
Graph Neural Network-based Virtual Network
Function Management

Hee-Gon Kim∗, Suhyun Park∗, Stanislav Lange†, Doyoung Lee∗, Dongnyeong Heo‡,
Heeyoul Choi‡, Jae-Hyoung Yoo∗, James Won-Ki Hong∗

∗Computer Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea

{sinjint, sh.park11, dylee90, jwkhong, jhyoo78}@postech.ac.kr

†Information Security and Communication Technology, Norwegian University of Science and Technology, Trondheim, Norway

stanislav.lange@ntnu.no

‡Information and Communication Engineering, Handong Global University, Pohang, South Korea

{21931011, hchoi}@handong.edu

Abstract—Software-Defined Networking (SDN) and Network
Function Virtualization (NFV) help reduce OPEX and CAPEX
as well as increase network flexibility and agility. But at the
same time, operators have to cope with the increased complexity
of managing virtual networks and machines, which are more
dynamic and heterogeneous than before. Since this complexity
is paired with strict time requirements for making management
decisions, traditional mechanisms that rely on, e.g., Integer Lin-
ear Programming (ILP) models are no longer feasible. Machine
learning has emerged as a possible solution to address network
management problems to get near-optimal solutions in a short
time. In this paper, we propose a Graph Neural Network (GNN)
based algorithm to manage VNFs. The proposed model solves
the complex VNF management problem in a short time and gets
near-optimal solutions.

Index Terms—Virtual Network Function, Machine Learning,
Graph Neural Network.

I. INTRODUCTION

Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) enable more efficient network manage-

ment by allowing administrators to manage the network cen-

trally and dynamically. The SDN controller and NFV manager

provide global views of the network and NFV environment,

and operators can use those to manage the network and service

orchestration. Also, they can prevent the over-provisioning of

resources and provide high availability by scaling and opti-

mizing Virtual Network Functions (VNFs). However, although

SDN/NFV enable efficient network management, they do not

provide the optimal management solutions we need.

Integer Linear Programming (ILP) is one of the optimization

methods for network management. ILP aims to minimize a lin-

ear cost function and uses a set of linear equality and inequality

constraints to get an optimal solution. However, finding the

optimal solution based on ILP takes a relatively long time,

making it unsuitable for real-time network management.

Recently, Machine Learning (ML) is emerging as a new

paradigm to solve various networking problems and to au-

tomate network management. ML provides models that
automatically learn and improve from experiences without
being explicitly programmed [1]. ML takes some time to

learn, but takes little time after learning. Also, ML is more
effective in learning wide and dynamically changing data
than statistical methods [2]. However, while ML has these

advantages, it is not easy to apply ML to network management.

In order to apply ML to network management, it is nec-

essary to provide sufficient network data and corresponding

optimal management data as label data. Of course, well-

designed ML models are also needed. Currently, there are only

dozens of data available for network management, and these

data target a small range of network management. Also, most

of the studies use simple ML models for network management,

and these models cannot understand the network structures or

topologies [3]. Thus, the current studies are limited to solving

simple problems and they do not show enough merit of ML

compared to the other ML research areas.

In this paper, we generate dynamic and diverse network

data, and represent the network states as label data. Also,

we proposed to use Graph Neural Network (GNN) for VNF

management. Our model uses network data represented by a

graph and learns the state embedding [4] of nodes. This model

effectively learns the network structure and generates near-

optimal solutions in a short time.

II. RELATED WORK

In this section, we introduce several studies that are relevant

to our study. The orchestration of VNF is derived from [5]. It

points out the execution time problem of ILP and proposes

a heuristic method. The proposed heuristic method shows

fast execution time, but it generates a sub-optimal solution.

ML-based VNF management is presented in [6]–[9]. These

papers target only simple problems such as optimal VNF

instance number [6], [7] and VNF chaining [8], [9]. There is an

approach to graph-based ML in [10]. The approach is a little

Authorized licensed use limited to: Universität Leipzig. Downloaded on December 01,2021 at 09:08:39 UTC from IEEE Xplore. Restrictions apply.

similar to GNN based network management, but it focuses

more on graph theory and introduces core concepts only. The

GNN based VNF resource prediction is proposed in [11]. It

predicts resource usage using GNN and scales resources sub-

optimally. Besides, the proposed ML-based resource scaling

method is validated by comparing it with the human manual

scaling in terms of the latency measured in post-scaling.

However, this study lacks to validate whether the result is

optimal because the proposed method does not compare itself

with the optimal scaling method. Although GNN can represent

graph data well, the method is not adequate to predict future

data without recurrent models. The models simply follow

historical resource data rather than predict future data.

Our model uses GNN to better represent network infor-

mation. Our proposed model produces more specific and

more realistic VNF management policies rather than merely

predicting the overall number of VNF instances or network

resource usage. We created three VNF policy classes (add,
remove, none) and predicted policies for all network servers

and VNF types.

III. PROBLEM DEFINITION

A. Physical Network

We represent the physical network as an undirected graph

G = (N,E), where N and E denotes the set of nodes and

links. We classify nodes into the server s ∈ N that can deploy

VNFs and the switch that cannot deploy VNFs. Supposing

cs ∈ R+ is the number of CPU cores and Vs is the deployed

VNFs on s, server data D has Ds = (cs, DVs
) for all s, where

DVs
is the deployed VNF data on server s.

The physical links E have L and C denoted by link data and

connection data. For (i, j) ∈ E, the link has Lij ∈ L defined

as (mij , bij , dij), where mij ∈ R+, bij ∈ R and dij ∈ R+

is the maximum bandwidth, available bandwidth and delay

between node i and j. The link also has Cij ∈ C, the indicator

whether the link is between the nodes.

Cij =

{
1 if i = j or there is a link between node i and j,

0 otherwise.

B. Virtual Network Function

Supposing T is the set of VNF types, each VNF has

different VNF type t ∈ T . The VNF type decides the

number of the required CPU cores, processing capacity, pro-

cessing delay, and deployment cost represented by Et ∈
R+, τt (in Mbps), δt (in ms), Ft ∈ R, respectively. We define

deployed t type VNF as Vst ∈ Vs. Vst has dedicated data Dst.

We assume that Ist ∈ R+ is the VNF instance number and

τt (in Mbps) , κst (in Mbps) is the maximum capacity and

used capacity. We represent the deployed VNF type data Dst

as follows:

Dst =

{
(Ist, τt, κst) if Vs has type t,

0 otherwise.

Now, the deployed VNF data DVs can be expressed as⋃
t∈T Dst.

C. Service Request

Let the network receives many different service requests

by users. Ψ is the set of services, and a service is ν ∈ Ψ
represented by (wν , uν , dν , φν , pν , βν , γν). wν , uν ∈ N are

the ingress and egress switch, respectively. dν ∈ R+ is the

running time of the service and pν ∈ R is the penalty

cost of Service Level Agreement (SLA) violation. φν is the

service request type that represents ordered VNF sequence.

βν (in Mbps) , γν (in ms) are the bandwidth demand of the

traffic and max latency of SLA violation, respectively.

D. VNF Management

The objective of VNF management is to reduce network

OPEX while guaranteeing service requirements [5]. To achieve

this objective, the optimal number of VNF instances should

be deployed on optimal locations (servers) while considering

several requirements, i.e., service constraints and the physical

network. The VNF management policy can be expressed as

add or remove specific type of VNFs on specific servers. We

regard this policy as a classification for all servers and VNF

types.

IV. GRAPH NEURAL NETWORK

A. Graph Neural Network

ML is a promising technique in many research fields such

as natural language processing and computer vision. Most of

these fields use Euclidean domain data, and Convolutional

Neural Network (CNN) [12] and Feed Forward Neural Net-

work (FNN) are usually used to learn the data. Recently, ML is

used in chemistry and biology, but CNN and FNN cannot learn

their data because their data is usually non-Euclidean graph

data. This non-Euclidean graph data contains rich relational

information between each pair of neighboring elements and

represents many kinds of graph structure data, i.e., social

networks, physical systems [13]. Thus, the graph data gets

attention and motivates to derive GNN.

GNN is the generalized model of CNN. GNN uses graph

data as input, but it shares many things with CNN. While CNN

uses the local connection between data and shares weights to

reduce the computational cost [14], GNN uses the connection

in the graph and share weights [13]. GNN is also motivated

by graph embedding [4] that learns to represent graph infor-

mation about nodes, edges, and sub-graphs. However, graph

embedding does not share weights and it has a generalization

problem [15].

The objective of GNN [16] is to learn state embeddings [4]

and obtain outputs. Let x and h denotes the input features and

hidden states. When co[v] is the set of edges connected to v
and ne[v] is set of neighbors of node v, we can define state

embedding and output using hv and ov as follows:

hv = f(xv, xco[v], hne[v], xne[v])

ov = g(hv, xv),

xv, xco[v], hne[v], xne[v] is the features of v, feature of edges

connected to v, the states of neighborhood nodes of v, features

Authorized licensed use limited to: Universität Leipzig. Downloaded on December 01,2021 at 09:08:39 UTC from IEEE Xplore. Restrictions apply.

of the neighborhood nodes of v. f is transition function and

g is output function.

H,O,X,XD are stacking variable of all the states, out-

puts, graph features and node features, respectively. F,G are

global transition function and global output function. The H
is the banach’s fixed point [17] and uniquely defined with

contraction map F .

H = F (H,X)

O = G(H,XD),

The function f and g can be a neural network (e.g, FNN,

CNN, RNN), and the model updates H until the learning

process is finished. We define target information and output

of node i as ri and oi, respectively. Then, the loss can be

represented as follows :

loss =
∑
i=1

(ri − oi)

Fig. 1. Edge-conditioned filtered Graph Convolutional Neural Network

B. Edge-conditioned Filtered Graph Convolutional Neural
Network

We use Edge-conditioned Filtered Graph Convolutional

Neural Network [18] to get a near-optimal solution for VNF

management. Supposing an undirected graph Ḡ = (N̄ , Ē),
we define a set of nodes and edges as N̄ with |N̄ | = n̄ and

Ē ⊆ N̄ × N̄ with |Ē| = m̄. We assume l ∈ {0, .., lp} as

FNN layer in each learning iteration. All nodes and edges

have labeled data that are defined as labeling function X̄ l and

L̄, respectively. Supposing d̄l and s̄ are the number of node

features and edge features respectively, X̄ l : N̄ �→ Rd̄l assigns

nodes to labels (node features) and L̄ : Ē �→ Rs̄ assigns edges

to labels (edge features). We consider X̄0 as the first input

features. The neighborhood nodes of node ī are represented

by η(̄i) = {j̄|(̄i, j̄) ⊆ Ē} ∪ {̄i}, where ī, j̄ ∈ N̄ .

GNN model usually uses neighborhood information to make

new states for nodes. One of the easiest ways to make new

states is the weighted sum method. The weighted sum method

does not need to consider the order and sizes of nodes.

However, this method has the disadvantage of smoothing

structural information [18]. To overcome the disadvantage,

Edge-conditioned Filtered Graph Convolutional Neural Net-

work generates edge filters. Filter generation function F l :
Rs̄ �→ Rd̄l×d̄l−1 is FNN, and it generates filter matrix θ̄ that is

multiplied by the feature sets of neighborhoods. By averaging

the multiplied values, a new node label is generated. Supposing

F l is parameterized by weight parameter w̄l, X̄ (̄i) can be

defined as follows with bias parameter b̄l:

X̄ l(̄i) =
ī

|N̄ |
∑
j̄∈N̄

F̄ l(L̄(j̄, ī); w̄l)X̄ l−1(j̄) + b̄l

=
ī

|N̄ |
∑
j̄∈ ¯̄N

θ̄lj̄ī(j̄)X̄
l−1(j̄) + b̄l

We can regard X̄ l(̄i) as the state from the lth transition

function. The process of the obtaining X̄ l(2̄) is shown in the

Fig 1. After obtaining the states, we can get the output using

output transition function.

C. GNN for VNF Management

Some studies try to use ML to manage VNFs. However,

they treat the network data as numeric data rather than the

graph data [6]–[8]. They just make one long table and put all

network data into the table. However, this table data is just

numeric values of network components and cannot fully rep-

resent network structure. The data does not have connectivity

information among network components, and this deficiency is

one of the factors of the performance bottlenecks. In this paper,

we use GNN and treat network data as a graph. The graph has

connectivity information [13] and it can provide the network

structure data [13]. Compared to the other VNF management

studies [6]–[8], our VNF management problem is much more

difficult to solve. We decide the number of instances and

locations for all nodes and all VNFs types instead of deriving

the only optimal number of VNF instances. This is not an

easy task and requires many network information and useful

learning model. However, we can get the solution by using

GNN. Also, our model can make VNFs management decisions

more specific and realistic.

TABLE I
SERVICE CATALOG [6]

Service id Type (φ) Proportion
1 NAT - Firewall - IDS 0.6
2 NAT - Proxy 0.1
3 NAT - WANO 0.2
4 NAT - Firewall - WANO - IDS 0.1

V. DATA GENERATION

A. Service Request Generation

We generate service requests and request lists. Whenever

a new service request is generated, the list is also generated.

The request lists contain several service requests whose service

time d is not expired yet. These lists suppose a realistic

Authorized licensed use limited to: Universität Leipzig. Downloaded on December 01,2021 at 09:08:39 UTC from IEEE Xplore. Restrictions apply.

network situation where multiple services are provided simul-

taneously. Supposing νnew is the newest generated request and

μ is the request list id and â is an arrival time of request, we

can represent the request list as follows:

πμ+1 = {νnew} ∪ πμ ∩ {x : dνx > âνnew
− âνx}

We use internet2 traffic pattern for generating service re-

quests. Fig 2 is the one week traffic pattern that generated

from real networks [19]. We generate 3 requests per minutes

according to proportion P of the request type φ in Table I.

Also, we discard 3 ∗ (1 − normalized traffic volume in Fig 2)

requests per minutes to follow the traffic pattern. Each request

has normalized arrival time (mean = 1/6Pφ, s.d = 7.5) and

service time d as |100 + �|, where � is a random value in

normalized value (mean = 50, s.d = 25).

Fig. 2. Normalized traffic pattern of Internet2 network

Each request has a different max latency of SLA violation

that is randomly determined between 700ms and 750ms. The

bandwidth of the service is randomly chosen between 40000

Mbps and 50000 Mbps. We suppose all services have the same

SLA penalty as 1E-7.

B. Network Data Generation

Fig. 3. Internet2 network topology

We use internet2 network topology in Fig 3. The topology

consists of 12 nodes and 15 edges. We suppose all nodes

are servers, and all nodes can be a source and destination

of services. Each server and edge has information of available

CPU cores, bandwidth, and delay. All servers have the same

specification in Table II. We also set the energy consumption

cost and transition cost in the Table II and Table III shows the

VNF catalog we used.

Whenever a new request list is generated, we collect current

network data (D,L,C). Then, we use ILP to get optimal VNF

polices for the current network with the request list. When ILP

finds the optimal VNF polices, we change the current network

configuration to optimal network configuration. This process

is repeated until all of the generated data is handled.

TABLE II
SERVER AND COST INFORMATION

Server specification [5]
Idle Energy

Consumption (eie)
Peak Energy

Consumption (epk)
CPU Cores

(Cspec)
80.5W 2735W 160

Energy consumption cost (λenergy)
0.1

Transition cost per bit (λtransit)
3.62E-7

TABLE III
VNF CATALOG [20]

Network
Function

CPU Required Processing
Capacity

Processing
Delay

Firewall 4 900Mbps 45ms
Proxy 4 900Mbps 40ms
IDS* 8 600Mbps 1ms
NAT 1 900Mbps 10ms

WANO** 4 400Mbps 5ms

IDS* : Intrusion Detection System
WANO** : Wide Area Network Optimizer

C. ILP Calculation

We use specific ILP equations to get optimal VNF policy.

This ILP solution reduces OPEX and gets optimal VNF

instance numbers and locations [5]. It calculates the VNF

deployment cost, energy cost, traffic forwarding cost, SLO

violation cost and resource fragmentation cost. As we set all

VNF deployment cost as zero, we only consider four costs.

Energy cost:

E =
∑
n∈N

∑
t∈T

Ist(eie + (epk − eie)
Et

Cspec
)λenergy

Traffic forwarding cost:

Wνt1t2
s1s2 =

{
1 if Vs1t1 has traffic between Vs2t2 for ν

0 otherwise.

J μt1t2
s1s2 =

∑
ν∈πμ

∑
t1,t2∈T

Wνt1t2
s1s2 βν

T =
∑
s1∈N

∑
s2∈η(s1),
s2<s1

(J μt1t2
s1s2 − J (μ−1)t1t2

s1s2)λtransit

SLO violation cost:

φ̂ν is the VNFs set of φv.

Authorized licensed use limited to: Universität Leipzig. Downloaded on December 01,2021 at 09:08:39 UTC from IEEE Xplore. Restrictions apply.

S =
∑
ν∈πμ

max(
∑
t∈φ̂ν

δt+
∑

t1t2∈T
s1∈N

∑
s2∈η(s1),
s2<s1

Wνt1t2
s1s2 ds1s2−γν , 0)pν

Resource fragmentation cost:

F =
∑
s∈N,
Vs �=0

(Cspec −
∑
t∈T

IstEst)λcore

+
∑
s1∈N

∑
s2∈η(s1)

max(J μt1t2
s1s2 , 0)

J μt1t2
s1s2

(ms1s2 − J μt1t2
s1s2)λband

(λcore : cost of CPU cores, λband : cost of bandwidth)

The objective of ILP is minimizing (áE+ b́T+ ćS+ d́F) [5].

á, b́, ć, d́ is a weighting factor.

Fig. 4. Generation of the label data

D. Learning Data Set Generation

We generate the learning data set for ML. Whenever a

new request is generated, the feature data is generated from

the network data (D,L,C) and service request (ν). At the

same time, the label data is also generated by classifying

the difference between the current deployed VNFs and the

ILP-based VNF deployment solution as Fig 4. The three

management policies are used for classification.

The learning data consists of numeric data and categorical

data together. We normalize all numeric data and apply one-

hot encoding for categorical data. The network data should be

represented as a graph. We convert D as matrix that size is

node number × node feature number. C, L is also converted

as node number × node number size matrix.

VI. LEARNING PROCESS

We implement an ML model using tensorflow backend.

The learning process is shown in Fig 5. The network data

is converted as graph data, and GNN uses these data as input.

GNN learns the state embedding of the nodes, and then we

concatenate the state embedding with a service list. FNN

Fig. 5. GNN-based VNF management policy learning model

learns the concatenated data and makes the output. We use

three FNN layers and apply a batch normalization and dropout

(0.5) to each layer.

Because each data set is used to classify 60 policies into

the three classes of VNF management policy as shown in

Fig 4, the last FNN layer has 180 output. For each policy, we

apply softmax and use cross-entropy as a sub-loss function.

The objective loss function is the sum of the sub-loss function

multiplied class weight. The class weight is the reciprocal of

each class ratio of the data. The VNF policies are usually

imbalance and this imbalance can degrade the performance of

learning. Thus, we multiply the sub-loss functions with class

weights following the label class as below:

loss function =
∑
s∈N
t∈T

3∑
i

lsti log(osti)
Ast

1 +Ast
2 +Ast

3

Ast
i

(lsti , osti , Ast
i : label, output, number of class when policy

is i and server is s and VNF type is t)

Fig. 6. Confusion matrix of the prediction results

VII. EXPERIMENT

We use 20,000 data set described in V. We split the data

into 12800, 3200, 4000 as training, validation, and test, respec-

tively. We use Stochastic Gradient Descent (SGD) optimizer

and the learning rate is 0.01. Our GNN has 15 dimension for

each node output state and three FNN layer has 700, 500, 180

hidden states. The total number of parameters is 678K.

The prediction result of the test data set is shown in

Fig 6. The total accuracy of prediction is 0.806 and add,

Authorized licensed use limited to: Universität Leipzig. Downloaded on December 01,2021 at 09:08:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Recall of add, remove, none

remove, none class have 0.947, 0.470, 0.820, respectively. Our

model has a high prediction accuracy for add class, while the

prediction accuracy for remove class is low. Interestingly, we

can find the model tended to predict the remove class as none
class. The reason for this phenomenon is that the ILP solution

is used for generating label data. ILP weights more on SLA

violation cost than the energy cost, and resource fragmentation

cost. Thus, the model tends to be conservative to remove VNF

that can make SLA cost.

The recall result of each node is shown in Fig 7. The recall

of add class is almost the same for all nodes, but the recall

of remove class is low for node 7, 9, 10. These nodes have

less than 4 CPU cores and located outward. It means that

these nodes cannot deploy VNFs excluding NAT and cannot

be included in the routing routes many times due to delay

constraint. Thus, these nodes do not remove NAT to deploy

other VNFs or to change routes. Thus, the model has difficulty

learning to remove class for these nodes.

VIII. CONCLUSION

In this paper, we proposed a method of managing VNF

using Graph Neural Networks (GNNs). Our model uses net-

work data as graph data and learns the state embedding of each

node. Then, we concatenate states of node and service requests

to find optimal VNF management action. Our model solves

complex VNF management problems. The model considers

many network constraints that include limitations of physical

network and requirements of service requests and VNFs.

In the experiment, our model provides near-optimal VNF

management policy within a reliable time.

IX. ACKNOWLEDGMENT

This work was supported in part by Institute of Informa-

tion & communications Technology Planning & Evaluation

(IITP, Development of virtual network management technol-

ogy based on artificial intelligence) under Grant 2018-0-00749.

REFERENCES

[1] Arthur L Samuel. Some studies in machine learning using the game
of checkers. IBM Journal of research and development, 3(3):210–229,
1959.

[2] Altman N. Krzywinski M. Bzdok, D. Statistics versus machine learning.
Nat Methods, 15:233—-234, 2018.

[3] Raouf Boutaba, Mohammad A Salahuddin, et al. A comprehensive
survey on machine learning for networking: evolution, applications and
research opportunities. Journal of Internet Services and Applications,
9(1):16, 2018.

[4] Hongyun Cai, Vincent Zheng, et al. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions
on Knowledge and Data Engineering, 30(9):1616–1637, 2018.

[5] Faizul Bari, Shihabur Rahman Chowdhury, et al. Orchestrating virtu-
alized network functions. IEEE Transactions on Network and Service
Management, 13(4):725–739, 2016.

[6] Stanislav Lange, Hee-Gon Kim, et al. Predicting VNF Deployment
Decisions under Dynamically Changing Network Conditions. In Inter-
national Conference on Network and Service Management, 2019.

[7] Sabidur Rahman, Tanjila Ahmed, et al. Auto-scaling vnfs using machine
learning to improve qos and reduce cost. In 2018 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2018.

[8] Jianing Pei, Peilin Hong, and Defang Li. Virtual network function
selection and chaining based on deep learning in sdn and nfv-enabled
networks. In 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), pages 1–6. IEEE, 2018.

[9] R. Shi, J. Zhang, W. Chu, et al. Mdp and machine learning-based
cost-optimization of dynamic resource allocation for network function
virtualization. In IEEE International Conference on Services Computing,
2015.

[10] Wolfgang Kellerer, Patrick Kalmbach, et al. Adaptable and data-
driven softwarized networks: Review, opportunities, and challenges.
Proceedings of the IEEE, 107(4):711–731, 2019.

[11] R. Mijumbi, S. Hasija, et al. A connectionist approach to dynamic
resource management for virtualised network functions. In International
Conference on Network and Service Management (CNSM), 2016.

[12] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series, the handbook of brain theory and neural
networks, 1998.

[13] Z. Liu and J. Zhou. Introduction to Graph Neural Networks. 2020.
[14] Fan RK Chung and Fan Chung Graham. Spectral graph theory.

Number 92. American Mathematical Soc., 1997.
[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In Advances in neural information processing
systems, pages 1024–1034, 2017.

[16] Franco Scarselli, Marco Gori, et al. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[17] Mohamed A Khamsi and William A Kirk. An introduction to metric
spaces and fixed point theory, volume 53. John Wiley & Sons, 2011.

[18] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned
filters in convolutional neural networks on graphs. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
3693–3702, 2017.

[19] Yin Zhang. Abilene traffic matrices, 2004.
[20] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of

network virtualization. Computer Networks, 54(5):862–876, 2010.

Authorized licensed use limited to: Universität Leipzig. Downloaded on December 01,2021 at 09:08:39 UTC from IEEE Xplore. Restrictions apply.

