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Abstract

Beta-amyloid (Af3) in the brain is a key pathological feature of certain neurodegenerative diseases. Recent studies using graph
theory have shown that A[3 brain networks are of pathological significance in Alzheimer’s disease (AD). However, the charac-
teristics of A3 brain networks in Parkinson’s disease (PD) are unknown. In the present study using positron emission tomography
(PET) with ['' C]-Pittsburgh compound B (PiB), we applied a graph theory—based analysis to assess the topological properties of
A3 brain network in PD patients with and without A3 burden (PiB-positive and PiB-negative, respectively) and healthy controls
with A burden. We found that the PD PiB-positive group demonstrated significantly lower value in global efficiency and
modularity compared with PD PiB-negative group. The less robust modular structure indicates the tendency of having increased
inter-modular connections than intra-modular connectivity (i.e., reduced segregation). Results of hub organization showed that
relative to PD PiB-negative group, different hubs were identified in the PiB-positive group, which were located mainly within the
default mode network. Overall, our findings suggest disturbances in A3 topological organization characterized by abnormal
network integration and segregation in PD patients with A3 burden. The stronger inter-modular connectivity observed in the PD
PiB-positive group may suggest the spreading pattern of A3 between modules in those PD patients with elevated PiB burden,
thus providing insight into the beta-amyloidopathy of PD.
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Introduction cortical Lewy body and neurites deposition [3], fibrillary

beta-amyloid (A) plaques, have been identified as the neu-

Parkinson’s disease (PD) is the second most common neuro-
degenerative diseases after Alzheimer disease (AD) and is
considered to be a multi-system disorder combining progres-
sive motor and cognitive impairment [1, 2]. Along with
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ropathological correlates in PD patients with cognitive decline
[4]. One of the imaging biomarkers for assessing A3 deposi-
tion in vivo is the radiotracer carbon 11-labeled Pittsburgh
compound B ([''C] PiB) [5, 6]. In previous studies utilizing
amyloid PET imaging, patients with PD rarely exhibited the
AD range of elevated A3 burden [7-9]. However, other stud-
ies have reported that A deposition in patients with PD may
be associated with future worsening of cognitive performance
[10, 11], indicating the clinical relevance of A3 burden in
patients with PD. A recent study using a principal component
analysis demonstrated that patients with PD have cortical PiB-
binding patterns distinct from AD, suggesting a different A3
pathological contribution in PD [12].

Moving beyond regional pathology, there is an increasing
number of studies investigating the effects of A3 deposition
on whole-brain networks. Brain network analysis based on the
graph-theoretical methods enables us to investigate the under-
lying communication between different brain regions [13, 14],
measuring complex topological properties, such as global in-
tegration (i.e., ability to transfer information to distant
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connections) and local segregation (i.e., capacity for special-
ized processing). To date, there have been few PET imaging
studies which assessed A3 networks constructed from region-
al AR deposition in individuals with mild cognitive impair-
ment and AD patients [15—-18]. Pereira et al. [18] examined
the properties of an A3 network in non-demented participants
with different stages of A3 accumulation and proposed a po-
tential use of topological patterns for assessing the progression
of AD during the preclinical/clinical stages.

In PD patients, the impact of the AP} networks and the
contribution of A3 burden to network abnormality have not
been investigated yet. In this paper, we applied the graph
theoretical analysis to construct an A3 brain network model
that accounted for correlations between regional cortical Af3
retention binding obtained from [''C] PiB-PET scans. Our
main goal was to explore the effect of beta-amyloid pathology
on the organization of the beta-amyloid networks in PD. Our
rationale was that as the pattern of amyloid PET binding in PD
is apparently distinct from AD [12], properties of the A3 brain
network in patients with PD could be indeed different from
that of AD.

Materials and Methods
Participants and Study Design

In total, 30 patients with PD (mean + SD, 65.43 + 6.35 years;
eight female) with and without A3 deposits along with 16
healthy controls (HC; mean + SD, 64.31 +7.99 years; 11 fe-
male) with A3 deposits were identified according to criteria
specified below. The diagnosis of idiopathic PD was made
based on the UK Brain Bank criteria [19]. Exclusion criteria
included a history of head injury, psychiatric or other neuro-
logical diseases, and alcohol or drug dependency or abuse. All
participants were screened for MRI compatibility. Patients
with PD were asked to withdraw from anti-parkinsonian med-
ication for 12 h prior to [''C] PiB-PET imaging scans. The
high-resolution T1-weighted and proton density—weighted
structural MRI scans were performed on a separate day to
minimize excessive fatigue. The experimental procedures
were explained to participants, and written informed consent
was obtained prior to study participation. The study was ap-
proved by the Centre for Addiction and Mental Health
Research Ethics Board.

Disease severity was assessed in patients with PD using the
motor subset of the Unified Parkinson Disease Rating Scale
(UPDRS) and Hoehn and Yahr (H-Y) stages. Levodopa
equivalent daily dose (LEDD) was calculated for each patient
in accordance with a previous study [20]. The averaged
LEDD across the PD patients was 732.28 £425.91 mg. The
Montreal Cognitive Assessment (MoCA) was used to evalu-
ate the overall cognitive performance. We measured the
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depression symptoms of subjects using the Beck Depression
Inventory-II (BDI-II) [21]. Demographic and clinical charac-
teristics are listed in Table 1.

MRI Data Acquisition

For each participant, proton density—weighted brain MRI im-
ages were obtained with the following parameters: oblique
plane, 84 slices; matrix of 256 x 192; 22 cm FOV; 2.0-mm
slice thickness; TE =Min Full; TR =6000 ms; flip angle =
90°. The MRI images were used for co-registration with the
[''C] PiB-PET scan, segmentation, and region of interest
(ROI) delineation. Structural MRI data were collected on a
3-T GE Discovery MR 750 scanner with an eight-channel
radio frequency head coil: a fast-spoiled gradient echo pulse
sequence; repetition time = 6.7 ms; echo time = 3.0 ms; flip
angle = 8°; field of view =230 x 230 mmz; matrix size =
256 x 256 x 200; sagittal slices; and voxel size =0.89 x
0.89 x 0.9 mm’.

PET Data Acquisition and Preprocessing

The [''C] PiB-PET scans were obtained using the Siemens
high-resolution research tomograph (HRRT) scanner. It mea-
sures radioactivity in 207 brain sections with a 1.22-mm thick-
ness. To minimize participant head movement during the scan,
custom-made thermoplastic face masks together with a head-
fixation system (Tru-Scan Imaging) were used. A 10-min
transmission scan with a single photon point source 137Cs
(t1/2=30.2 years, Ey =662 keV) was obtained before the
emission scan for the correction of photon attenuation. To
measure levels of A3 burden, participants were given a bolus
injection of [''C] PiB with the radioactive tracer (mean + SD;
9.64+0.86 mCi) into an intravenous line placed in an
antecubital vein and underwent a 90-min scan at rest. PET
images were reconstructed into a series of 34 frames
consisting of 4 x 155, 8%305s,9%x60s,2x180s, 8 %300 s,
and 3 x 600 s.

Preprocessing of PET data were performed using ROMI,
an in-house automated software [22] and Statistical
Parametric Mapping software (SPMS8; Wellcome
Department of Imaging Neuroscience, London, UK). As pre-
viously described [22], a standard brain template
(International Consortium for Brain Mapping/Montreal
Neurological Institute 152 MRI) containing the predefined
region of interests (ROIs) was non-linearly transformed to fit
the individual high-resolution proton density—weighted MRI.
The resulting individual ROIs were aligned and re-sliced to
match the PET images using a normalized mutual information
algorithm. For ROI analysis, 24 cortical ROIs (12 for each
hemisphere) were delineated based on standardized stereotax-
ic space [23].



Mol Neurobiol (2019) 56:7731-7740

7733

Table 1 Demographic and
clinical characteristics of the
patients with Parkinson’s disease

PD PiB-negative
(n=14)

PD PiB-positive
(n=16)

HC PiB-positive
(n=16)

Sex (M/F)

Age

MoCA

Education (years)

BDI-IT*

LEDD

UPDRS-III

H-Y stage

[''C]-PiB
Amount injected (mCi)
Specific activity (mCi/pumol)
Mass injected (pLg)

12M,2F 10M, 6 F 5M,11F
65.86+£4.90 65.06+7.54 64.31 + 7.99
25.00+3.72 25.56+2.99° 27.44 + 1.50
14.86+3.18 15.94+3.59 16.50 + 3.08
10.5+9.33 8.00+5.84° 3.07 £ 4.57
818.77 +446.99 662.00 +408.67 -

41.64+30.65 (13-93) 29.25+16.69 (10-78) -

2.03+0.50 (1.5-4) 236+0.63 (1.5-3) -

9.78 +0.85 9.51+0.63 9.72+ 1.06
1610.18 +668.49 2003.49 + 878.27 2016.25 + 972.67
1.87+0.81 1.68+1.33 1.61 % 1.02

Mean + SD and range (min.-max.). Statistical significance was determined by a two-sample ¢ test for age, MoCA,
BDI, and chi-square test for gender difference

MoCA Montreal Cognitive Assessment, UPDRS-/I] Unified Parkinson’s Disease Rating Scale III, LEDD levo-
dopa equivalent daily dose, SD standard deviation

“BDI data missing for one subject

® Significant group difference between PD PiB-positive and HC PiB-positive group at P < 0.05

[''C]-PiB retention was expressed as the distribution volume
ratio (DVR) representing fibrillar A3 burden [5] using the Logan
graphic method [24]. The cerebellum was used as a reference
region since it is devoid of significant levels of fibrillar A in PD
[25]. The simplified reference tissue model has been shown to be
an appropriate model for quantifying [''C] PiB data in humans
without arterial input function [26]. The kinetic analysis of [''C]
PiB was performed using PMOD 3.6 modeling software
(PMOD Technologies Ltd., Zurich, Switzerland). The [''C]
PiB index was calculated by averaging DVR values from the
cortical regions including prefrontal, inferior parietal cortex,
precuneus, and occipital cortex [27]. Patients with PD were clas-
sified into two groups based on the [''C] PiB index with the cut-
off of 1.08, which was suggested as the optimal cut-point with
high sensitivity without compromising specificity (sensitivity,
95.5%; specificity, 81%) [28]. For the HC group, one participant
classified as PiB-negative was excluded for further analysis,
resulting in all 16 HCs as PiB-positive.

Network Construction: Node and Edge Definition

We applied a graph theory approach to examine the topological
organization of the A3 network constructed from regional Af3
deposition (Fig. 1a) using the brain connectivity toolbox [29] and
the graph analysis toolbox (GAT) [30]. In the A3 network, nodes
represent predefined 24 bilateral cortical ROIs. The names of the
ROIs are listed in Table 2. Edges denote the linear correlation
between A3 DVR values of every pair of nodes as quantified
with a Pearson correlation. The Af3 brain network was built for
each PD group, wherein the inter-regional correlation matrix was

calculated across individuals in each PD group. This network
construction method has been widely used in previous studies
[17, 31, 32]. In brief, edges of each group’s A3 network indicate
how much amyloid retention of one brain region correlated with
that of another brain region across individuals, representing sim-
ilarity of A3 burden.

Adopting the simple network model, which is an undirect-
ed and unweighted graph, the adjacency binary matrix (i.e.,
defining the topology of the network) was generated, in which
edges were designated as 1 if an edge existed between two
nodes that was larger than the selected threshold, and 0 other-
wise. For group comparison, to ensure that the groups had the
same number of edges, we used the range of the sparsity
threshold from 0.1 to 0.34 in 0.03 intervals [33]. More specif-
ically, sparsity denotes the ratio of the number of actual edges
divided by the total possible number of edges (N(N—1) 2;
Niodes = 24). A minimum sparsity of 10% was selected, con-
sidering the number of edges which is superior to the number
of nodes. Matrix thresholded at the sparsity 31% is represent-
ed in a connectogram along with the ROI spatial maps (Fig.
1b) and modular graph labeled by four subnetworks (Fig. 1c).
We focused on the group difference on graph metrics within
the small-world regime, wherein groups also showed the
small-worldness properties with a range of o> 1. Only the
positive values of the edges were considered.

Topological Analysis

We characterized the topology of A3 network by focusing on
(1) the ability to integrate information between distant brain
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Fig. 1 The characteristics of A3 network in PD PiB-negative (PD PiB-),
PD PiB-positive (PD PiB+), and HC PiB-positive (HC PiB+), respective-
ly. a The Pearson correlation matrices of A3 retention between 24

regions (network integration: global efficiency), (2) the capac-
ity for integrated processing within densely interconnected
groups of regions (network segregation: local efficiency, clus-
tering coefficient, and modularity), and (3) hub organization
(importance of the nodes: degree and betweenness centrality).

First, we assessed the global network properties or the net-
work integration of A} networks by calculating global effi-
ciency which was computed as the average of the inverse of
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regions. Matrices at a sparsity 31% are shown in circular structure plot
(b) and four subnetwork-based modular graphs (c). Each square color
represents one of the networks, such as AUD, VIS, ECN, and DMN

the shortest path length (i.e., number of links) between each
pair of all nodes [34]. Brain networks with high efficiency
indicate that pairs of nodes have short communication dis-
tance; that is, few steps are needed to reach each other, en-
abling efficient global information transfer. Secondly, we in-
cluded local efficiency, clustering coefficient, and modularity
metric to assess network segregation, that is, local connectiv-
ity properties. Local efficiency is defined as the inverse of the
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Table 2 Twenty-four nodes and

its abbreviations Index Brain networks Regions (full name) Abbreviations MNI coordinates
X y Z

1 AUD Lateral temporal cortex LTCR 53 -28 -5
2 LTC.L -52 -28 -5
3 VIS Cuneus Cun.R 14 -87 15
4 Cun.L -12 -87 15
5 VIS Occipital cortex OCC.R 37 -84 1
6 OCC.L -36 -84 1
7 ECN Dorsolateral prefrontal cortex DLPFC.R 23 48 30
8 DLPFC.L =23 48 30
9 ECN Medial prefrontal cortex mPFC.R 7 45

10 mPFC.L -7 45

11 ECN Middle cingulate cortex MCC.R 10 —13 37
12 MCC.L -9 -13 37
13 DMN Anterior cingulate cortex ACC.R 9 41 5
14 ACC.L -8 41 5
15 DMN Orbitofrontal cortex OFC.R 24 44 —18
16 OFC.L —24 44 - 18
17 DMN Posterior cingulate cortex PCCR 10 -56 13
18 PCC.L -9 -56 13
19 DMN Inferior parietal cortex IPC.R 54 —24 27
20 IPC.L -52 —24 27
21 DMN Precuneus PreC.R 15 - 65 41
22 PreC.L - 14 - 65 41
23 DMN Mesial temporal cortex MTC.R 26 -20 - 18
24 MTC.L =27 -19 —18

The odd index represents the right hemisphere while the even index for the left hemisphere. The coordinate
information was calculated by the center of mass for each region

AUD auditory network, VIS visual network, ECN executive cognitive network, DMN default mode network, L

left, R right

shortest path length in subgraph which are neighbors with the
corresponding node, indicating the efficiency of information
exchange between subgraphs [34]. It is considered to measure
the fault tolerance of the network, that is, the efficiency of the
communication within the neighbors of a node; when the
node; is removed [33]. The clustering coefficient of the node
was defined as the density of connections between the node’s
neighbors [35]. Brain networks with higher averaged cluster-
ing coefficients have densely interconnected neighbors, that
is, a cluster, respecting the greater local segregation. In addi-
tion, we estimated modularity index which reflects the extent
of how a network is organized into a modular structure, in
which the nodes are densely connected with each other while
sparsely connected with the nodes of other modules [36].
Lastly, we assessed the relevance of the nodes in the net-
work. The nodal characteristics were computed for the degree
and the betweenness centrality (Be) to examine highly con-
nected regions (i.e., hub) of the A3 brain network. The degree
is defined as the number of edges in a node. Betweenness

centrality of a node i (Be;) is defined as the fraction of all
shortest paths that run through a given node; [37]. A node with
high Be; indicates that information needs to go through the
node, enabling control of information flow. Hubs are consid-
ered crucial components for facilitating the global integrative
process in a brain network, either by having abundant connec-
tions to another node or by being a shortcut path to other
nodes. Therefore, both degree and Be; were used to identify
hubs in A3 network. Nodes with a degree or Be greater than
one standard deviation above the average of all nodes in the
network were regarded as hubs [38].

Statistical Analyses

Statistical significance of the group difference in demographic
and clinical measurement was determined using two-sample ¢
tests and chi-square tests in SPSS software (Version 20.0;
IBM Corp. Armonk, NY, USA). For the network analysis, a
non-parametric permutation test was applied to determine the
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statistical significance of between-group differences. First,
participants of two groups were randomly assigned to one of
the groups. Using the new randomized data set, all graph
measurements were calculated. This randomization procedure
was repeated 5000 times to produce the distribution of the
inter-group difference in the topological metrics as a function
of sparsity. The 95th confidence intervals of the distribution
were used as the critical values for a one-tailed test (P < 0.05).
The rejection of the null hypothesis indicates that the observed
topological parameter difference of the A3 network between
the two groups is significant. To examine the group compar-
ison for each topological metric, we applied additional analy-
ses, such as an area under the curve (AUC) approach as well
as functional data analyses (FDA) as implemented in GAT
[30]. These methods are widely used for avoiding a specific
selection of a thresholding process in graph theory—based net-
work studies [38, 39]. The AUC is the definite integral within
the defined sparsity threshold range. Additionally, FDA,
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Fig. 2 Topological measurements of the AP} network for the two PD
groups and the HC PiB-positive group as a function of sparsity
and integrated AUC results. a Global network property: global
efficiency. b Local network properties: local efficiency, clustering
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depicted as the summation of curves over the sparsity thresh-
old range [40], was also adopted because of hypersensitivity
of AUC at higher network sparsity and insensitivity to differ-
ences in the curve shape rather their mean [30].

Results
Demographic and Clinical Characteristics

Detailed demographic and clinical information are shown in
Table 1. There were no significant differences between PiB-
positive and PiB-negative PD groups in terms of sex (x> (1) =
2.058, P=0.151, chi-square test), age (#(28)=—0.337, P=
0.739, two-sample ¢ test), and years of education (#(28)=
0.867, P=0.393, two-sample ¢ test). We also did not find
any group difference in cognitive impairment (MoCA;
#28)=0.459, P=0.650, two-sample ¢ test) and depression
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coefficient, and modularity. Asterisk indicates that there is a sig-
nificant group difference between PD PiB-positive [PD PiB+] and
PD PiB-negative group [PD PiB—]
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symptom (BDI-II; #28)=-—0.892, P=0.280, two-sample ¢
test). Compared with the HC group, PiB-positive PD group
exhibited a lower general cognitive function measured by
MoCA (#(30)=2.24, P=0.033) and a higher depressive
symptom (#(29) =—2.61, P=0.014).

Altered Network Integration and Segregation
Properties of the Ap Networks in PD PiB-Positive
Group

Figure 2 shows the results of the network metrics over the
entire threshold range. Statistical analyses as a function of
the sparsity revealed that global efficiency was significantly
lower in the PiB-positive group than the PiB-negative group at
sparsity values of 22-31% (P < 0.05); i.e., lower global effi-
ciency indicated that pairs of nodes had longer communica-
tion distances, that is, longer paths between nodes.

Among the network segregation measurements, a signifi-
cant group difference was only found in the modularity. More
specifically, the PiB-positive group compared with the PiB-
negative group had a lower modularity value in a certain spar-
sity range; 13-22%, 28%, and 34%, i.c. reflecting that the
extent of the modular structure (nodes densely connected with
each other while sparsely connected with the nodes of other
modules) was less preserved. There was no statistically sig-
nificant group difference over the entire threshold range for a
mean clustering coefficient and local efficiency.

Like the sparsity-dependent statistical analysis results, a
significant group difference was confirmed in the global effi-
ciency and modularity by the AUC and FDA analyses. Again,
the PiB-positive group showed reduced global efficiency
values (Payc =0.034; Prpa =0.039) and less optimal modu-
lar structures (Payc = 0.021; Prpa =0.034). Altogether, these
observations suggest that the PD-positive A3 network is as-
sociated with relatively sparse intra-modular connections (i.e.,
reduced network integration) and relatively stronger inter-
modular connections (i.e., impaired network segregation)
(Fig. 1).

As expected, the HC PiB-positive group presented a simi-
lar trend of the PD PiB-positive group, but global efficiency
and modularity did not significantly differ between the PD
PiB-negative group and the HC PiB-positive group (Fig. 2),
suggesting that together, neurodegeneration (e.g., alpha-
synuclein deposition) and A3 burden may play an additive
and complementary contribution in affecting network
connectivity.

Hub Organization of the Ap Networks

We examined the hub organization in A3 network between
groups. Hubs are considered a crucial component for facilitat-
ing the global integrative process in a brain network, either by
having abundant connections to another node or by being a

shortcut path to other nodes. Table 3 illustrates hubs for each
group based on the nodal degree and betweenness centrality.
Spatial distribution for hubs in the two groups displayed was
different. Network hubs for the PD PiB-positive group were
found mainly in the default mode network (DMN) and exec-
utive cognitive network (ECN). Significantly different hubs in
the PD PiB-positive group (compared with the PD PiB-
negative) were found in the bilateral inferior parietal cortex
(FDR-corrected P < 0.05 across 24 brain regions; Fig. 3).

Discussion

In the current study, we used network-based analysis to exam-
ine the characteristics of the A3 network and the impact of
elevated A3 burden in PD patients. We demonstrated that the
A network of PD PiB-positive patients was characterized by
altered topological architectures with a reduction in global
efficiency as well as modularity, indicating impaired network
integration and neural segregation.

Regional A3 accumulation in non-demented PD patients is
known to increase with age [11] and is sometimes as-
sociated with more advanced stages of PD [41].
However, we did not find any significant differences
between the PD PiB-positive and PiB-negative groups
in terms of age and PD severity. Thus, it is unlikely
that the abnormal A network was relatively dependent
on aging and disease progression.

Table3  Hubs and nodal characteristics in PD PiB-positive and PD PiB-
negative groups
Region L/ Brainnetworks Be; Degree
R
PD PiB-positive group
Inferior parietal cortex” L DMN 9.1 9.1
: R DMN 42 84
Posterior cingulate cortex R DMN 9.0 7.0
Middle cingulate cortex L ECN 81 63
R ECN 29 717
Dorsolateral prefrontal cortex R ECN 65 7.0
Precuneus R DMN 29 1.7
PD PiB-negative group
Lateral temporal cortex R AUD 9.1 8.0
L AUD 57 69
Posterior cingulate cortex R DMN 5.1 8.0
Middle cingulate cortex R ECN 39 9.7

“Brain region that significantly changed in the PD PiB-positive group
compared with the PD PiB-negative group (at FDR-corrected P < 0.05
across 24 brain nodes)

Be; betweenness of a node 7, DMN default mode network, ECN executive
cognitive network, AUD auditory network, L left, R right
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Fig. 3 Group difference in hubs
between PD PiB-positive and PD
PiB-negative. Red circle indicates

brain regions showing increased \ I PC. L

nodal characteristics in PD PiB-
positive relative to PD PiB-
negative group. IPL.R right infe-
rior parietal lobe, IPL.L left infe-
rior parietal lobe

The reduced global efficiency found in the PD PiB-
positive group indicates that the A3 network in these
patients was associated with poor information transfer in
long-distance connections. Similar findings have been
reported in previous PiB studies of AD [16, 42, 43],
which found either decreased efficiency or longer path.
This is a compelling observation because aggregation of
AP may spread across brain regions with direct neuro-
nal connections [44].

In the current study, a significant group difference for net-
work segregation properties was found only in the modularity,
but not in clustering coefficient and local efficiency. This is
consistent with the previous findings suggesting that the clus-
tering coefficient is less affected than global efficiency in the
carly stage of A3 accumulation [18]. Modularity index re-
flects the extent of how a network is organized into a modular
structure in which the nodes belonging within the same mod-
ule are densely connected with each other while sparsely con-
nected with the nodes of another module. The PD PiB-
positive group demonstrated a less robust modular structure,
indicating the tendency having increased inter-modular con-
nections than intra-modular connections (i.e., reduced segre-
gation). The stronger inter-modular connectivity observed in
the PD PiB-positive group may suggest the spreading pattern
of A3 between modules in PD patients with elevated PiB
burden.

Brain regions characterized by higher connection with oth-
er nodes or bridging between nodes are considered hubs in
network analysis [45]. Those hubs regions were suggested to
play a putative role in A3 spreading, as observed in a previous
PiB-PET imaging study [46]. Despite having shared hubs with
PD PiB-negative group, different hubs were also identified in
the AP network of the PD PiB-positive group located primar-
ily in hetero-modal associations area overlapping with the
DMN. These findings are consistent with the previous evi-
dence of regional A network abnormality in DMN [18].
These new hubs of the PD PiB-positive group were found in
the bilaterally inferior parietal cortex, a region known to be
involved in cognitive tasks of visuomotor integration and
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visuospatial performance [47, 48]. This restructuring of the
hub organization may represent a biomarker of a cognitive
compensatory mechanism in PD.

The HC PiB-positive group showed a trend in global
efficiency and modularity similar to PD PiB-positive but
did not differ significantly from the PD PiB-negative
group. This observation suggests that both the neurode-
generative process (i.e., alpha-synuclein deposition) and
Af burden may play an additive and complementary
role in affecting the AP network organization. Future
studies with longitudinal cohort data are needed to prop-
erly demonstrate the effect of amyloid progression on
the AP network in PD and the relationship between
the cognitive impairment and the alteration of topologi-
cal measurements.

This is the first study demonstrating topological disorgani-
zation, characterized by a reduction in global efficiency and
modularity and altered hub pattern, affecting network
integration and impairing neural segregation in PD pa-
tients with A accumulation. These results are highly
indicative of the spreading pattern of the A between
modules and networks, providing more insights into the
beta-amyloidopathy of PD.
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