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Abstract

Honeycomb toroidal graphs are a family of cubic graphs

determined by a set of three parameters that have been

studied over the last three decades both by mathema-

ticians and computer scientists. They all can be em-

bedded on a torus and coincide with the cubic Cayley

graphs of generalized dihedral groups with respect to a

set of three reflections. In a recent survey paper

B. Alspach gathered most known results on this intri-

guing family of graphs and suggested a number of re-

search problems regarding them. In this paper we solve

two of these problems by determining the full auto-

morphism group of each honeycomb toroidal graph.
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1 | INTRODUCTION

In this short paper we focus on a certain family of cubic graphs with many interesting properties.
They are called honeycomb toroidal graphs, mainly because they can be embedded on the torus in
such a way that the corresponding faces are hexagons. The usual definition of these graphs is
purely combinatorial where, somewhat vaguely, the honeycomb toroidal graph m nHTG( , , ℓ) is
defined as the graph of ordermn havingm disjoint “vertical” n‐cycles (with n even) such that two
consecutive n‐cycles are linked together by ∕n 2 “horizontal” edges, linking every other vertex of the
first cycle to every other vertex of the second one, and where the last “vertical” cycle is linked back
to the first one according to the parameter ℓ (see Section 3 for a precise definition). As was shown
in [2] these graphs can alternatively be described as Cayley graphs of generalized dihedral groups
with respect to a set of three reflections which for instance implies that these graphs are vertex‐
transitive (see Section 2 for the definition of some terms not defined in Section 1).

It is thus not surprising that this family of graphs has been studied in various papers, both
by mathematicians and by computer scientists. The mathematicians are of course always in-
terested in graphs having nice structural properties and a high degree of symmetry. But one of
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the more important reasons why these graphs are of particular interest to them is that they
stand as the last obstacle to a proof that each bipartite Cayley graph of a generalized dihedral
group has the property that any two vertices in different partition sets are linked by a Hamilton
path of this graph (see [1,3]). In view of the fact that it is not even known whether all Cayley
graphs of dihedral groups possess a Hamilton cycle, this would be a very remarkable result. The
main point of interest for computer scientists in these graphs is that small valency and high
degree of symmetry make them desirable models for (computer) networks.

In a recent survey paper [1] Alspach discusses the above‐mentioned different viewpoints re-
garding these graphs, gives an indication of how they came about and why they are interesting to
researchers from different fields of science, and gathers most of the known results on the topic. Doing
so he gives a number of interesting open problems, two of which concern symmetries of these graphs.
In [1, Research Problem 4] he suggests the problem of determining the full automorphism group of
each m nHTG( , , ℓ). Should one be able to solve this problem, the answer to [1, Research Problem 5],
which asks for the classification of all examples with the smallest possible automorphism group (in
this case the group acts regularly on the vertex‐set of the graph), would of course also be obtained.

The purpose of this paper is to solve these two problems by proving the following two
theorems (see Section 5 for the definition of the graphs nGPr( )).

Theorem 1.1. Let m and n be positive integers, where ≥n 4 is even, let ≤ ≤ ∕n0 ℓ 2 be
an integer of the same parity asm, let m nΓ = HTG( , , ℓ) and let the groupG be as in (1) of
Proposition 3.2. Then Γ is not a normal Cayley graph ofG if and only if one of the following
holds:

• Γ = HTG(1, 6, 3) and is isomorphic to the 3‐arc‐regular complete bipartite graph K3,3;
• ∈Γ {HTG(2, 4, 0), HTG(1, 8, 3)} and is isomorphic to the 2‐arc‐regular cube graph;
• Γ = HTG(1, 14, 5) and is isomorphic to the 4‐arc‐regular Heawood graph;
• ∈Γ {HTG(1, 16, 5), HTG(2, 8, 4)} and is isomorphic to the 2‐arc‐regular Möbius–Kantor
graph;

• Γ = HTG(3, 6, 3) and is isomorphic to the 3‐arc‐regular Pappus graph;
• mn n= 4 ′ for some integer n′ > 2, either n = 4 or ∈ n nΓ {HTG(1, 4 ′, 2 ′ − 1),

nHTG(2, 2 ′, 2)}, and Γ is isomorphic to the generalized prism graph nGPr( ′), is not arc‐
transitive and has vertex stabilizers of order 2n′−1.

Theorem 1.2. Let m and n be positive integers, where ≥n 4 is even, let ≤ ≤ ∕n0 ℓ 2 be
an integer of the same parity asm and let m nΓ = HTG( , , ℓ). If Γ is none of the graphs from
Theorem 1.1, then its automorphism group can be determined via the four conditions,

(c1) n m mgcd( , ℓ + ) = 2 and mn m m2 (ℓ + 2 ℓ − 3 )2 2 ,
(c2) n m mgcd( , ℓ − ) = 2 and mn m m2 (ℓ − 2 ℓ − 3 )2 2 ,
(c3) ∈ ∕nℓ {0, 2},
(c4) n m m n mgcd( , ℓ + ) = 2 = gcd( , ℓ − ) and mn m2 (ℓ + 3 )2 2 ,

where

• Γ is 2‐arc‐regular if and only if any two (and thus all) of (c1), (c2), (c3), and (c4) hold,
which occurs if and only if Γ is one of m m mHTG( , 2 , ) with ≥ ≠m m2, 3, and

m m mHTG( , 6 , 3 ) with ≥m 2;

2 | ŠPARL



• Γ is 1‐arc‐regular if and only if (c4) holds, but none of (c1), (c2), and (c3) holds;
• Γ is not arc‐transitive with vertex stabilizers of order 2 if and only if precisely one of (c1),
(c2), and (c3) holds;

• Aut(Γ) is regular on Γ if and only if none of (c1), (c2), (c3), and (c4) holds.

We remark that while each of HTG(2, 4, 0), HTG(1, 8, 3), and HTG(2, 4, 2) is isomorphic
to the cube graph, the presentation HTG(2, 4, 2) results in this graph being a normal Cayley
graph of the corresponding group G from (1) (the elementary abelian group of order 8),
while the remaining two presentations do not (here the group G is the dihedral group of
order 8).

2 | PRELIMINARIES

Throughout the paper all graphs are assumed to be finite, connected, and undirected. Ad-
jacency is denoted by ~ and the edges are usually given as unordered pairs of vertices.

For an integer n the ring of residue classes modulo n is denoted by n. Therefore, all
computations involving elements from n are performed modulo n.

For an abelian group A the generalized dihedral group corresponding to A is the group of
order  A2 generated by A and an involution t not in A such that tat a= −1 for all ∈a A.

For a groupG and an inverse‐closed subset ⊂ ⧹S G {1} the Cayley graph G SCay( ; ) ofG with
respect to S has vertex‐set G and edge‐set ∈ ∈g gs g G s S{{ , } : , }. The graph G SCay( ; ) is a
normal Cayley graph ofG if the left regular representationGL ofG is a normal subgroup of the
automorphism group G SAut(Cay( ; )).

A graph Γ is vertex‐transitive if the automorphism group Aut(Γ) of Γ acts transitively on the
vertex‐set of Γ. For ≥s 1 an s‐arc of Γ is a sequence of s + 1 vertices such that any consecutive
two are adjacent and any consecutive three are pairwise distinct. A graph Γ is s‐arc‐transitive if
Aut(Γ) acts transitively on the set of all s‐arcs of Γ. If this action is regular, Γ is said to be
s‐arc‐regular. The term 1‐arc‐transitive is abbreviated to arc‐transitive.

3 | THE HTG GRAPHS

We now review the definition of the honeycomb toroidal graphs and their presentation as
Cayley graphs of an appropriate generalized dihedral group. We also fix some terminology
pertaining to the two viewpoints that we will be using throughout the rest of the paper. The
following is simply a restatement of the definition given in [2].

Construction 3.1. Letm and n be positive integers, where ≥n 4 is even. For each integer
ℓ with ≤ ≤ n0 ℓ − 1, where ℓ is of the same parity as m, the honeycomb toroidal
graph m nHTG( , , ℓ) is the cubic graph with vertex‐set   ∈ ∈i j i j{ , : , }m n and the
following adjacencies:

•    i j i j, ~ , ± 1 for all ∈ ∈i j,m n;
•    i j i j, ~ + 1, for all ∈ ⧹ ∈i m j{ − 1},m n with i and j of different parity;
•    m j j− 1, ~ 0, + ℓ for all ∈j m of the same parity as m.

ŠPARL | 3



The reader will notice that ≅m n m n nHTG( , , ℓ) HTG( , , − ℓ), and so we lose nothing by
assuming ≤ ∕nℓ 2, which is what we will usually do (in this case theHTG graph is said to be in
normal form [1]).

In [2] it was shown that each m nHTG( , , ℓ) is isomorphic to a Cayley graph of a generalized
dihedral group. In particular, the following result was proved.

Proposition 3.2 (Alspach and Dean [2, Theorem 3.4]). Let m and n be positive integers,
where ≥n 4 is even, and let ≤ ≤ n0 ℓ − 1 be an integer of the same parity as m. Let

  ∕ ∕G t x y t x y x txt x tyt y xy yx= , , = = 1, = , = , = , = .n m m2 2 (ℓ+ ) 2 −1 −1
(1)

Then the honeycomb toroidal graph m nHTG( , , ℓ) is isomorphic to the Cayley graph
G t tx tyCay( ; { , , }).

Observe that the groupG is a generalized dihedral group, where  x y, is the index 2 abelian
subgroup (of order ∕mn 2). It is easy to verify that the orders of x y, , and x y−1 are

     ∕x n y
mn

n m
x y

mn

n m
= 2, =

gcd( , ℓ + )
, and =

gcd( , ℓ − )
.−1

(2)

The following detail from the proof of [2, Theorem 3.4] will be important for us. One of the
isomorphisms from m nHTG( , , ℓ) to G t tx tyCay( ; { , , }) is given by the following correspondence
between the vertices of these two graphs. For each ∈i m{0, 1, …, − 1} let ∈i n{0, 1, …, − 1}n

be such that ≡i i n(mod )n (in other words, in is i computed modulo n). Then for each
∈i m{0, 1, …, − 1} the vertex  i i, n corresponds to yi and for each ∈ ∕j n{0, 1, …, 2 − 1} the

vertex  i i j, ( + 2 )n corresponds to x yj i, while the vertex  i i j, ( + 2 + 1)n corresponds to
x y t tx y=j i j i− − .

Throughout the paper we will constantly be switching between these two viewpoints of the
HTG graphs. More precisely, whenever we have an HTG graph Γ, we think of its vertices as
being the pairs  i j, from Construction 3.1 and at the same time as being the elements of the
above group G via the described correspondence. With this in mind we let

  ∈ ∈ ∈g gt g G g gtx g G g gty g G= {{ , } : }, = {{ , } : }, and = {{ , } : }, (3)

and call the members of  , , and  the red, blue, and green edges, respectively (see Figure 1
for two examples of how the edges are colored). In this respect we are thus viewing

m nHTG( , , ℓ) as what is known in the literature as a Cayley colored graph. Note that each
vertex of Γ is incident to one edge of each of the three colors. Moreover, for any pair of colors
the subgraph consisting of all the edges of these two colors is a disjoint union of cycles (all of
which have the same even length half of, which equals one of the numbers from Equation 2,
depending on the two chosen colors) which in the whole graph are linked together by the edges
of the third color in a cyclic fashion.

Let us also point out that, since the index 2 abelian subgroup  x y, of G of course acts
semiregularly with two orbits on the vertex‐set of Γ, theHTG graphs are also so‐called bi‐Cayley
graphs on abelian groups (see, e.g., [4,15,16]). Moreover, as the two orbits of  x y, are in-
dependent sets, they are also so‐called Haar graphs (see, e.g., [6,7]) of abelian groups. One
could thus make use of some known results, in particular those of [4] where symmetries of
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edge‐transitive bi‐Cayley graphs were studied extensively. Nevertheless, as we will see, in this
special setting a direct approach works just fine.

4 | THE COLOR ‐PERMUTING AUTOMORPHISMS

In this section we investigate the automorphisms of theHTG graphs that permute the colors of
the edges as given in (3). More precisely, let m nΓ = HTG( , , ℓ) and let , , and  be as in (3).
We investigate the automorphisms of Γ which preserve the set   { , , }, that is, the auto-
morphisms of Γ for which whenever two edges are of the same color, the images of these two
edges are also of the same color. Such automorphisms are said to be color‐permuting in [8,9]
where this concept was studied in some detail.

LetG be as in (1) and letGL be the left regular representation ofG. Of course, each element ofGL

is color‐permuting (in fact, , , and are the three orbits ofGL on the edge‐set ofΓ). Denote the set
of all automorphisms of G which fix the set t tx ty{ , , } setwise by G t tx tyAut( ; { , , }). Then each
element of G t tx tyAut( ; { , , }) is a color‐permuting automorphism of Γ which fixes the vertex 1. As in
our case each element of the connection set t tx ty{ , , } is an involution, it is easy to verify that the
converse also holds (but see also [8, Lemma 2.1] or [9, Section 5]). The set of all color‐permuting
automorphisms of Γ that fix the vertex 1 thus coincides with G t tx tyAut( ; { , , }). It now easily follows
that the group Aut (Γ)c of all color‐permuting automorphisms of Γ is the semidirect product
⋊G G t tx tyAut( ; { , , })L . In the words of [9], all elements of Aut (Γ)c are of affine type. It is well

known and easy to see (but see, e.g., the seminal paper by Xu [14] in which the notion of a normal
Cayley graph was introduced) that for a Cayley graph H SΓ′ = Cay( ; ) the group HL is normal in
Aut(Γ′) if and only if ⋊H H SAut(Γ′) = Aut( ; )L . Therefore, in our setting the graph

m nΓ = HTG( , , ℓ) is a normal Cayley graph of G from (1) if and only if Aut(Γ) = Aut (Γ)c .
In the rest of this section we determine the group G t tx tyAut( ; { , , }) (and consequently also

Aut (Γ)c ). Of course, as the connection set consists of three involutions we have that
G t tx tyAut( ; { , , }) is isomorphic to a subgroup of the symmetric group S3. Note that since the set

t tx ty{ , , } generatesG an automorphism ofG is completely determined by its action on t tx, , and
ty. Therefore, a permutation φ of the set t tx ty{ , , } extends to an automorphism ofG if and only if
the elements ≔φ t φ x φ t φ tx( ), ( ) ( ) ( ) and ≔φ y φ t φ ty( ) ( ) ( ) satisfy the defining relations of G
from (1). Now, the product of any two elements of t tx ty{ , , } is contained in the index 2 abelian
subgroup  x y, of G and taking any  ∈a b x y, , we have that ta b ta b( ) ( ) = −1. This shows that
the only nontrivial conditions for φ to extend to an automorphism of G are   ∕φ x n( ) = 2 and

∕φ y φ x( ( )) = ( ( ))m m(ℓ+ ) 2. Together with (2) this proves the following.

FIGURE 1 The honeycomb toroidal graphs HTG(3, 6, 3) and HTG(6, 4, 0) [Color figure can be viewed at
wileyonlinelibrary.com]
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Lemma 4.1. Let the group G be as in (1). Then a permutation φ of the set t tx ty{ , , }

extends to an automorphism of G if and only if

     ∕φ t φ tx n φ t φ ty
mn

n m
φ tx φ ty

mn

n m
( ) ( ) = 2, ( ) ( ) =

gcd( , ℓ + )
, ( ) ( ) =

gcd( , ℓ − )
(4)

and

∕φ t φ ty φ t φ tx( ( ) ( )) = ( ( ) ( )) .m m(ℓ+ ) 2
(5)

We first consider each of the three possibilities of fixing one of the elements of t tx ty{ , , } and
interchanging the other two, and then finally also consider the possibility of permuting all three
generators t tx, , and ty in a cycle of length 3.

Lemma 4.2. Let the group G be as in (1). Then there exists an automorphism in
G t tx tyAut( ; { , , }) fixing t and interchanging tx with ty if and only if

n m m mn m mgcd( , ℓ + ) = 2 and 2 (ℓ + 2 ℓ − 3 ).2 2

Proof. In this case condition (4) is equivalent to ∕ ∕n mn n m2 = gcd( , ℓ + ), that is,
n m mgcd( , ℓ + ) = 2 , while (5) reads ∕x y=m m(ℓ+ ) 2. Assuming the first of these holds we

have that m2 divides n and m qmℓ + = 2 for some q coprime to ∕n m(2 ). Then (1) implies
that (5) is in fact

∕ ∕x y y y x= = = ( ) = ,m m qm m q q m(ℓ+ ) 2 (ℓ+ ) 2

and so (5) reads ∕x x=m m m(ℓ+ ) (4 )2
, which holds if and only if ∕n 2 divides

∕m m m(ℓ + 2 ℓ − 3 ) 42 2 . □

Lemma 4.3. Let the group G be as in (1). Then there exists an automorphism in
G t tx tyAut( ; { , , }) fixing tx and interchanging t with ty if and only if

n m m mn m mgcd( , ℓ − ) = 2 and 2 (ℓ − 2 ℓ − 3 ).2 2

Proof. In this case (4) is equivalent to n m mgcd( , ℓ − ) = 2 , while (5) reads
∕y y x= ( )m m− −1 (ℓ+ ) 2, which is equivalent to ∕ ∕x y=m m(ℓ+ ) 2 (ℓ− ) 2. If n mgcd( , ℓ − ) = m2 ,

then m n2 and m qmℓ − = 2 for some q coprime to ∕n m(2 ). Then ∕m(ℓ + ) 2 =

q m( + 1) , and so (1) implies that (5) is equivalent to

∕x y x x= = = ,q m qm q m q q m( +1) (ℓ+ ) 2 ( +1)

which holds if and only if ∕x x1 = =q q m m m m( +1)( −1) (ℓ −2 ℓ−3 ) (4 )2 2
. The result now follows. □

Lemma 4.4. Let the group G be as in (1). Then there exists an automorphism in
G t tx tyAut( ; { , , }) fixing ty and interchanging t with tx if and only if ∈ ∕nℓ {0, 2}.
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Proof. In this case (4) is equivalent to n m n mgcd( , ℓ + ) = gcd( , ℓ − ), while (5) reads
∕x y x( ) =m m−1 −(ℓ+ ) 2. By (1) the latter is equivalent to ∕ ∕x y x= =m m m(ℓ+ ) 2 ( −ℓ) 2, that is,

x = 1ℓ . Since this holds if and only if ∈ ∕nℓ {0, 2}, we only need to verify that
∕ ∕n n m n n mgcd( , 2 + ) = gcd( , 2 − ) holds. As ∕ ∕n m n m n( 2 + ) + ( 2 − ) = , this is

clear. □

Lemma 4.5. Let the group G be as in (1). Then there exists an automorphism in
G t tx tyAut( ; { , , }) of order 3 if and only if

n m n m m mn mgcd( , ℓ + ) = gcd( , ℓ − ) = 2 and 2 (ℓ + 3 ).2 2

Proof. Observe that such an automorphism exists if and only if there is an
automorphism in G t tx tyAut( ; { , , }) mapping t to tx tx, to ty and ty back to t . In this
case (4) is equivalent to n m n m mgcd( , ℓ + ) = gcd( , ℓ − ) = 2 . This time (5) reads

∕x x y= ( )m m− −1 (ℓ+ ) 2. Assuming (4) holds we have that m2 divides n and q mℓ = (2 + 1)

for some q coprime to ∕n m(2 ). Then (1) implies that (5) is equivalent to

∕ ∕x x y y x= = = = ,qm m m q m q m(ℓ− ) 2 (ℓ+ ) 2 ( +1) ( +1)2

which holds if and only if ∕x x1 = =q q m m m( + +1) (ℓ +3 ) (4 )2 2 2
. □

Corollary 4.6. Let the group G be as in (1). Then ≅G t tx ty SAut( ; { , , }) 3 if and only if
n = 2ℓ and either mℓ = or mℓ = 3 .

Proof. Suppose ≅G t tx ty SAut( ; { , , }) 3. Then Lemma 4.4 implies that ∈ ∕nℓ {0, 2} and
Lemma 4.5 implies that n m n m mgcd( , ℓ + ) = gcd( , ℓ − ) = 2 and mn m2 (ℓ + 3 )2 2 . It
follows that ≠ℓ 0, and so ∕nℓ = 2. Since mn2 divides m n m4(ℓ + 3 ) = + 122 2 2 2 and

m n2 , it follows that mn m2 12 2, that is, n m6 . Together with m n2 this yields
∈n m m{2 , 6 }, and so ∈ m mℓ { , 3 }.
For the converse one simply has to verify that setting n = 2ℓ and either mℓ = or
mℓ = 3 the conditions of Lemmas 4.2 and 4.4 are both satisfied, which is clear. □

Under the assumption that Theorem 1.1 holds, the results of this section thus prove
Theorem 1.2 (recall that m nHTG( , , ℓ) is a normal Cayley graph of G from (1) if and only
if G t tx tyAut( ; { , , }) = Aut(Γ)1).

5 | ADDITIONAL AUTOMORPHISMS

In view of the results of Section 4 it remains to classify those m nΓ = HTG( , , ℓ) for which
≠Aut(Γ) Aut (Γ)c and then determine the automorphism groups of these examples. As we shall

see there is only a handful of well‐known small examples and a very specific infinite family of such
graphs. We start with an easy observation (recall the definition of the colors from Equation 3).

Lemma 5.1. Let m and n be positive integers, where ≥n 4 is even, let ≤ ≤ n0 ℓ − 1 be
an integer of the same parity as m, and let m nΓ = HTG( , , ℓ). If ∈α Aut(Γ) is such that
there is no edge e such that e and α e( ) are of the same color, then ∈α Aut (Γ)c .
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Proof. The assumption that α preserves the color of no edge of Γ and the fact that the
three edges incident to a given vertex have different colors imply that for each vertex v
and the three edges incident to it, say e e, ′, and e″, knowing the color of one of α e α e( ), ( ′),
and α e( ″) completely determines the color of all three of these images. As Γ is connected,
the result follows easily. □

It is well known that the graphs m nHTG( , , ℓ) are bipartite (but recall also Proposition 3.2)
and are of girth at most 6. In fact, the product of the three elements from t tx ty{ , , } in any order
(where G is as in Equation 1) is an involution, and so starting at any vertex of the graph and
then following any walk that has the property that each three consecutive edges on it are of
three different colors results in a 6‐cycle. We call all such 6‐cycles generic. The set of all generic
6‐cycles is clearly a GL‐orbit and there are precisely two generic 6‐cycles through each edge.

Before stating and proving the next easy but useful result we review the definition of the
generalized prism nGPr( ) from [5], where cubic vertex‐transitive graphs of girth at most 5 were
characterized. The graph nGPr( ), where ≥n 2, has vertex‐set ∈ ∈i j i j{( , ): , }n2 2 , each
vertex i j( , ) is adjacent to i j( , ± 1) and in addition i j( , ) is adjacent to i j( + 1, + 1) for all even
j (see Figure 2 where the isomorphic graphs GPr(4), HTG(4, 4, 2), HTG(1, 16, 7), and
HTG(2, 8, 2) are depicted). These graphs might also be called the split wreath graphs as nGPr( )

can be obtained from the well‐known wreath graph W n( ) = Cay( × ; {(0, ±1), (1, ±1)})n2

by performing the “splitting” construction with respect to the cycle decomposition consisting of
all the “natural” 4‐cycles ofW n( ) (see [11, Construction 11] for details).

Proposition 5.2. Letm and n be positive integers, where ≥n 4 is even, let ≤ ≤ n0 ℓ − 1

be an integer of the same parity asm, and let m nΓ = HTG( , , ℓ). Let  , , and  be as in
(3). Then either each automorphism of Γ fixing setwise at least one of the sets , , and  is
color‐permuting, or mn is divisible by 4 and ≅ ∕mnΓ GPr( 4).

Proof. Suppose Γ is not a generalized prism. We show that in this case each ∈α Aut(Γ)

fixing the set setwise is color‐permuting (the possibilities that it fixes setwise  or are
dealt with analogously).

To this end we first show that if ∈α Aut(Γ) with  α ( ) = fixes a vertex and all of its
neighbors, then α = 1. Let α be such an automorphism and let g be a corresponding vertex.
Then α fixes the entire blue–green cycle C (the edges are alternatingly blue and green)
containing g pointwise. It thus fixes each neighbor of gtx as well as each neighbor of gty. IfC is
of length mn we are done. So suppose this is not the case. Let s2 be the length of C and
consider the blue–green cycleC′ containing gt . Because of the generic 6‐cycles there is a set of
at least s red edges joining the vertices ofC toC′ (ifmn s= 4 there are s2 of them). As Γ is not

FIGURE 2 The isomorphic graphs GPr(4), HTG(4, 4, 2), HTG(1, 16, 7), and HTG(2, 8, 2)
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a generalized prism we have ≥s 3, but then the fact that C is fixed pointwise implies that C′
must also be fixed pointwise. Therefore, if α fixes g and all of its neighbors, it also fixes the
neighbors of each of the three neighbors of g. As Γ is connected, α = 1.

To complete the proof let ∈α Aut(Γ) with  α ( ) = . If  α ( ) = there is nothing to
prove, so assume there is some ∈e with ∈α e( ) . Let ∈g h G, be such that
e g gtx= { , } and α g h( ) = . Then α gtx htx( ) = , and so letting ∈β GL correspond to gh−1

the automorphism βα fixes g and each of its three neighbors. As  βα ( ) = , the above
argument implies that ∈α β= Aut (Γ)−1

c . □

It thus makes sense to first identify the HTG graphs (of girth 4) which are isomorphic to a
generalized prism graph. As was pointed out by Alspach [1] theHTG graphs of girth 4 are easily
identified (recall that we lose nothing by assuming ≤ ∕nℓ 2).

Proposition 5.3 (Alspach [1, Theorem 5.1]). Letm and n be positive integers, where ≥n 4

is even, let ≤ ≤ ∕n0 ℓ 2 be an integer of the same parity as m, and let m nΓ = HTG( , , ℓ).
Then Γ is of girth 4 if and only if one of the following holds:

(i) n = 4;
(ii) ≥m n= 1, 6, and ℓ = 3;
(iii) ≥ ≡m n n= 1, 6, 2 (mod 4), and ∕nℓ = 2;
(iv) ≥ ≡m n n= 1, 8, 0 (mod 4), and ∕nℓ = ( − 2) 2;
(v) ≥m n= 2, 6, and ∈ℓ {0, 2}.

It is not difficult to see that for each ≥m 2 and ∈ℓ {0, 1, 2}, wherem and ℓ are of the same
parity, ≅m mHTG( , 4, ℓ) GPr( ). Similarly, ∕ ≅ ∕n n nHTG(1, , ( − 2) 2) GPr( 4) for each ≥n 8

with ≡n 0 (mod 4). Finally, ≅ ∕n nHTG(2, , 2) GPr( 2) for each even ≥n 6. We leave the easy
verifications of these claims to the reader (but see Figure 2). It is also not difficult to see that
none of the remaining graphs from Proposition 5.3 is a generalized prism graph. In fact, for
each even ≥n 6 the graphs nHTG(2, , 0) and nHTG(1, 2 , 3) are both isomorphic to the well‐
known prism graph nPr( ) = Cay( × ; {(1, 0), (0, ±1)})n2 of order n2 , while for each odd
≥n 3 the graphs n nHTG(1, 2 , ) and nHTG(1, 2 , 3) are both isomorphic to the well‐known

Möbius ladder n nMl( ) = Cay( ; {±1, })n2 of order n2 . With the exception of ≅ KMl(3) 3,3

(which clearly admits automorphisms that are not color‐permuting) all of these prisms and
Möbius ladders have edges of two different types regarding the 4‐cycles—one‐third of them lie
on two 4‐cycles each, while the remaining ones lie on one 4‐cycle each. This clearly shows that
the vertex stabilizers in the automorphism group of each of these graphs Γ are of order 2, and so
Lemmas 4.2, 4.3, and 4.4 imply that for these graphs Aut(Γ) = Aut (Γ)c .

For the rest of this section we thus assume that the graphs m nHTG( , , ℓ) we are dealing
with are of girth 6. We show that if such a graph admits an automorphism that is not color‐
permuting, it has a lot of symmetry and contains many 6‐cycles.

Proposition 5.4. Letm and n be positive integers, where ≥n 6 is even, and let ≤ ≤ ∕n0 ℓ 2

be an integer of the same parity asm such that m nΓ = HTG( , , ℓ) is of girth 6. Let , , and
be as in (3). If ≠Aut(Γ) Aut (Γ)c then Γ is 2‐arc‐transitive and each 3‐path of Γ lies on a 6‐cycle.

Proof. Suppose then that there exists some ∈ ⧹α Aut(Γ) Aut (Γ)c . By Proposition 5.2
none of the sets  , , and  is preserved by α, and so the fact that they are orbits of the
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vertex‐transitive group GL, where G is as in (1), implies that Γ is edge‐ and thus also arc‐
transitive. By Lemma 5.1 there is a set in   { , , }, say , such that there exist edges

∈e e,1 2 with ∈α e( )1 and ∉α e( )2 . Because of the red–green and red–blue cycles
there is a walk from e1 to e2 in Γ such that every other edge of this walk is red (recall that
the three edges incident to any given vertex are of distinct colors). This shows that there
in fact exists a 3‐path P whose initial and terminal edges e1 and e2 are both red with

∈α e( )1 and ∉α e( )2 . But then α P( ) has all three edges of different colors and thus
lies on a generic 6‐cycle, implying that P also lies on a 6‐cycle. There is thus a generic and
a nongeneric 6‐cycle through the 2‐path consisting of e1 and e, where e is the middle edge
of P. To complete the proof we thus only need to show that Γ is indeed 2‐arc‐transitive.

Since GL preserves the colors and Γ is arc‐transitive, it suffices to verify that for some
vertex v the above α preserves the color of one edge incident to v while interchanging
the colors of the remaining two. If α e( ) has the same color as e, we can choose v to be the
common endvertex of e and e2, while in the other case we can let v be the common
endvertex of e and e1. □

It is now simply a matter of determining all HTG graphs of girth 6 with the property that
each of their 3‐paths lies on a 6‐cycle. Given the special structure of the HTG graphs this is
fairly easy to do (e.g., considering a red–blue–red 3‐path yields n = 6 or ≤m 2, and then
considering a red–green–red 3‐path yields thatm > 2 only for HTG(3, 6, 3)). However, instead
of describing the argument we simply rely on a more general result from the literature. Namely,
it follows from [4, Lemma 5.3] or [12, Theorem 1] (but see also [10]) that the graph Γ must be
the Heawood graph, the Pappus graph or the Möbius–Kantor graph (it can easily be verified
that the Desargues graph is not an HTG graph). We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that m nΓ = HTG( , , ℓ) is not a normal Cayley graph ofG if
and only if ≠Aut(Γ) Aut (Γ)c . By the previous paragraph the only possible examples of
girth 6 are the Heawood graph, the Pappus graph, and the Möbius–Kantor graph. The
automorphism groups of these graphs are well known, while the fact that these are
indeed precisely the HTG graphs given in the theorem is easily verified. Moreover, as

≤G t tx ty SAut( ; { , , }) 3 the only one of these that could possibly be normal with respect to
G is the Möbius–Kantor graph ≅HTG(1, 16, 5) HTG(2, 8, 4). However, by Corollary 4.6
this graph is also not a normal Cayley graph of G.

The discussion from the paragraph following Proposition 5.3 shows that the only
candidates for the girth 4 HTG graphs that are not normal Cayley graphs of G are the
ones given in the theorem. That K3,3 and the cube graph are indeed isomorphic to
theHTG graphs stated in the theorem is easily verified, while their automorphism groups
are well known. Corollary 4.6 shows that the cube graph in the presentations
HTG(2, 4, 0) and HTG(1, 8, 3) is not a normal Cayley graph of the corresponding
group G while it is a normal Cayley graph of the corresponding group G if we take the
presentation HTG(2, 4, 2). Finally, note first that for ≥m 3 the edges of mGPr( ) are of
two different types. One‐third of them lies on no 4‐cycle while each of the remaining ones
lies on a unique 4‐cycle. The ones that lie on no 4‐cycle thus clearly constitute an orbit of

mAut(GPr( )), which shows that mAut(GPr( )) is isomorphic to the automorphism group
of the corresponding wreath graph W m( ) (see also [11]). The latter can be determined
easily and can be seen to be generated by an elementary abelian 2‐group of rankm and a
dihedral group of order m2 (but see, e.g., [13]). Since the vertex stabilizers are of order
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2m−1 and ≥m 3, the fact that ≤G t tx ty SAut( ; { , , }) 3 implies that this graph is not a
normal Cayley graph of G. □

ACKNOWLEDGMENTS
The author acknowledges support by the Slovenian Research Agency (research program
P1‐0285 and research projects J1‐9108, J1‐9110, J1‐1694, J1‐1695, and J1‐2451).

ORCID
Primož Šparl https://orcid.org/0000-0002-1760-9475

REFERENCES
1. B. Alspach, Honeycomb toroidal graphs, Bull. Inst. Combin. Appl. 91 (2021), 94–114. to appear.
2. B. Alspach and M. Dean, Honeycomb toroidal graphs are Cayley graphs, Inform. Process. Lett. 109 (2009),

705–708.
3. B. Alspach, C. C. Chen, and M. Dean, Hamilton paths in Cayley graphs on generalized dihedral groups, Ars

Math. Contemp. 3 (2010), 29–47.
4. M. Conder, J. X. Zhou, Y. Q. Feng, and M. M. Zhang, Edge‐transitive bi‐Cayley graphs, J. Combin. Theory

Ser. B 45 (2020), 264–306.
5. E. Eiben, R. Jajcay, and P. Šparl, Symmetry properties of generalized graph truncations, J. Combin. Theory

Ser. B 137 (2019), 291–315.
6. I. Estélyi and T. Pisanski,Which Haar graphs are Cayley graphs? Electron. J. Combin. 23 (2016), no. 3, Paper 3.10.
7. Y. Q. Feng, I. Kovács, J. Wang, and D. W. Yang, Existence of non‐Cayley Haar graphs, European J. Combin.

89 (2020), 103146. 12pp.
8. M. L. Fiol, M. A. Fiol, and J. L. A. Yebra, When the arc‐colored line digraph of a Cayley colored digraph is

again a Cayley colored digraph, Ars Combin. 34 (1992), 65–73.
9. A. Hujdurović, K. Kutnar, D. WitteMorris, and J. Morris, On color‐preserving automorphisms of Cayley

graphs, Ars Math. Contemp. 11 (2016), 189–213.
10. K. Kutnar and D. Marušič, A complete classification of cubic symmetric graphs of girth 6, J. Combin. Theory

Ser. B 99 (2009), 162–164.
11. P. Potočnik, P. Spiga, and G. Verret, Cubic vertex‐transitive graphs on up to 1280 vertices, J. Symbolic

Comput. 50 (2013), 465–477.
12. P. Potočnik and J. Vidali, Cubic vertex‐transitive graphs of girth six, Preprint, arXiv:2005.01635.
13. C. E. Praeger and M. Y. Xu, A characterization of a class of symmetric graphs of twice prime valency,

European J. Combin. 10 (1989), 91–102.
14. M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), 309–319.
15. J. X. Zhou and Y. Q. Feng, Cubic bi‐Cayley graphs over abelian groups, European J. Combin. 36 (2014),

679–693.
16. J. X. Zhou and Y. Q. Feng, The automorphisms of bi‐Cayley graphs, J. Combin. Theory Ser. B 116 (2016), 504–532.

How to cite this article: P. Šparl, Symmetries of the honeycomb toroidal graphs,
J. Graph Theory. (2021), 1–11. https://doi.org/10.1002/jgt.22747

ŠPARL | 11

https://orcid.org/0000-0002-1760-9475
https://doi.org/10.1002/jgt.22747



