview of the algorithmic approach and hint
the basic notions on the construction of permutations for Hp and with them π[Q]+x.

Algorithm 7a: Algorithm to find the permutation π[Q]+x, part 1: where
descendants of q in Tq are handled according to Proposition 3.9. q has to
suffice properties (iii) or (iv) of Proposition 3.6.
Input: Insertion node q of a linked modular decomposition tree TG with

respect to the inserted vertex x.
Output: Permutation π[Q]+x or the result that G+ x is not a permutation

graph.
1 s← post_order(q)
2 p← s.pop()
3 while p 6= q do // q is the last element of a postorder stack
4 while p is LEAF do p← s.pop()
5 if Cm(p) > 1 then return G+ x is not a permutation graph.
6 if p is P then
7 Np(x)← Cl(p)
8 Compute πHp with Np(x) and πp as input for Algorithm 1.
9 reorderPrime(p, πHp)

10 if Cm(p) = 1 then
11 {f} ← Cm(p)
12 Λx ←

∣∣|C(p)| − |Np(x)|
∣∣

13 if λparent(f)− Λx 6= 0 and λparent(f) + 1− Λx 6= 0 then // i.e.,
λHp(f) 6= λHp(x)± 1

14 return G+ x is not a permutation graph.
15 end
16 end
17 else // p is S or ‖

18 reorderDegenerate(p)
19 end
20 p← s.pop()
21 end

The main reordering procedures are given in Algorithm 7a, 7b and 7c, from now
on collectively referred to as Algorithm 7. Let me now try to dissect it and give some
context for the most important steps.

3 Data Structure and Algorithms 41

push (,)

3.3 Generating Insertion Positions

Algorithm 7b: Algorithm to find the permutation π[Q]+x, part 2: to
handle cases where |Cm(q)| ≤ 1 according to Proposition 3.8. q has to suffice
properties (iii) or (iv) of Proposition 3.6.

22 if Cm(q) = 0 then // by Proposition 3.6 (iii) q is P

23 Nq(x)← Cl(q)
24 Compute πHq with Nq(x) and πq as input for Algorithm 1.

// computation fails if Hq is not a permutation graph.
25 Attach x as LEAF to q according to πHq .
26 return getPi(q)
27 else if Cm(q) = 1 then
28 {f} ← Cm(q)
29 if q is S or ‖ then
30 reorderDegenerate(q)
31 else
32 Nq(x)← Cl(q)
33 Compute πHq with Nq(x) and πq as input for Algorithm 1.
34 if λHq(f) 6= λHq(x)± 1 then
35 if π−1

Hq
(f) = π−1

Hq
(x)± 1 then

36 mirror(q, h)
37 else
38 return G+ x is not a permutation graph.
39 end
40 end
41 end
42 π[Q]← getPi(q)
43 return π[Q]+x(|Q|−|N(x)[Q]|,|Q|+1) // insert x with label

|Q| − |N(x)[Q]| at the last position |Q|+ 1.

In a first step we apply Proposition 3.9 to all descendants of insertion node
p ≺Tq q. For degenerate nodes this process is pretty much straight forward, since the
quotient permutation of these nodes allows any possible label for any possible child.
Because we arbitrarily choose x to have the largest rank in Hp, Lemma 7 restraints
us in Procedure reorderDegenerate to sort every ‖ node such that each NOTLINKED
child is labelled [1 : |Cnl(p)|] and the LINKED ones as [|Cl(p)| : |C(p)|] with identical
ranks respectively. In case p is S we chose the same labelling, but inverse ranks,
i.e., π−1

p (pi) = |C(p)| − λp(pi). See Figure 10a and Figure 10b for two example of
rearranged degenerate nodes. If a mixed child exists it is inserted in between these
two runs with label |Cl(p)|+ 1 = |Cnl(p)|, thus allowing to have consecutive labelling
with x in an admissible permutation π+x(|Cnl(p)|+1,|C(p)|+1)

q = πHq for the graph Hq as
was shown in Lemma 7.

In case p is P , the solution requires some more work. As was discussed in Propo-
sition 2.1, a prime node is uniquely represented by its permutation π, except for
reversals by the mirroring-operations πh, πv and πm. We can transform each node’s

42 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

Algorithm 7c: Algorithm to find the permutation π[Q]+x, part 3: to
handle cases where |Cm(q)| ≥ 2 according to Proposition 3.8. q has to suffice
properties (iii) or (iv) of Proposition 3.6.

44 else if Cm(q) = 2 then
45 if q is S or ‖ then
46 reorderDegenerate(q) with the additional constraint for f2 to be

the last element of πq
47 else // i.e., q is P

48 Nq(x)← Cl(q)
49 Compute πHq with Nq(x) and πq as input for Algorithm 1.
50 {f1, f2} ← Cm(q) such that π−1

Hq
(f1) < π−1

Hq
(f2)

51 if λHq(f1) 6= λHq(x)± 1 then
52 if π−1

Hq
(f1) = π−1

Hq
(x)± 1 and λHq(f2) 6= λHq(x)± 1 then

53 mirror(q, h)
54 if π−1

q (f1) > π−1
q (f2) then mirror(q, v)

55 else
56 return G+ x is not a permutation graph.
57 end
58 else if π−1

Hq
(f2) 6= π−1

Hq
(x)± 1 then

59 return G+ x is not a permutation graph.
60 end
61 end
62 s← post_order(f2)
63 while s is not empty do
64 p← s.pop()
65 if λq(f2) < λq(f1) then // f1f2 ∈ E(q)
66 mirror(p, h) // reorders node such that λHp(x) = |V (Hp)|
67 else
68 mirror(p, h)
69 mirror(p, v) // reorders node such that λHp(x) = 1
70 end
71 end
72 Λx ← λmin(f1) + |F1| − |N(x)[F1]|
73 if λq(f2) < λq(f1) then
74 %x ← πmax(f2) + 1− |N(x)[F2]| // insertion label will be

maximal in f2
75 else
76 %x ← πmin(f2) + |N(x)[F2]| // insertion label will be minimal

in f2
77 end
78 π[Q]← getPi(q)
79 return π[Q]+x(Λx,%x)

80 else // Cm(q) > 2
81 return G+ x is not a permutation graph.
82 end

3 Data Structure and Algorithms 43

push (,)

3.3 Generating Insertion Positions

quotient, and therefore the order of children in the Node object by applying Proce-
dure reorderPrime, that performs the respective mirroring with Procedure mirror to
the children of p if applicable. In a last step for this part (line 27) we have to check
whether the labellings of x and a mixed child, if present, are consecutive.

Since all descendants of q are now arranged in a manner that they admit for
a permutation of Hp where x is the last element, it is obvious by induction and
Lemma 7 that a permutation also exists for Hq if it has no mixed child. If q has a
single mixed child f we have to apply a similar process like we did for its descendants.
In either case Algorithm 7b then returns a admissible permutation for π[Q]+x by
inserting x into the last position with a label in range of λ[L(f)]. This is possible by
the same inductive reasoning, because all mixed descendants of f have consecutive
labels to x in their strong module. Hence, in π[Q]+x the leaves of module f are split
by x into adjacent and non-adjacent and constitute for two new modules in G[Q] + x.

The last part Algorithm 7c handles the most complex case, where q has two
mixed children Cm(q) = {f1, f2}. In Figure 9 the branching statements of lines 51 sqq.
are depicted in another manner. These allow us to find the right configuration for q
so we can apply the correct mirroring to the subtree Tf2 and thus deduce a correct
insertion position for x. Recall, that elements in πh[F2] have transposed ranks and
labels to π[F2], hence we can assume that x is inserted into the interval πh[F2] with
a label smaller or larger than all elements in F2, depending on the adjacency of f1
and f2 in Gq. Therefore, the rearranging of Tf2 aims at making the strong interval
applicable for the remark following Lemma 7.

Because x is inserted with a label of range λ[L(f1)] into the interval π[L(f2)]
it creates four new modules in π+x as it splits the mixed children into two parts
respectively. Figure 10 shows an example, where two mixed degenerate nodes are
joined by an edge in πq and were rearranged to produce a fitting permutation for the
insertion of x into π[Q]. With the same reasoning, it is intuitively obvious given the
two degrees of freedom by x’s rank and label in π+x that two is maximum number
of mixed children q can have when inserting x.

Let me conclude this chapter with a short discussion regarding the time complexity
of Algorithm 7. Each sequential step can be done in at most O(n) time, since, again,
we only use quotient permutations except when returning the full permutation of
π[Q]+x. But inserting x with a known label and position into a given permutation
can be done in O(n) time, because the larger labels can be incremented by a one-time
iteration over all O(n) elements in π[Q]+x.

Corollary 5. Algorithm 7 returns π[Q]+x or the result that G+x is not a permutation
graph in O(n) time.

Proof. See discussion above. �

44 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

λHq(f1) = λHq(x)± 1

π−1
Hq

(f2) = π−1
Hq

(x)± 1

use πq

T

G+ x is not pg

F

T

π−1
Hq

(f1) = π−1
Hq

(x)± 1

λHq(f2) = λHq(x)± 1

[πh
q]−1(f1) > [πh

q]−1(f2)

use πm
q

T

use πh
q

F

T

G+ x is not pg

F

T

G+ x is not pg

F

F

Figure 9: Decision tree, in case Cm(q) = {f1, f2} with π−1(f1) < π−1(f2), to find
correct configuration for πq with mirroring operations, given Hq. Use T path if the
assertion above is true, F otherwise. See also Algorithm 7c lines 51 sqq.

λHf1
: Cnl(f1) f x Cl(f1)

πHf1
: Cnl(f1) f Cl(f1) x

(a) Schematic line graph of Hf1 . f1 is
a ‖ mixed child of q. The connecting
lines between the two linear orders are
omitted. f is the only mixed child of f1.
The configuration between x and a mixed
child f is shared across all nodes p1 � f1.

λHf1
: Cnl(f1) x f Cl(f1)

πHf1
: Cl(f1) f Cnl(f1) x

(b) Schematic line graph of Hf2 . f2 is a
S mixed child of q. f is the only mixed
child of f2. The configuration between x
and a mixed child f is shared across all
nodes p2 � f2.

λq+x: · · · f2 · · · f ′1 x f ′′1 · · ·

πq+x: · · · f1 · · · f ′2 x f ′′2 · · ·
(c) Schematic line graph of the permutation for πq+x. In π[Q]+x the leaf sets
f ′

1, f ′′
1 , f ′

2 and f ′′
2 would need to resolved further. When inserting x into π[Q]

it will have a label in range [λmin(f1) : λmin(f1) + |F1| + 1] and a rank between
[πmin(f2) : πmax(f2) + 1], thus splitting up the intervals of the modules F1 and F2.

Figure 10: Overview of an example on Algorithm 7c. Here q is a P node and both
mixed children are degenerate nodes of opposite types and connected in Gq.

3 Data Structure and Algorithms 45

push (,)

3.3 Generating Insertion Positions

Procedure reorderPrime(p, πHp)
Input: P Node p of a modular decomposition tree TG and the permutation

πp+x.
Output: Reordered Node p or the result that G+ x is not a permutation

graph.
1 init array new_pi of |C(p)| Node pointers
2 if π−1

Hp
(x) = |πHp | then // x is at the last position in πHp

3 return p

4 else if π−1
Hp

(x) = 1 then // x is at the last position in πvHp
5 mirror(p, v)
6 return p with updated children according to quotient permutation πvp .
7 else if λHp(x) = |C(p)| then // x is at the last position in πhHp
8 mirror(p, h)
9 return p with updated children according to quotient permutation πhp .

10 else if λHp(x) = 1 then // x is at the last position in πmHp
11 mirror(p, v)
12 mirror(p, h)
13 return p with updated children according to quotient permutation πmp .
14 else
15 return G+ x is not a permutation graph.
16 end

46 3 Data Structure and Algorithms

push (,)

3.3 Generating Insertion Positions

Procedure mirror(p, flag ∈ {h, v})
Input: Node p of a modular decomposition tree TG and a flag to indicate the

operation to perform.
Output: Reordered Node p.

1 init array new_pi of |C(p)| Node pointers
2 if flag = v then // vertically mirror, λnew = n+ 1− λ
3 foreach child Node c ∈ C(p) do
4 π−1

parent(c)← |C(p)|+ 1− π−1
parent(c)

5 λparent(c)← |C(p)|+ 1− λparent(c)
6 ∆← πmax(c)− πmin(c) + 1
7 πmin(c)← |C(p)|+ 1− πmax(c)
8 πmax(c)← πmin(c) + ∆
9 λmin(c)← |C(p)|+ 1− λmin(c)−∆

10 new_pi[π−1
parent(c)] ← c

11 end
12 else if flag = h then // horizontally mirror, λnew = π−1

13 foreach child Node c ∈ C(p) do
14 π−1

parent(c)← π−1
parent(c) + λparent(c)

15 λparent(c)← π−1
parent(c)− λparent(c)

16 π−1
parent(c)← π−1

parent(c)− λparent(c)
17 ∆← πmax(c)− πmin(c) + 1
18 πmin(c)← λmin(c)
19 λmin(c)← πmax(c)−∆
20 πmax(c)← πmin(c) + ∆
21 new_pi[π−1

parent(c)] ← c

22 end
23 Transform new_pi into a doubly linked list and replace C(p).
24 return p with updated children according to quotient permutation πflag

p .

3 Data Structure and Algorithms 47

push (,)

3.3 Generating Insertion Positions

Procedure reorderDegenerate(p)
Input: ‖ or S Node p of a modular decomposition tree TG.
Output: Reordered Node p with (if it exists) the mixed child’s label

equalling the future label of λHp(x).
1 init array πnew of |C(p)| Node pointers
2 if p is typed ‖ then
3 %← |C(p)| // index for rank
4 δ ← −1 // offset for next index
5 else
6 %← 1
7 δ ← 1
8 end
9 Λ← 1

10 foreach n ∈ Cnl(p) do
11 πnew[%] ← n
12 λparent(n)← Λ
13 π−1

parent(n)← %

14 Λ← Λ + 1
15 %← %+ δ

16 end
17 foreach m ∈ Cm(p) do
18 πnew[%] ← m
19 λparent(m)← Λ
20 π−1

parent(m)← %

21 Λ← Λ + 1
22 %← %+ δ

23 end
24 foreach l ∈ Cl(p) do
25 πnew[%] ← l
26 λparent(l)← Λ
27 π−1

parent(l)← %

28 Λ← Λ + 1
29 %← %+ δ

30 end
31 Transform πnew into doubly linked list of children of p.
32 return p

48 3 Data Structure and Algorithms

push (,)

4 Conclusion

I have shown in the previous chapter how to utilise our proposed data structure to
compute whether inserting a single vertex x into a permutation graph Gπ results in
a new permutation graph Gπ + x. We have discussed the time complexity and the
different constraints on TG to recognise the augmented graph as permutation graph.
Algorithm 8 summarises the algorithmic approach and shows a possible pipeline to
recognise an undirected graph H = (V,E) as permutation graph and even return a
vertex labelling λ and an admissible permutation π. The algorithm does not build
up Hπ from a potential empty graph, but starts with choosing to arbitrary vertices
and generates a primitive S or ‖ graph, depending on their adjacency.

It should be noted that the for-loop, and thus Algorithm 8, fails if and only if
the computation of π[Q]+x with Algorithm 7 in line 39 fails. The previous steps
from lines 13 sqq. only handle the trivial insertion cases and are not meant to fail
the whole procedure if the conditions are not met. Although our data structure is
needed throughout the whole process, it does not need to be maintained, since each
iteration of the for-loop (lines 10 sqq.) computes a new bracketed permutation of
π and builds a new tree in O(|V (G)|) time. The mapping λπ between vertices and
their labels, on the other hand, is maintained throughout the whole procedure, e.g.,
when in Procedure getPi, Procedure mirror and Algorithm 6.

Theorem 4. Given a procedure as described in Algorithm 8 we can recognise any
graph H = (V,E) as permutation graph, if it is possible and compute an admissible
permutation and vertex labelling in O(|V |2) time and O(|V |) space.

Proof. The algorithm spends O(|V (G)|) time for each iteration of the for-loop, as
was shown for each of the used algorithms in the previous section. Because with
each iteration |V (G)| grows by one vertex, until |V (G)| = |V | = n, we conclude that
Algorithm 8 runs in O(n2) time.

Since the data structure is basically a modified modular decomposition tree, we
can conclude through Corollary 1 that space complexity is indeed in O(n). �

To summarise: I have shown that an arbitrary undirected graph H = (V,E) can
be recognised as permutation graph by an iterative process building up a permutation
graph Gπ until either Gπ ∼= H or failure. The resulting permutation can even be
used to build our modular decomposition tree-based data structure that could be a
vantage point for follow-up research, i.e., how to implement further algorithms, such
as finding isomorphisms and others.

49

push (,)

Algorithm 8: Algorithmic pipeline to recognise a given undirected graph
H = (V,E) as permutation graph.
Input: Graph H = (V,E) to be recognised as permutation graph.
Output: Permutation π of Hπ = (H,λ) and mapping λ if π exists.

1 Choose two arbitrary vertices {u, v} ∈ V
2 if uv ∈ E then
3 π ← (2 1)
4 else
5 π ← (1 2)
6 end
7 Create arbitrary mapping λ from π
8 Gπ ← (H[{u, v}], λ)
9 foreach x ∈ V \ V (G) do

10 Compute bracketed permutation Π from π
11 r ← buildTree(Π)
12 link_tree(r,N(x)[V (G)])
13 if r is LINKED then
14 π ← π+x(1,|π|+1)

15 continue // w/ next x from V (H) \ V (Gπ)
16 else if r is NOTLINKED then
17 π ← π+x(|π|+1,|π|+1)

18 continue
19 end
20 q ← find_inode(r)
21 if Cm(q) = ∅ then
22 if q is P and has a twin t then
23 if t ∈ N(x) then
24 π ← π+x(λ(t),π−1(t)+1)

25 continue
26 else
27 π ← π+x(λ(t),π−1(t))

28 continue
29 end
30 else if q is S or ‖ then
31 %x ← πmax(q) + 1
32 Λx ← λmin + |N(x)[Q]|+ 1
33 π ← π+x(Λx,%x)

34 continue
35 end
36 end
37 τ+x ← π[V (G) \Q]+x(λmin(q),πmin(q))

38 Compute π[Q]+x
39 π ← τ

x→π[Q]+x
+x // use Algorithm 7

40 end
41 return π, λ or H is not a permutation graph. // iff Algorithm 7 fails

50

push (,)

Glossary

Please take note that most definitions are referenced where they occur first in this
thesis. This only serves as an overview

adjacent Two vertex sets (modules) S, S′ ⊂ V are adjacent if for any vertices
s ∈ S and s′ ∈ S′ it holds that s ∈ N(s′) and vice versa.

degenerate node Either parallel node or series node.

insertion node The insertion node q is the least common ancestor of non-
proper nodes in TG.
Note that the insertion node is precicely the root of the subtree of TG which
has to be updated when inserting x in G, constructing TG+x.

interval An interval of a linear order (e.g. a permutation) is a subset of consecu-
tive elements.
For permutations an interval is a run of consecutively labelled elements. See
also: strong interval.

linked (node) See linked node.
linked node A node p of TG is linked to a vertex x ∈ V if its representing vetex

set P = V (p) ⊆ V is uniform with respect to x and P ⊆ N(x) or notlinked if
P ⊆ N(x).
Otherwise it is mixed.
The set of linked children of p is denoted Cl(p), Cnl(p) and Cm(p) for notlinked
and mixed respectively.
See also: linked, notlinked node, mixed node.

maximal strong module If M 6= V is maximal wrt inclusion it is called a
maximal strong module. Connected and co-connected components of G
are precisely the maximal strong modules.
See also: module, strong module.

mixed (node) See mixed node.
mixed (vertex set). Not uniform.

See also: mixed node.
mixed node Node p of a modular decomposition tree TG that is neither

linked nor notlinked.
See also: linked node, notlinked node.

51

push (,)

module M ⊆ V is a module iff it is uniform wrt any x ∈ V \M . Particularly V
and {x} are trivial modules.
See also:.

non-proper node Not proper node.
notlinked (node) See notlinked node.
notlinked node See linked node.

overlap Two vertex sets (modules) S, S′ overlap if S ∩ S′ 6= ∅ and they are no
subsets of one another, i.e. S \ S′ 6= ∅ and S′ \ S 6= ∅.
Denoted S ⊥ S′.

parallel node A node p of TG, representing a strong module P ⊆ V in a modular
decomposition tree TG of a graph G, is called parallel if the quotient graph
Gp is empty (fully disconnected).
(Alternatively: G[P], the induced subgraph, is disconnected.)
See also: prime node, series node.

permutation graph A Graph G = (V,E) is a permutation graph if there exists a
permutation π with labelling λ such that ∀uv ∈ E(G) ⇐⇒ Dλ(u, v)Dπ(v, u) >
0.
Furthermore, iff the quotient graph associated with each prime node of the
modular decomposition tree TG is a permutation graph, Gπ is also a
permutation graph.
See also:.

prime node A node p of TG, representing a strong module P ⊆ V in a modular
decomposition tree TG of a graph G, is called prime if the quotient graphs
Gp and Gp are primitive graphs. Not degenerate node.
(Alternatively: G[P], the induced subgraph, and G[P] are both connected or
both disconnected. I.e. not parallel or series.)
See also: parallel node, series node.

primitive graph A Graph G is prime if all its modules are trivial.
proper node A node p of a modular decomposition tree TG is a proper

node wrt a vertex x ∈ V iff the vertex set P in G, corresponding to p, is
either uniform wrt x or P is mixed and has a unique mixed child f such that
V (f) = F ∪ {x} is a module of G′[F ∪ {x}] (G′ being the graph G+ x).

quotient graph [5] If
⋃
iMi = P ⊆ 2V is a congruence partition (e.g. of

modules Mi) of a graph G = (V,E), then G/P describes the graph in which
each Mi ∈ P is represented by a representative vertex, and Mi,Mj are
connected if there exists an edge between their representative vertices in G.
See also:.

series node A node p of TG, representing a strong module P ⊆ V in a modular
decomposition tree TG of a graph G, is called series if the quotient graph
Gp complete.
(Alternatively: G[P], the complementary induced subgraph, is not con-
nected.)
See also: parallel node, prime node.

52

push (,)

strong interval A interval is called strong if it does not overlap any other interval.
See also: interval.

strong module M is a strong module if it does not overlap any other modules,
i.e. there are no other modules with common vertices.
See also: module, maximal strong module.

twin Two vertices x and y are twins iff N(x) = N(y) or N(x)∪ {x} = N(y)∪ {y}.

uniform A subset S ⊆ V is uniform wrt x ∈ V \ S iff S ⊆ N(x) (neighbours of x)
or S ⊆ N(x), mixed otherwise.
See also: linked node, notlinked node, mixed.

53

push (,)

54

push (,)

References

[1] B. Dushnik and E. W. Miller. ‘Partially Ordered Sets’. In: American Journal
of Mathematics 63.3 (1941), pp. 600–610.

[2] A. Pnueli, A. Lempel, and S. Even. ‘Transitive Orientation of Graphs and
Identification of Permutation Graphs’. en. In: Canadian Journal of Mathematics
23.1 (1971), pp. 160–175.

[3] S. Even, A. Pnueli, and A. Lempel. Permutation Graphs and Transitive Graphs.
1972.

[4] T. Gallai. ‘Transitiv orientierbare Graphen’. In: Acta Mathematica Academiae
Scientiarum Hungaricae 18.1-2 (1967), pp. 25–66.

[5] M. C. Golumbic. Algorithmic graph theory and perfect graphs. 2nd ed. English.
2nd ed. Vol. 57. Amsterdam: Elsevier, 2004, pp. xxvi + 314.

[6] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. Philadel-
phia: Society for Industrial and Applied Mathematics, 1999.

[7] T. Hartmann et al. ‘Complete Edge-Colored Permutation Graphs’. In: (2020).
[8] H. L. Bodlaender, T. Kloks, and D. Kratsch. ‘Treewidth and Pathwidth of

Permutation Graphs’. In: SIAM Journal on Discrete Mathematics 8.4 (1995),
pp. 606–616.

[9] C. J. Colbourn. ‘On testing isomorphism of permutation graphs’. In: Networks
11.1 (1981), pp. 13–21.

[10] S. Mondal, M. Pal, and T. K. Pal. ‘An Optimal Algorithm to Solve the All-
Pairs Shortest Paths Problem on Permutation Graphs’. en. In: Journal of
Mathematical Modelling and Algorithms 2.1 (2003), pp. 57–65.

[11] S. Mondal, M. Pal, and T. Pal. ‘Optimal Sequential And Parallel Algorithms
To Compute A Steiner Tree On Permutation Graphs’. In: International Journal
of Computer Mathematics 80.8 (2003), pp. 937–943.

[12] S. Ramnath and S. Sunder. ‘On two-processor scheduling and maximum match-
ing in permutation graphs’. In: Information Processing Letters 57.6 (1996),
pp. 321–327.

[13] S. Bhatia, P. Feijão, and A. R. Francis. ‘Position and Content Paradigms
in Genome Rearrangements: The Wild and Crazy World of Permutations in
Genomics’. en. In: Bulletin of Mathematical Biology 80.12 (2018), pp. 3227–
3246.

55

push (,)

[14] G. R. Galvão, O. Lee, and Z. Dias. ‘Sorting signed permutations by short
operations’. In: Algorithms for Molecular Biology 10.1 (2015), p. 12.

[15] M. Pal, S. Samanta, and A. Pal. Handbook of Research on Advanced Applications
of Graph Theory in Modern Society. English. IGI Global, 2020.

[16] S. Hougardy. ‘Classes of perfect graphs’. en. In: Discrete Mathematics. Creation
and Recreation: A Tribute to the Memory of Claude Berge 306.19 (2006),
pp. 2529–2571.

[17] C. Crespelle and C. Paul. ‘Fully Dynamic Algorithm for Recognition and
Modular Decomposition of Permutation Graphs’. en. In: Algorithmica 58.2
(2010), pp. 405–432.

[18] R. M. McConnell and J. P. Spinrad. ‘Modular decomposition and transitive
orientation’. en. In: Discrete Mathematics 201.1 (1999), pp. 189–241.

[19] D. G. Degiorgi and K. Simon. ‘A dynamic algorithm for line graph recognition’.
en. In: Graph-Theoretic Concepts in Computer Science. Ed. by M. Nagl. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 1995, pp. 37–48.

[20] F. Mancini and P. Heggernes. ‘A completely dynamic algorithm for split graphs.’
In: Electronic Notes in Discrete Mathematics 27 (2006), pp. 69–70.

[21] P. Hell, R. Shamir, and R. Sharan. ‘A Fully Dynamic Algorithm for Recognizing
and Representing Proper Interval Graphs’. In: SIAM Journal on Computing
31.1 (2001), pp. 289–305.

[22] L. Ibarra. ‘Fully Dynamic Algorithms for Chordal Graphs’. In: Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’99.
Baltimore, Maryland, USA: Society for Industrial and Applied Mathematics,
1999, pp. 923–924.

[23] L. Ibarra. ‘Fully dynamic algorithms for chordal graphs and split graphs’. In:
ACM Transactions on Algorithms 4.4 (2008), pp. 1–20.

[24] L. Ibarra. ‘A Fully Dynamic Graph Algorithm for Recognizing Interval Graphs’.
en. In: Algorithmica 58.3 (2010), pp. 637–678.

[25] S. D. Nikolopoulos, L. Palios, and C. Papadopoulos. ‘A fully dynamic algorithm
for the recognition of P4-sparse graphs’. en. In: Theoretical Computer Science
439 (2012), pp. 41–57.

[26] F. J. Soulignac. ‘Fully Dynamic Recognition of Proper Circular-Arc Graphs’.
en. In: Algorithmica 71.4 (2015), pp. 904–968.

[27] R. H. Möhring. ‘Algorithmic aspects of the substitution decomposition in
optimization over relations, set systems and boolean functions’. In: Annals of
Operations Research 4.1 (1985), pp. 195–225.

[28] R. H. Möhring and F. J. Radermacher. Substitution Decomposition for Discrete
Structures and Connections with Combinatorial Optimization. 1984.

[29] A. Cournier and M. Habib. ‘A new linear algorithm for Modular Decomposition’.
en. In: Trees in Algebra and Programming — CAAP’94. Ed. by S. Tison. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 1994, pp. 68–84.

56

push (,)

[30] D. G. Corneil, Y. Perl, and L. K. Stewart. ‘A Linear Recognition Algorithm
for Cographs’. In: SIAM Journal on Computing 14.4 (1985), pp. 926–934.

[31] J. Dusart and M. Habib. ‘A new LBFS-based algorithm for cocomparability
graph recognition’. In: Discrete Applied Mathematics 216 (2017), pp. 149–161.

[32] H. Kaplan and Y. Nussbaum. ‘A Simpler Linear-Time Recognition of Circular-
Arc Graphs’. en. In: Algorithmica 61.3 (2011), pp. 694–737.

[33] R. M. McConnell and J. P. Spinrad. ‘Linear-time transitive orientation’. In:
Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms.
1997, pp. 19–25.

[34] E. M. Eschen and J. Spinrad. ‘O(n2) recognition and isomorphism algorithms
for circular arc graphs’. In: Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), Austin, TX, SIAM, Philadelphia.
1993, pp. 128–137.

[35] A. Bergeron et al. ‘Computing Common Intervals of K Permutations, with
Applications to Modular Decomposition of Graphs’. en. In: Algorithms – ESA
2005. Ed. by G. S. Brodal and S. Leonardi. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2005, pp. 779–790.

[36] C. Capelle, M. Habib, and F. Montgolfier. ‘Graph Decompositions and Factor-
izing Permutations’. en. In: Discrete Mathematics and Theoretical Computer
Science 5 (2002), pp. 55–70.

[37] T. Uno and M. Yagiura. ‘Fast Algorithms to Enumerate All Common Intervals
of Two Permutations’. en. In: Algorithmica 26.2 (2000), pp. 290–309.

[38] F. d. Montgolfier, M. Habib, and Université des sciences et techniques de
Montpellier 2 (1970-2014). ‘Décomposition modulaire des graphes: théorie,
extensions et algorithmes’. French. OCLC: 493114818. PhD thesis. S.l., 2003.

[39] A. Ehrenfeucht et al. ‘An O(n2) Divide-and-Conquer Algorithm for the Prime
Tree Decomposition of Two-Structures and Modular Decomposition of Graphs’.
en. In: Journal of Algorithms 16.2 (1994), pp. 283–294.

57

push (,)

58

push (,)

Erklärung
Ich versichere, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung
der angegebenen Quellen und Hilfsmittel angefertigt habe, insbesondere sind wörtliche
oder sinngemäße Zitate als solche gekennzeichnet. Mir ist bekannt, dass Zuwider-
handlung auch nachträglich zur Aberkennung des Abschlusses führen kann.

Ort, Datum Unterschrift

	Introduction
	Overview
	Related Work

	Preliminaries
	Permutations and Permutation Graphs
	Basic Graph Theory
	Permutations
	Permutation Graphs
	Important Properties

	Modular Decomposition
	Modules
	Strong Intervals
	Modular Decomposition Tree

	Data Structure and Algorithms
	Base Algorithm
	Outline
	Vertex Insertion for Primitive Graphs
	Finding Twins

	Data Structure
	Finding a Representation
	Proposed Implementation
	Constructing Permutations of Representative Graphs

	Generating Insertion Positions
	Motivation and Linking the Tree
	Finding the Insertion Node
	Substitution Process
	Rearranging the Tree Tq

	Conclusion
	Glossary
	Bibliography

