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Abstract

A biological network is complex. A group of critical nodes determines the quality and state of such a network. Increasing
studies have shown that diseases and biological networks are closely and mutually related and that certain diseases are
often caused by errors occurring in certain nodes in biological networks. Thus, studying biological networks and identifying
critical nodes can help determine the key targets in treating diseases. The problem is how to find the critical nodes in a
network efficiently and with low cost. Existing experimental methods in identifying critical nodes generally require much
time, manpower and money. Accordingly, many scientists are attempting to solve this problem by researching efficient and
low-cost computing methods. To facilitate calculations, biological networks are often modeled as several common networks.
In this review, we classify biological networks according to the network types used by several kinds of common
computational methods and introduce the computational methods used by each type of network.
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Introduction
Bioinformatics is one of the core areas of natural science in the
21st century. Some studies in this field include [1–23]. Biological
networks have also become a biological research hotspot
because they provide a graph of the whole cell and the entire
organism, thereby enabling researchers to systematically study a
large number of collective biological behaviors and co-expressed
features. Nodes in biological networks represent proteins, genes,
RNA and DNA, among others. Edges in networks correspond to
physical, biochemical or functional interactions among nodes.

Different biological networks can be established based on
different interactions [24]. Common biological networks include
protein–protein interaction (PPI), metabolic, gene regulatory and
signal transduction networks. Individual proteins constitute,
through their interaction, a PPI network to participate in various
aspects of life processes, such as biological signal transmission,
gene expression regulation, energy and substance metabolism
and cell-cycle regulation. Each node in a PPI network represents
a protein, and an edge between two points represents the
relationship between them. A metabolic network refers to a
network of metabolic reactions and regulatory mechanisms
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that control these responses, which describe intracellular
metabolism and physiological processes. A gene regulatory
network is formed by the interactions between genes and genes
in cells (or within a particular genome). A signal transmission
network comprises molecules and enzymes involved in the
signal transduction pathway and the biochemical reactions that
occur between them [25].

Essential genes and essential proteins are related to the sur-
vival of organisms. The identification of essential genes and pro-
teins helps elucidate the minimum requirements of cell survival
and has practical purposes such as drug design [26]. Thus, the
search for essential genes and proteins has attracted increased
attention. Previous researchers have often used experimental
methods of identifying essential genes and proteins, such as
single-gene knockouts, RNA interference and conditional knock-
outs. However, these methods require much time, manpower
and money [27], so computational methods of identifying essen-
tial genes and proteins is important. Indeed, efficient and low-
cost computational methods can quickly and accurately identify
essential genes and proteins in biological networks.

Moreover, the construction of networks with specific charac-
teristics for the nature of different biological networks can help
improve the accuracy and efficiency of computational methods.
For example, a sequential relationship exists between transcrip-
tion factors and regulated genes in regulatory networks; thus,
regulatory networks are generally modeled as directed networks
[28]. To increase the reliability of networks, some specific meth-
ods model these networks as dynamic and weighted by combin-
ing biological information.

In this review, we classify biological networks according
to the network types used by several common computational
methods and introduce the computational methods used by
each type of network. The rest of this review is summarized as
follows. In Sections In undirected network, In directed network,
In weighted network and In dynamic network, we introduce
the computational methods used to find key nodes in undi-
rected, directed, weighted and dynamic networks, respec-
tively. In Section Summary of the methods mentioned, we
summarize the methods mentioned in this review. In Section
Biological network data sets, we describe the data acquisition
method for various biological networks and some instances
of biological networks. Finally, we conclude this review with a
summary.

In undirected network
We define an undirected graph as G = (V, E), whose V is a finite
set of nodes that represents the biomolecules in the network,
and E is a finite set of edges between the nodes. The edge con-
necting two nodes is undirected. A symmetric adjacency matrix
A describes an undirected graph, G. A is a (|V| × |V|) matrix, where
aij = 1 if and only if (i, j) ∈ E; otherwise, aij = 0. Many biological
networks, such as the PPI network, which do not consider the
direction of the action, are often built as undirected networks. In
this section, we introduce the computational methods used in
undirected networks.

Methods based on topological features

Typical centrality measures are usually used in complex net-
works to identify the key nodes. Degree centrality (DC) is the
simplest indicator in characterizing the importance of nodes in a
network. DC thinks that the greater the number of neighbors of a

node, the greater its influence will be. Eccentricity centrality (EC)
is also often used to rank the importance of nodes in a network.
The eccentricity of node v in network G is the maximum value of
the distance from v to other nodes. The more the EC of the node
tends to the radius of the network, the closer the node is to the
center of the network. The more the EC of the node tends to
the diameter of the network, the closer the node is to the edge of
the network. Closeness centrality (CC) calculates the importance
of a node by means of the average of the shortest path from one
node to another. Eigenvector Centrality thinks that the impor-
tance of a node depends not only on the number of its neighbors
(the degree of the node) but also on the importance of each
neighbor. Koschützki et al. [29] discussed these central measures
and showed their suitability in PPI networks and transcriptional
regulation networks.

Betweenness centrality (BC), defined as the number of short-
est paths through the current node in a network, is also a kind
of typical centrality measure. BC portrays the control of a node
on the network flow transmitted along the shortest path in the
network. Based on the analysis of the betweenness measure,
Joy et al. [30] found that proteins with a higher betweenness are
more likely to be critical, and the evolutionary age of the protein
is positively correlated with the value of betweenness.

Subgraph centrality (SC), denoting the number of nodes
appearing in different subgraphs, considers the importance of
the contribution of the nodes in the global loop; the shorter the
loop, the greater the contribution. Estrada [31] used SC to identify
the essential protein in yeast PIN and found that SC performs
better than DC, BC, CC and EC.

Wang et al. [32] presented a new method, SoECC, based on
edge clustering coefficients to identify essential proteins. This
method effectively binds the features of edges and nodes. The
experimental results of the yeast PPI network show that the
number of essential proteins discovered by SoECC is generally
higher than DC, BC, CC, SC, EC, etc.

Many centrality methods focus only on the location of
proteins, ignoring the relationship between protein interactions
(edge features). Wang et al. [33] proposed a new centrality
method, neighborhood centrality (NC), based on edge clustering
coefficients. NC not only considers the centrality of nodes but
also considers the relationship between nodes and neighboring
nodes. The authors used the NC method for the yeast PPI
network and found that NC performed better than the other
methods, such as DC, BC, CC, etc. Also, the NC method is suitable
for different types of networks.

Many essential proteins are not highly connected. By analyz-
ing these proteins, Li et al. [34] found that their neighbors had
little interaction. Therefore, they developed a new local method,
local average connectivity (LAC), to determine the essentiality
of proteins by evaluating the relationship between proteins and
their neighbors. They used the yeast PPI networks, obtained
from two different databases, to validate LAC. The experimental
results of these two networks show that LAC performs better
than DC, BC, CC, EC, etc.

In 2017, Li et al. [35] proposed a new method, ME, which
studied the topological characteristics of key proteins from the
perspective of network motif. Unlike previous centrality metrics,
this approach considers both the centrality of the node and
the relationship between the node containing the topic and its
neighbors. The necessity of a node is determined by the sum of
the density of the nearest neighbor extensions of all the motifs
that contain it. The experimental results show that this method
is superior to traditional topology measures: DC, BC, CC, SC, EC,
information centrality (IC), LAC, NC and MC.
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Methods based on combination of topological features
and biological information

As mentioned above, there are many topology-based com-
putational methods. However, these methods, which contain
many false positives and false negatives, are very sensitive
to the robustness of the network. Therefore, more and more
researchers are beginning to study methods in integrating
topology information and biological information.

Considering that many species already have many known
essential proteins, Li et al. [36] proposed an a priori
knowledge-based scheme to discover new essential proteins
from PPI networks. The authors found that most of the
essential proteins are neighbors of other essential proteins
that tend to be in the same cluster and are co-expressed. Based
on the new scheme, the authors developed two essential protein
discovery algorithms: CPPK and CEPPK. CPPK predicts new
essential proteins based on network topology. CEPPK detects
new essential proteins by integrating network topology and gene
expression. The PPI network, based on Saccharomyces cerevisiae,
verified the performance of CPPK and CEPPK. The experimental
results show that a priori knowledge of the known essential
protein is effective in improving the prediction precision.

SoECC, a method that has good performance, is based
on topology alone. However, SoECC cannot identify essential
proteins that are rarely linked to other proteins. Therefore,
Ma et al. [37] put forward a new centrality algorithm, CSC, in
identifying essential proteins. CSC integrates the topological
features of the PPI network and the in-degree of proteins in the
complex. They used the CSC algorithm to identify proteins in the
S. cerevisiae PPI network. The results show that the proportion
of essential proteins identified by the CSC algorithm is
higher than the results using the other 10 centrality methods:
DC, BC, CC, SC, EC, IC, Bottle Neck (BN), LAC, SoECC and PeC.

Li et al. [38] proposed a new method, GOS, to identify essential
proteins by integrating gene expressions, orthology and
subcellular localization information. The gene expressions and
subcellular localization information are used to determine
whether the neighbors in the PPI network are reliable. When
analyzing the topological features of proteins in a PPI network,
only reliable neighbors are considered. The experimental
results on the yeast PPI network show that the proposed
method, GOS, is superior to the existing methods: DC, BC, CC, SC,
EC, NC, CSC, etc.

Topological centrality measures do not perform well in
single protein data sets, and multi-information fusion measures
are sensitive to the topology of the network. Therefore, Qi
et al. [39] created a novel topology centrality measure, local
interaction density (LID), for predicting essential proteins based
on local interaction density. Different from the previous method,
LID obtains the importance of nodes from the interaction
density among its neighbors by topological analysis of the
real protein in the protein complexes set from the perspective
of the biological module. Thus, LID has certain biological
rationality and is insensitive to the topology of different
networks.

Zhang et al. [40] proposed a new method for predicting key
proteins by integrating Gene expression profiles and Gene Ontol-
ogy (GO) annotation data, named GEG. This method solves the
problem of unsatisfied precision when predicting a small num-
ber of essential proteins, and the method has good robustness
in the case of disturbance. The authors evaluated GEG on two
PPI networks of S. cerevisiae, which achieved better performance
than DC, BC, NC, etc.

Figure 1. An example of detecting the driver nodes in an undirected network. The

concept of an MDS is illustrated in this figure. An MDS is an optimized sub-set of

biomolecules (blue nodes) from which each remaining biomolecule (white node)

can be reached by one step. Blue nodes are driver nodes. We can see different

optimization methods would generate different MDS configurations (there are

four MDSs in the network: A: {1,5}; B: {1,7}; C: {3,5}; D: {3,7}), and it is difficult to

evaluate which one is better.

Methods based on system controllability

Due to the interaction between biomolecules in the biomolec-
ular network, disrupting some biomolecules may affect other
biomolecules, which may cause the entire network to change
state and eventually change cell behavior. Therefore, controlling
cell behavior by regulating certain biomolecules in the network
is one of the most concerned issues in systems biology. The
research on network controllability is to find the fewest nodes
in the network, and exerting control on these nodes can make
the network run to our desired target state. A type of these
nodes, Driver Nodes, which are controlled by different signals,
can offer full control over the network. From the perspective
of network controllability, indispensable proteins and genes can
be seen as the driver nodes. Some researchers have developed
many computational methods to find the driver nodes.

Many models are used to find driver nodes. However, the
existing minimum dominating set (MDS) models have a large
problem in that they generate different MDSs when using dif-
ferent optimization methods (Figure 1). Therefore, the true set
of protein driver nodes cannot be found. To solve this problem,
Zhang et al. [41] created a centrality-corrected minimum domi-
nating set (CC-MDS) model, which includes the heterogeneity in
DC and BC of proteins, based on the theory that a node, which
has high degrees and high betweenness is more likely to be
the controller. Experimental results show that CC-MDS performs
better than the previous standard MDS model.

Methods based on machine learning

With the rapid growth of biological information, biological sci-
ence technology has greatly enriched the biological science data
resources. Machine learning, having the ability to learn from data
and experiences, can extract knowledge from a large amount of
biological data. Finding essential genes and proteins in biological
networks can be considered as a problem of node classification.
Figure 2 shows the workflow of machine learning-based meth-
ods for critical genes and proteins prediction. The advantages of
machine learning–based computing methods are efficiency and
accuracy.

Plaimas et al. [42] proposed an integrated machine learning
approach that combines topological-based methods with
genetic information to predict essential genes when no
experimental knock-out data is available. This method uses
detailed features of network topology, sequence information
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Figure 2. The workflow of machine learning–based methods for critical genes and proteins prediction.

and microarray data to construct a classifier: support vector
machines (SVM). Then the information of the essential genes
obtained through the experimental whole-genome screen was
used as training sets to train the classifier. Finally, the trained
classifier is used in the query organism to predict the criticality
of each gene. This method has found eight targets more than
the experimental method. This prediction method does not
depend on the information of the essential genes of the query
organism but solely on the characteristics that were calculated
from the metabolic network and genomic and transcriptomic
information of the query organism. When the experimental
data on a whole gene knockout screen does not apply to the
organism to be predicted, this method is useful for inferring drug
targets.

In previous studies, more or fewer of the topology and protein
properties were used without considering some basic properties,
such as sequence and protein chemistry. Therefore, Hor et al.
[43] used the improved reverse feature selection method to
select topological properties, protein properties, sequences and
other basic properties as feature sets. Then, using the selected
features, they constructed an SVM model with various feature
subsets, which is improved by LIBSVM and selects radial basis
function as the core function. They used cross-validation to
verify the effect of the improvements. The final results show that
the N9 model (nine features) performs better than subsequent
models.

In order to solve the problem of the unbalanced training
set, difficult parameter selection and algorithm limitation in
machine learning, Nandi et al. [44] proposed a simple but power-
ful SVM-based learning strategy. The authors selected gene and

protein sequences, gene expression and network topological and
flux-based features for Escherichia coli K-12 MG1655 metabolism
as features. With the chosen training characteristics, the method
is capable of capturing the minimal set of essential genes that
are proven necessary in any given environment.

In directed network
Like an undirected network, a directed network graph is defined
as G = (V, E), but the edges in the network are directed. A
directed edge means that two nodes associated with an edge
have a certain order relationship. For example, edge e = (i, j) is
an ordered pair of nodes i and j, where i is the starting point
of e and j is the end point of e. This means, for each edge of
the network, there is a definite direction from the beginning
to the end of the edge. We use such edges to describe the
occurrence of biological reactions. For example, the relation-
ship between the transcription factor and the regulated gene
in the regulatory relationship is an orderly relationship. Thus,
regulatory networks are often constructed as directed networks.
In addition, some computational methods can be used only in
directed networks.

Methods based on topological features

Based on network motifs and principal component analysis,
Wang et al. [28] proposed a new method to characterize the
importance of nodes in a directed biological network and
applied this method to the following networks: a neural, three
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Figure 3. An example of detecting the driver nodes in a directed network. The concept of a maximum matching is illustrated in this figure. Matching is a set of links,

where the links do not share start or end nodes. Maximum matching is to find a maximum set of links that do not share start or end nodes. A matched node is the

node that is pointed to by a link in maximum matching; otherwise, it is unmatched. The unmatched nodes are driver nodes. Two different results are obtained.

transcriptional regulatory and one signal transduction. Their
method performs better than in-degree, out-degree, total degree
and other topological methods.

Methods based on system controllability

Liu et al. [45] applied structural controllability to the human
signal network represented by a directed graph and detected the
driver nodes (Figure 3). Furthermore, they provided a systematic
analysis of the role of different proteins in controlling human
signal networks. Because fewer driving nodes are needed to
control the entire human signal network, the input of different
control signals on the regulatory factors that control cancer-
related genes may be less expensive than directly controlling
cancer-related genes. They introduced a new perspective for the
control of human cell signaling systems.

The main challenge in the analysis of system controllability
of biological networks is the availability of large-scale biological
related networks and an effective tool in analyzing their control-
lability. In response to this problem, Vinayagam et al. [46] synthe-
sized a directed human PPI network and an analysis framework
that describe the structure controllability of a directed weighted
network. According to the effect on the number of driver nodes
in the network, resulting from the removal of a specific protein, a
protein is classified as ‘indispensable’, ‘neutral’ or ‘dispensable’.
‘Indispensable’ nodes are identified as leading disease targets
for mutations, viruses and drugs. Experiments show that con-
trollability analysis is very useful in identifying new disease
genes and potential drug targets.

The MDS, previously proposed, has been successfully used
to analyze large-scale undirected networks and identify cancer-
related proteins. Ishitsuka et al. [47] presented an algorithm that
uses efficient graph reduction to identify critical control nodes in
large-scale directed complex networks, making MDSs available
to directed networks. This algorithm is 176 times faster than the
existing method and increases the computable network size to
65 000 nodes.

Wu et al. [48] analyzed the controllability of the network
structure in the concept of the minimum steering node sets
(MSSs). The node started by the input control signal is called
a steering node. The MSS consists of a minimum number of
nodes driven by input control signals. A comparison of the def-
initions between MSS and MDS shows that each MSS contains
an MDS, whereas the MDS is a maximum subset of the MSS.
They developed a new algorithm that treats MSS as a minimum-

cost maximum flow problem, can be solved in polynomial time
and can find a clear relationship between MDS and MSS. The
application results show that MSSs, rather than MDSs, better
reflect the dynamics of the network and the importance of nodes
for network control. However, because the MSSs of complex
networks are not unique, the importance of different MSSs is
varied in practical applications. Therefore, MSSs with certain
meanings should be studied. Wu et al. [49] proposed a method
of studying the MSSs of a biomolecular network by considering
drug-binding information. Biomolecules in the MSSs with bind-
ing preferences are rich in known drug targets and may have
more chemical-binding opportunities with existing drugs than
randomly selected MSSs, suggesting that this approach may be
drug target identification and drug relocation Promising tools.

Based on recent results for full and structural controllability
of directed networks, which enables a set of driver nodes to
control the whole network, Kanhaiya et al. [50] presented a new
method for the structural controllability of cancer networks
and used it to analyze breast, pancreatic and ovarian cancers.
They found that although many drugs acting on the driver
nodes are part of known cancer therapy, there are some drug
target driver nodes identified by the algorithm that are not
used for any cancer treatment. Experiments have shown that a
better understanding of the dynamics of cancer control through
mathematical modeling may pave the way for new effective
treatments and personalized medicine.

Ravindran et al. [51] modeled the human cancer signal net-
work as a directed graph and explored its controllability. They
used a maximum matching algorithm to identify the driver
nodes, which are divided into backbone, peripheral and ordinary
according to their role in regulatory interaction and network
control. In addition, based on the effect genes have on the size
of the driver nodes set, genes are classified as indispensable,
dispensable and neutral. Discovering these indispensable back-
bone nodes is key to driving the regulatory network into a cancer
phenotype (via mutations) and to a healthy phenotype (as a drug
target).

Noise is widely present in the data of biological networks,
which may be detrimental to the accurate analysis of structural
controllability. Chu et al. [52] proposed a comprehensive analysis
package, WDNfinder, which provides structural controllability
analysis using node connection strength in a directed and
weighted network. The method includes two innovative
algorithms: maximum weight MDS (MWMDS) identification,
MMWDS sampling and node classification. Compared to
existing methods, WDNfinder can significantly reduce the set
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of minimum drive node sets (MDS) under the constraints of
domain knowledge. This method works for any directed and
weighted network.

In weighted network
A weighted network is represented as a weighted graph, G = (V,
E). Each edge, e = (i, j) ∈ E, is assigned with a weight, wi,j, which
represents the relationship between nodes i and j, such as dis-
tance, relevance, probability of interaction, etc. Compared with
unweighted networks, weighted networks provide the strength
of contact between nodes, providing a more accurate analysis of
biological research.

Methods based on combination of topological features
and biological information

Jiang et al. [53] put forward a new computational method, inte-
grated edge weights (IEW), which first ordered the PPIs by inte-
grating their edge weights, then determined the sub PPI network
consisting of those highly ranked edges. Finally, the nodes in
these subnetworks are considered as essential proteins. They
performed IEW assessments on three model organisms: S. cere-
visiae, E. coli and Caenorhabditis elegans. Experimental results
show that this method performs better than the existing tech-
nologies, such as DC, NC, etc.

Li et al. [54] studied the topological structure of key proteins
from a completely new perspective. This was the first time that
a topological potential was used to identify key proteins in a
PPI network. The topology potential was first used to describe
non-contact interactions between particles of matter. The basic
idea is that every protein in the network can be viewed as a
particle that creates a potential field around itself and that all
protein interactions form a topological field on the network. By
defining and calculating the value of the topological potential
of each protein, we obtain a more precise ranking that reflects
the importance of the protein in the PPI network. Experimental
results show that, for predicting key proteins, the topological
potential–based methods, TP and TP-NC, are superior to the
traditional topological methods. In addition, under the control
of topological potential, these central methods have also been
improved in identifying the performance of key proteins in
biological networks.

At present, most of the methods mainly focus on the topol-
ogy of PPI networks and largely ignore gene ontology annota-
tion information. Therefore, Zhang et al. [55] proposed a new
centrality measure, TEO, that identifies essential proteins by
combining network topology, gene expression profiles and GO
information. To evaluate the performance of the TEO method,
they compared it with other methods (degree, mediation, NC,
Pec, etc.) in the detection of essential proteins from two different
yeast PPI datasets. The results show that adding GO information
effectively improves prediction precision. This method is supe-
rior to other methods in predicting essential proteins.

To identify essential proteins in the signal transduction net-
work, first, the importance of proteins in the signal transduc-
tion network must be understood. However, there are relatively
few methods in assessing the importance of proteins in signal
networks. Based on the concept of the minimax distance metric
algorithm (MDMa), Wang et al. [56] developed a new method
in assessing the importance of proteins in signal transduction
networks. The MDMa in a signal transduction network refers
to a set of proteins that propagate signals from the input to

the output in a minimal distance. Applying this method to the
large-signal transduction network of small cell lung cancer, they
found a significant correlation. Useful features that allow the
prediction of the criticality and conservation of proteins are
observed in signal transduction networks.

Because development costs far exceed sales revenue, the
costs, time and risks associated with drug development make
the development of rare-disease drugs unattractive for the phar-
maceutical industry. The potential strategy to address new drug
development challenges and improve existing drug treatment
capabilities is to improve the selection of drug targets and study
new uses for existing approved drugs. Mazandu et al. [57] created
a comprehensive computational framework by using drug-target
association data sets, as well as the human-pathogen functional
interaction network, gene-disease associations, Disease Ontol-
ogy and GO to improve drug development and repositioning
of approved drugs. Their model uses a process-based semantic
similarity that performs better than target-based similarity. In
addition, this computational framework can be used to examine
the applicability of experimentally determined goals and may
constitute a useful tool to guide further experiments.

Methods based on system controllability

In the previous method, key proteins were predicted as the high-
degree nodes on the PPI network. However, due to lack of data,
some key proteins cannot have high connectivity. The network
must be redesigned from other biological data sources. Habibi
et al. [58] defined a minimal set of proteins whose removal would
destroy the largest number of protein complexes. Firstly, the
author built a weighted graph using a given set of compos-
ites. Then, they proposed a more appropriate method based
on betweenness values to diagnose a minimal set of proteins
described above. The experimental results show that the cut set
proposed by the author performs better than other cut sets.

Methods based on machine learning

Most methods ignore the edge dynamics of biomolecular
networks under different conditions, using only the ‘guilt
by association’ principle, which limits their performance. To
solve this problem, Luo et al. [59] proposed an algorithm, DoCE,
which combines ‘guilt by association’ with ‘guilt by rewiring’ of
biomolecular networks for identifying disease genes. First, they
weighted the edges of the PPI network by the differences in gene
co-expression between the case and control samples to obtain
edge dynamics of the biomolecular network. Then, they
extracted features from the weighted PPI network. Finally, they
used logistic regression to identify disease genes. The algorithm
has an area under curve (AUC) value above 0.9. In addition, two
new schizophrenia-related genes were discovered.

Zhang et al. [60] proposed a new method for identifying
complexes on PPI networks based on different co-expressed
information. First, they used Markov clustering algorithms
and edge-weighted schemes to predict complexes on PPI
networks. Then, they proposed some important features such
as graphical information and gene expression analysis to filter
and modify the predicted complex. The authors evaluated their
methods on two yeast PPI networks. Compared with the existing
methods, COACH, ClusterONE and MCL, this method increases
the precision value by at least 0.1752, the F-Measure value by at
least 0.0448 and the Sn value by at least 0.0771.
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Figure 4. The workflow of EssRank.

Methods based on random walk

Can et al. [61] proposed random walks to solve complex/path
member problems on a graph. Random walk technology explores
the global structure of the network by simulating the behavior of
random walkers. Based on the probability of connecting edges,
a random walker starts from the initial node (query node) and
moves to the neighbor node. Finally, the percentage of time
spent on the node gives the concept of its proximity to the
query node. They evaluated the proposed method in three dif-
ferent probabilistic yeast networks. In addition, they compared
the proposed technology with two other existing technologies
in terms of accuracy and runtime performance, thus solving
the scalability problem of graphical analysis technology for the
first time. Experiments show that the random walk method is
suitable for predicting candidate members of a core complex or
part of a known pathway. Compared with the best competitive
technology, random walk technology, at more than 1000 times
the speed, achieves similar or higher accuracy.

Similarly, Xu et al. [62] introduced a new method, essentiality
ranking (EssRank), that ranks the importance of proteins based
on random walks to improve the accuracy of essential protein
detection. To solve the problem that protein interaction data,
obtained by high-throughput experiments, usually contains high
false positives, they proposed the following measures: first, five
types of biological data were used to evaluate the confidence
score of PPIs. Then, a weighted protein interaction network was
constructed, where edge weight is calculated according to the
confidence score and the weighted edge clustering coefficient
(WECC) of the network topology. The weight of the nodes is
the sum of the WECC values of its connecting edges. Finally,
the importance of protein is calculated iteratively through a
personalized PageRank algorithm. Figure 4 shows the workflow
of EssRank. Experimental results on the yeast PPI network show
that EssRank is superior to most existing methods, including
the most commonly used centrality measures (SC, DC, BC, CC

and EC), topology-based methods (NC) and the data integration
method, IEW.

In dynamic network
Since static interactions in static biological networks are
obtained at different moment points and under different
conditions, static graphs cannot fully reflect real networks.
The dynamic network is the network whose network topology
changes with time and the biomolecules in it, which are
highly expressed. Therefore, the computational method used
in the dynamic network is more accurate and of high-quality
performance.

Methods based on combination of topological features
and biological information

PPI data obtained from large-scale, high-throughput experi-
ments generally contain incorrect information. Using raw PPI
data to identify essential proteins is insufficient. How to improve
accuracy has become the focus of identifying essential proteins.
Luo et al. [63] introduced a new method to predict essential
proteins by integrating dynamic LAC and in-degree of proteins
in complexes, combine dynamic LAC with complex centrality
(CDLC). The CDLC was applied to the PPI network of S. cerevisiae.
The results show that CDLC outperforms the other methods: DC,
LAC, SoECC, etc.

Xiao et al. [64] proposed a framework in identifying essential
proteins from the active PPI network constructed by dynamic
gene expression. First, they filtered the interfering genes based
on the dynamic gene expression profile and then constructed
an active PPI network. Afterward, they used six typical central-
ity measures (DC, LAC, NC, BC, CC and SC) to predict essen-
tial proteins in the dynamic PPI network. The experimental
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Table 1. The summary of the methods mentioned above

Method category Summary of the methods

Methods based on topological
features

The methods of this type only use the topology features of the network.
Typical centrality measures (DC, EC, CC, BC and SC) are the simplest but have limited performance.
SoECC, NC and LAC combine the relationship between nodes and nodes or the features of edges to
improve performance. ME learns topological features from the perspective of network motifs. But
these methods can only be used in undirected networks.
[28] is a method based on network motifs and multivariate statistical analysis that can identify
important nodes in directed biological networks.

Methods based on combination of
topological features and biological
information

The methods of this type improve their performance by combining biological information such as
gene expressions, GO annotation data, orthology, subcellular localization information, etc.
CEPPK, CSC, GOS, LID and GEG are some methods of this type used in undirected biological networks.
And GEG can improve the prediction when predicting a small number of key proteins.
To solve the problem of biological information loss in static networks, some works using biological
information to construct weighted or dynamic networks. IEW, TP-NC, TEO and [56, 57] are some
methods of this type used in weighted biological networks. CDLC, EPFOA and [64, 66] work in dynamic
biological networks.

Methods based on system
controllability

The methods of this type consider key nodes identification as the problem of finding the fewest
nodes, which can be controlled, to make the network run to the desired target state in a network.
CC-MDS, a method used in undirected biological networks, which is able to solve the problem of using
different optimization methods will generate different MDSs, based on the theory that a node, which
has high degrees and high betweenness, is more likely to be the controller.
[45–52] work in directed biological networks. [47] makes MDS available to directed networks. [48] treats
MSS as a minimum-cost maximum flow problem, which can be solved in polynomial time. [52] avoids
the effects of noise data by adding MWMDS identification, MWMDS sampling and node classification
algorithms.
[58] builds a weighted network through a given protein complex and solves the problem of the
inability to identify an essential protein that cannot have high connectivity due to lack of data.

Methods based on machine
learning

The methods of this type extract knowledge from a large quantity of biological data and quickly and
accurately recognize critical nodes as node classification problems. But the methods of this type
cannot select features automatically and are difficult to select parameters.
[42–44] work in undirected biological networks. [42] can predict essential genes when no experimental
knock-out data is available. [44] improves classification performance by adding network topological
features of the obtained flux-coupled subnetwork.
DoCE uses rewired information to build a weighted PPI network to obtain edge dynamics of the
biomolecular network. [60] identifies protein complexes based on differential co-expression
information based on the idea that different proteins in the same complex have similar trends in
gene expression intervals.

Methods based on random walk The methods of this type provide a new idea in identifying important nodes in biological networks.
[61] is suitable in predicting candidate members of core complexes or parts of known pathways.
[62] builds a weighted PPI network by combining protein interactions, expression data, functional
annotations, domain interaction, phylogenetic profile and network topology and uses a random
walk–based approach to sort the importance of proteins to improve the accuracy of key protein
detection.

results on the yeast network show that the identification of
essential proteins based on the active PPI network significantly
improves the performance of the centrality measure in deter-
mining the number of essential proteins and recognition accu-
racy. Likewise, the results also show that most of the key proteins
are active.

Lei et al. [65] extended the fruit fly optimization algorithm
(FOA) to identify essential proteins. This algorithm, EPFOA, com-
bines FOA with topological properties and biological informa-
tion to identify essential proteins. The algorithm, EPFOA, not
completely relying on ranking score identification individually,
has the advantage of simultaneously identifying multiple essen-
tial proteins. Firstly, the authors combine the gene expression
data with the static PPI network to build a dynamic network
model. Then they put forward a new topology centrality method
based on GO annotation and edge aggregation coefficient (ECC)
to measure the LAC of the dynamic PPI network. In addition,

the distribution of proteins in each compartment was obtained
based on subcellular localization data, and the role of compart-
ments in the identification of essential proteins was analyzed.
Finally, EPFOA aims to identify the essential protein. Experimen-
tal results show that EPFOA performs better than the existing
essential protein detection methods (DC, EC, IC, SC, NC, LAC,
PeC, etc.).

A protein can interact with different proteins at different
times or conditions. Many existing methods only utilize static
PPI network data that may lose a lot of temporal biometric
information. To solve this problem, Liu et al. [66] combined gene
expression data with traditional static PPI networks to con-
struct the dynamic PPI networks. In order to filter out data
noise, the authors used GO semantic similarity as the network
weight. Finally, after constructing a dynamic PPI network, the
authors proposed a method based on ‘core-attachment’ struc-
ture to detect complexes. The experimental results show that
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Table 2. The summary of the biological network data sets

Network category Biological data and sources Instance [reference number]

PPI network Protein complex sets: MIPS1 database.
Essential proteins of yeast: MIPS1, SGD2, SGDP3 and DEG4 databases.
PPIs of yeast: DIP5, MIPS1, BioGRID6 databases.
Gene expression data of yeast: GEO7 database.
Protein orthologous information: InParanoid8 database.
Protein subcellular localization annotation information of yeast:
COMPARTMENTS9 database.
High-quality protein interactions in H. sapiens: HINT10 database.
Protein complexes in H. sapiens: CORUM11 database.
Disease-associated genes in H. sapiens: UniProt12, OMIM13 and
GAD14 databases.
Human virus-targeted proteins: VirusMINT15 database.
Human transcription factors: TRANSFAC16 database.
PPIs of human: OPHID17 database.
Essential proteins of human: DEG4, BioMart18 and DAVID19 databases.
Directed human PPI data: DirectedPPI20 database.
GO and annotation for yeast: Gene Ontology Consortium21.
Protein domain interactions: DOMINE22 database.

Saccharomyces cerevisiae PPI network [34] Homo
sapiens PPI network [41] Human PPI network [3]
Directed human PPI network [46] Caenorhabditis
elegans PPI network [53] Dynamic yeast’s PPI
network [64]

Metabolic network Genome information of organism-specific metabolic networks:
KEGG23, WIT24, and Ecocyc25 databases.
Essential gene and non-essential genes in yeast: NMPDR26 database.
Known metabolic reactions and enzymes of Arabidopsis: AraCyc27

database.

Escherichia coli metabolic network [4]
Pseudomonas aeruginosa metabolic network [42]
Salmonella typhimurium metabolic network [42]
Arabidopsis metabolic network [5]

Gene regulatory
network

Transcriptional regulation in E. coli: RegulonDB28 database. Caenorhabditis elegans neural network [9] Yeast
transcriptional regulatory network [10] Drosophila
developmental transcriptional network [13]
Human signal transduction network [11]

Signal
transduction
network

Mutant phenotype of mouse genes: MGD29 database.
Orthologous genes: Ensembl Gene30 database.
Small cell lung cancer cell signal transduction pathway: KEGG23

database.

Signaling network in the hippocampal CA1
neuron of a mouse [12] Host immune response
network [13] Guard cell ABA signaling network [14]
T-cell receptor signaling network [15] Human
signaling network [16] An intracellular signal
transduction network [7] Human cancer signaling
network [53] The large signal transduction
network in the small cell lung cancer [56]

Database address:
a http://mips.helmholtz-muenchen.de/proj/ppi/
b http://www.yeastgenome.org/
c http://www-sequence.stanford.edu/group/yeast_deletion_project
d http://tubic.tju.edu.cn/deg/
e http://dip.doe-mbi.ucla.edu/
f http://thebiogrid.org/
g http://www.ncbi.nlm.nih.gov/geo/
h http://inparanoid.sbc.su.se/cgibin/index.cgi
i http://compartments.jensenlab.org
j http://hintdb.hgc.jp/hint/
k http://mips.helmholtz-muenchen.de/genre/proj/corum/index.html
l http://www.uniprot.org/
m http://www.omim.org/
n http://geneticassociationdb.nih.gov/
o http://mint.bio.uniroma2.it/virusmint/
p http://www.gene-regulation.com
q http://ophid.utoronto.ca/
r http://www.biomart.org
s http://www.david.niaid.nih.gov
t www.flyrnai.org/DirectedPPI
u http://www.geneontology.org
v http://domine.utdallas.edu
w http://www.genomejp/kegg/
x http://wit.mcs.anl.gov/WIT2/
y https://ecocyc.org/
z http://www.nmpdr.org
aa http://www.arabidopsis.org/biocyc/
ab http://regulondb.ccg.unam.mx/
ac http://www.informatics.jax.org/menus/expression_menu.shtml
ad http://asia.ensembl.org/index.html
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this method performs well in the detection of protein complexes
in dynamic weighted PPI networks.

Summary of the methods mentioned
We summarize the methods mentioned above in Table 1.

Biological network data sets
The biological network datasets are summarized in Table 2.

Conclusion
Essential biomolecules, such as essential genes and essential
proteins, are related to the survival of organisms and the
selection of drug targets. The traditional way of finding
essential biomolecules through experimental methods requires
extensive manpower, time and money. With the development of
technology and the growth of biological information, we have the
ability to build many types of biological networks. Researchers
model biological networks as follows: undirected, directed,
weighted, dynamic, etc. The biological network provides a
comprehensive view of the cells, or entire organism, allowing
researchers to systematically study a large number of biological
collective behaviors and the characteristics of the expression.
The identification of essential biomolecules in the organism is
regarded as identifying important nodes in the network.

To identify important nodes in biological networks, researchers
have proposed a variety of computational methods, based
on the following features: topological, a combination of
topological features and biological information, machine
learning, controllability and random walks. Methods, based on
topological features, including a variety of centrality methods,
are the simplest, and most of them are suitable for use in
undirected and unweighted networks. The method of combining
topological features and biological information is based on
the topology-based method and takes into account known
biological information. Researchers use this method to weight
nodes or weight the network and construct weighted networks,
dynamic networks, etc. This method is more accurate and
reliable than the method based only on topological features. The
method based on machine learning extracts knowledge from
a large quantity of biological data and quickly and accurately
recognizes critical nodes as node classification problems. The
method based on system controllability considers key nodes
identification as the problem of finding the fewest nodes, which
can be controlled, to make the network run to the desired target
state in a network. However, these methods all require reliable
data. With the development of high-throughput technology,
it is possible to obtain thousands of data from biomolecules
and intermolecular interactions. For example, Next Generation
Sequencing has the advantages of higher throughput, shorter
running time, longer sequencing fragments and lower cost
than traditional sequencing methods and can generate a large
amount of genomic information data at low cost. However,
the disadvantage of Next Generation Sequencing is that its
polymerase chain reaction (PCR) process increases the error
rate of sequencing and has system bias. And sequencing errors
have a negative impact on the construction of the network and
make it difficult to accurately detect essential genes in the
network. Therefore, in the future, to improve the accuracy of
the results, researchers are supposed to consider the reliability
of data when using these high-throughput data and find ways
to reduce the impact of noise data on research, such as the

work of Xu et al. [62] mentioned above. It is also very meaningful
to develop high-throughput technology to produce more reliable
data. The development of high-throughput technology promotes
the advancement of bioinformatics, and the advancement of
bioinformatics facilitates the development of high-throughput
technology. In addition, with the rapid growth of biological data,
deep learning can be well applied in the biological field. Deep
learning methods can extract raw features from massive and
annotated data and then explore the laws behind these original
features. Compared to the methods based on machine learning,
deep learning methods can solve the problem of not being able
to select features automatically, and researchers using this type
of methods do not need to master a priori knowledge. Deep
learning has been applied to many fields in biology, such as
works in [67–69], but the application of deep learning methods
is rarely seen in the field of identifying important nodes in
biological networks. The researchers are supposed to use deep
learning to find critical biomolecules in biological networks in
future research.

Key Points
• The method of combining topological features and bio-

logical information is more accurate and reliable than
the method based only on topological features.

• The method based on controllability identifies key
nodes by looking for driver nodes. The method based
on machine learning recognizes critical nodes as node
classification problems. These two kinds of methods
provide new ideas for key nodes identification.

• The more complete the network (such as directed,
weighted, dynamic network), the better the perfor-
mance of the computational method.
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