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Abstract
This work elaborates on the old problem of measuring the degree of similarity, say

fðG;HÞ, between a pair of connected graphs G and H, not necessarily of the same

order. The choice of a similarity index f depends essentially on the graph properties

that are considered as important in a given context. As relevant information on a

graph, one may consider for instance its degree sequence, its characteristic poly-

nomial, and so on. We explore some new similarity indices based on nonstandard

spectral information contained in the graphs under comparison. By nonstandard

spectral information in a graph, we mean the set of complementarity eigenvalues of

the adjacency matrix. From such a spectral perspective, two distinct graphs G and

H are viewed as highly similar if they share a large number of complementarity

eigenvalues. This basic idea will be cast in a rigorous mathematical formalism.
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1 Introduction

All graphs considered are undirected, unlabeled, loopless and without multiple

edges. The attention is further restricted to graphs that are connected. Let C be the

set of connected graphs. The characteristic polynomial uGðkÞ :¼ detðkI � AGÞ of a

graph G is unambiguously defined because the adjacency matrix AG is unique up to

permutation similarity transformation. As observed in Collatz and Sinogowitz [8],

knowing the characteristic polynomial is not enough to determine the graph itself.

Two distinct graphs with the same characteristic polynomial are said to be

cospectral. Cospectral pairs can be found already among connected graphs of order

6. Cospectral graphs have always the same number of vertices and the same number

of edges, but they may not resemble each other; compare for instance Q1 and Q2 in

Fig. 1. Various substitutes for the characteristic polynomial are proposed in the

literature. For instance, Cvetković et al. [10] introduce the generalized character-

istic polynomial

/Gðk; lÞ :¼ detðkI � AG þ lDGÞ;

where DG stands for the degree matrix of G. Note that /G is a bivariate polynomial

such that /Gðk; 0Þ ¼ uGðkÞ. Cospectrality relative to /G is a stronger property than

usual cospectrality. Wang et al. [29, Theorem 2.1] show that if two graphs have the

same generalized characteristic polynomial, then they resemble each other in at least

one important aspect: they have the same degree sequence, cf. Fig. 2.

This result is worthwhile mentioning because the usual characteristic polynomial

does not determine the degree sequence. As tool for distinguishing graphs, Liu [17]

suggests to use the generalized permanental polynomial

pGðk; lÞ :¼ perðkI � AG þ lDGÞ:

Liu [17] asserts that the generalized permanental polynomial is able to distinguish

all graphs of order up to 9 and it is also quite efficient for distinguishing graphs of

higher order. For instance, there are almost 12 million connected graphs of order 10

and roughly 20% of them have a cospectral mate; by contrast, only a few pairs of

connected graphs of order 10 have a common generalized permanental polynomial.

Some of these pairs are shown in Fig. 3. Two distinct graphs with the same gen-

eralized permanental polynomial are said to be generalized co-permanental. We

would like to draw the attention of the reader to the following fact: the generalized

permanental polynomial fails to distinguish the connected graphs X1 and Y1 in

Fig. 3, but these graphs look fairly ‘‘similar’’. The same remark applies to the pairs

fX2; Y2g, fX3; Y3g, and fX4; Y4g. In a sense, a possible misidentification made by the

Fig. 1 Q1 and Q2 are cospectral, Q3 and Q4 have their own characteristic polynomial
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generalized permanental polynomial is not a too serious mistake. Failing to dis-

tinguish X1 and Y1 is not so dramatic after all, it would have been worse to

misidentify two graphs that look completely different.

1.1 The Concept of Similarity Index

The specific question that we would like to address in this work has to do with the

previous discussion on graph determination. It reads as follows: is there a reasonable

way of measuring the degree of similarity between two connected graphs, not

necessarily of the same order? We allow the graphs to have possibly different orders

because such a relaxation gives more flexibility to the theory of similarity indices

that we wish to develop. The question under examination concerns the choice of a

similarity index on C.

Definition 1 A similarity index on C is a function f : C � C ! R satisfying the

following axioms:

A1Þ fðG;HÞ ¼ fðH;GÞ
A2Þ 0� fðG;HÞ� 1

A3Þ G ¼ H ) fðG;HÞ ¼ 1

A4Þ fðG;HÞ ¼ 1 ) G ¼ H:

Such an index f is of metric type if dðG;HÞ :¼ 1 � fðG;HÞ satisfies the triangle

inequality on C.

Fig. 2 M and N have the same generalized characteristic polynomial, cf. [29]

Fig. 3 Pairs of generalized co-permanental graphs, cf. [17]
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Recall that we are working with unlabeled graphs. The equality G ¼ H means

that G and H are just the same unlabeled graph (of course, if we were to work with

labeled graphs, then G ¼ H would mean that G and H are equal up to isomorphism).

Informally speaking, that fðG1;H1Þ is bigger than fðG2;H2Þ means that G1 is more

similar to H1 than G2 is to H2. In short, a higher value of f indicates a higher degree

of similarity. A metric d on C plays an opposite role of a similarity index: a higher

value of d indicates a higher degree of dissimilarity. Note however that a similarity

index may not be of metric type. Axiom A2 is not essential but, for the sake of

comparison, it is useful to scale numerical values to the standard unit interval [0, 1].

Axioms A1 and A3 are quite natural and do not need a further explanation. Axiom A4

conveys somehow the idea that G and H are highly similar if f(G, H) is near 1. If

Axiom A4 is dropped, then the word index is changed by pseudo-index, in the same

way as the word metric is changed by pseudo-metric if the condition dðG;HÞ ¼ 0

does not imply G ¼ H. When we say that f is a similarity criterion, what we mean is

that f is at least a similarity pseudo-index.

Example 1 A classical way of measuring the distance between two graphs of same

order is by means of the expression

d�ðG;HÞ :¼ min
P2PermðnÞ

1

n
kP>AGP� AHk; ð1Þ

where k � k is the Frobenius norm, n is the order of both graphs, and PermðnÞ is the

set of permutation matrices of order n. The minimum value (1) does not depend on

the way of labeling vertices for constructing the adjacency matrices AG and AH . The

operation A 7!P>AP is of course a permutation similarity transformation. The

optimization problem (1) is known as the graph matching problem, cf. [4, 26]. The

scaling factor 1/n in front of the Frobenius norm ensures that d�ðG;HÞ is smaller

than 1. We write d�ðG;HÞ ¼ 1 if G and H are of different order. With such a

convention, d� is a metric on the entire set C and, consequently,

f�ðG;HÞ :¼ 1 � d�ðG;HÞ ð2Þ

is a similarity index of metric type. Table 1 displays the values of f� on some tests

examples. As we can see, the similarity index f� is not sharp enough to discriminate

among the different pairs fXk; Ykg. Is this a drawback of f� or is it reasonable to

Table 1 Criterion f� on test

examples of order 6 (left) and

order 10 (right)

G,H d�ðG;HÞ f�ðG;HÞ G,H d�ðG;HÞ f�ðG;HÞ

Q1;Q2
ffiffiffi

8
p

=6 0.528596 M, N
ffiffiffi

4
p

=10 0.800000

Q1;Q3
ffiffiffi

8
p

=6 0.528596 X1;Y1
ffiffiffi

4
p

=10 0.800000

Q1;Q4
ffiffiffiffiffi

10
p

=6 0.472954 X2;Y2
ffiffiffi

4
p

=10 0.800000

Q2;Q3
ffiffiffi

4
p

=6 0.666667 X3;Y3
ffiffiffi

4
p

=10 0.800000

Q2;Q4
ffiffiffi

2
p

=6 0.764298 X4;Y4
ffiffiffi

4
p

=10 0.800000

Q3;Q4
ffiffiffi

2
p

=6 0.764298
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consider the pairs fXk; Ykg as equally similar ? As we shall see later, these pairs are

distinguishable by many other similarity criteria.

1.2 Average Similarity and Asymptotic Well-Scaledness

Suppose for a moment that we restrict the attention to a given class G of connected

graphs. To fix the ideas, choose for instance a finite class like

Cn :¼ connected graphs of order n

Tn :¼ trees of order n:

Suppose also that we evaluate a certain similarity index f on a particular pair

fG0;H0g of graphs taken from the class G. If the numerical evaluation yields for

instance fðG0;H0Þ ¼ 0:7, then should G0 and H0 be considered as highly similar

graphs or not? For answering this question, it is useful to know the range of values

taken by the function f on pairs of distinct graphs belonging to G. This leads to

consider the optimization problems

aðf;GÞ :¼ infffðG;HÞ : fG;Hg 2 !ðGÞg
bðf;GÞ :¼ supffðG;HÞ : fG;Hg 2 !ðGÞg;

where !ðGÞ is the set of unordered pairs fG;Hg with G;H 2 G and G 6¼ H. If the

class G under consideration is finite, then we can alternatively use the average value

lðf;GÞ :¼ 1

card½!ðGÞ�
X

fG;Hg2!ðGÞ
fðG;HÞ

as reference level of similarity. By way of example, if lðf;GÞ ¼ 0:5, then we can

say that G0 and H0 have a similarity degree above average in G. By an obvious

reason, we would not like the term fðG;HÞ to remain away from 1 as fG;Hg ranges

over all pairs of distinct connected graphs. Analogously, we would not like fðG;HÞ
to remain away from 0. It is reasonable, after all, to ask fðG;HÞ to cover as much as

possible of the interval [0, 1]. This idea can be formalized as follows.

Definition 2 Let f be a similarity index or pseudo-index on C. We say that f is

asymptotically well-scaled (AWS) if it is both lower-AWS and upper-AWS, i.e.,

lim
n!1

aðf;CnÞ ¼ 0 and lim
n!1

bðf;CnÞ ¼ 1; ð3Þ

respectively.

The concept of asymptotic well-scaledness on trees is analogous: it suffices to

change Cn by Tn in (3). Asymptotic well-scaledness on trees implies asymptotic

well-scaledness, but not conversely. For instance, the similarity index f� introduced

in (2) is AWS but not asymptotically well-scaled on trees. This observation requires

perhaps an explanation. A quick computation shows that
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aðf�;CnÞ� f�ðPn;KnÞ ¼ 1 � ð1=nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn� 1Þðn� 2Þ
p

bðf�;CnÞ ¼ f�ðPn;CnÞ ¼ 1 � ð1=nÞ
ffiffiffi

2
p

;

where Pn, Cn, and Kn are the path, the cycle, and the complete graph of order n,

respectively. We see that aðf�;CnÞ goes to 0 and bðf�;CnÞ goes 1, as needed. Now, if

we focus the attention on trees, then the situation is somewhat different. This time

we get

aðf�;TnÞ ¼ f�ðPn; SnÞ ¼ 1 � ð1=nÞ 2
ffiffiffiffiffiffiffiffiffiffiffi

n� 3
p

bðf�;TnÞ ¼ f�ðPn; YnÞ ¼ 1 � ð1=nÞ 2;

where Sn and Yn are the star and the snake graph of order n, respectively. By

definition, Yn is obtained by attaching two pendant vertices to a given endvertex of

Pn�2. Note that both aðf�;TnÞ and bðf�;TnÞ converge to 1. In particular, f� is not

lower-AWS on trees. In a sense, f� is ill-scaled for dealing with trees of large order,

because we always get values that are near 1. Definition 2 completes the presen-

tation of the mathematical background of this work. Before entering into details, we

clarify which are our general goals.

1.3 Scope and Organization of this Work

Finding an optimal permutation matrix P in the graph matching problem (1) is

notoriously hard, cf. [4]. The function d� is a graph metric whose numerical

evaluation is expensive, even for graphs with only a dozens of vertices. In fact, this

remark applies essentially to all graph metrics of interest (graph edit distances

[5, 11], Chartrand–Kubicki–Schultz distance [7], etc). We are willing to give up the

metric approach and consider any similarity index that is tractable numerically, not

necessarily of metric type. We even accept to give up Axiom A4 and work instead

with a similarity pseudo-index, provided such a pseudo-index is based on

computable parameters that reflect well the structure of the graph. The choice of

parameters (or graph invariants) is of course a crucial point. The organization of the

paper is as follows. Undefined terms will be explained in due course.

– In Sect. 2, we introduce and discuss a similarity index, denoted fgen, that is based

on the family SðGÞ of connected induced subgraphs of a given connected graph

G. According to this index, two connected graphs G and H are similar if the

associated families SðGÞ and SðHÞ are similar sets in the sense of Jaccard.

– In Sect. 3, we analyze a similarity pseudo-index, denoted fspec, that is close in

spirit to the previous one. The difference is that now we compare the

complementarity spectra PðGÞ and PðHÞ of the connected graphs G and

H. More precisely, we use Jaccard’s coefficient to measure the degree of

similarity between these complementarity spectra.

– In Sect. 4, we study two similarity pseudo-indices, denoted fw and flex, that are

based on the spectral code of a connected graph G. The spectral code
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CðGÞ :¼ ð.1ðGÞ; .2ðGÞ; .3ðGÞ; . . .Þ

is a sequence that displays the complementarity eigenvalues of G arranged in

decreasing order. In the definition of fspec, the complementarity eigenvalues of G

are considered as equally important; by contrast, while defining fw and flex, the

largest complementarity eigenvalue is viewed as more important than the others.

Next in importance comes .2ðGÞ, and so on. The idea behind the concept of

spectral code of a connected graph is to arrange the complementarity

eigenvalues by order of importance.

2 Similarity Indices Based on Induced Subgraphs

2.1 The Genealogical Similarity Index

Let SðGÞ be the set of connected induced subgraphs of a connected graph G. Note

that SðGÞ consists of the graph G itself, together with all its children, all its

grandchildren, and so on. By definition, a child of G is an induced subgraph

obtained by removing a noncut vertex of G. A grandchild of G is a child of a child

of G. The genealogical descendance continues on each branch until ending with a

graph of order 1. For economy of language, we refer to SðGÞ as the genealogy of G.

According to the similarity criterion introduced in the next proposition, two

connected graphs G and H are similar if the associated genealogies SðGÞ and SðHÞ
are similar as sets. In what follows, the symbol M stands for the collection of all

nonempty finite sets and J : M�M ! R is the function that assigns to a pair

(A, B) the value

JðA;BÞ :¼ cardðA \ BÞ
cardðA [ BÞ : ð4Þ

Proposition 1 An example of similarity index on C is the function fgen given by

fgenðG;HÞ :¼ JðSðGÞ;SðHÞÞ: ð5Þ

Such a similarity index is of metric type and AWS.

Proof It is straightforward to check that, for all A;B 2 M, we have

0� JðA;BÞ ¼ JðB;AÞ� 1 ¼ JðA;AÞ:

This takes care of Axioms A1 to A3. Let G;H 2 C be such that fgenðG;HÞ ¼ 1.

Hence, SðGÞ \ SðHÞ has the same cardinality as SðGÞ [ SðHÞ. It follows that

SðGÞ ¼ SðHÞ, from where we deduce that G ¼ H. So, Axiom A4 is also in force.

That 1 � J satisfies the triangle inequality on M is shown for instance in Levan-

dowski and Winter [16]. This implies that dgen :¼ 1 � fgen satisfies the triangle

inequality on C. Finally, a quick computation shows that
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aðfgen;CnÞ� fgenðPn;KnÞ ¼ ðn� 1Þ�1 ð6Þ

bðfgen;CnÞ� fgenðPn;CnÞ ¼ 1 � 2ðnþ 1Þ�1: ð7Þ

This proves that fgen is AWS. h

By an obvious reason, we call fgen the genealogical similarity index on C and

fgenðG;HÞ the genealogical similarity degree between G and H. The use of the letter

J in the definition of the ratio (4) is not fortuitous: such intersection-to-union ratio

was introduced by the botanist Paul Jaccard as a tool for measuring the degree of

similarity between two finite sets of possibly different cardinalities. In fact, (4) is

known as Jaccard’s coefficient (originally given the French name coefficient de
communauté, cf. [15]). As pointed out in Levandowski and Winter [16], the ratio

(4) has a heuristic interpretation: it measures the probability that an element of at

least one of the two sets is an element of both, and thus is a reasonable measure of

similarity or ‘‘overlapping’’ between the two. For computational convenience, it is

sometimes better to write

JðA;BÞ ¼ cardðA \ BÞ
cardðAÞ þ cardðBÞ � cardðA \ BÞ

as function of the cardinalities of A, B, and their intersection. Consequently, the

term (5) reads

fgenðG;HÞ ¼ rðG;HÞ
rðGÞ þ rðHÞ � rðG;HÞ ; ð8Þ

where r(G) is the cardinality of SðGÞ and r(G, H) is the cardinality of the inter-

section SðGÞ \ SðHÞ. Let us test the genealogical similarity index on some small

order examples.

Example 2 Consider the four graphs in Fig. 1. A handy computation yields

SðQ1Þ ¼ fU1;U2;U3;U4;U6;U8;U18;U21;Q1g
SðQ2Þ ¼ fU1;U2;U3;U4;U5;U8;U9;U11;U22;Q2g
SðQ3Þ ¼ fU1;U2;U3;U4;U5;U6;U8;U9;U17;U23;Q3g
SðQ4Þ ¼ fU1;U2;U3;U5;U6;U7;U11;U15;Q4g;

where the Uk’s are the connected graphs drawn in the Appendix, cf. Figs. 10 and 11.

As one can see, the graphs Q1; . . .;Q4, have some connected induced subgraphs in

common. For instance, U3 is common to all of them, U9 appears in Q2 and Q3, and

so on. By evaluating (8), we get
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fgenðQ1;Q2Þ ¼ 5=ð9 þ 10 � 5Þ ¼ 0:357143

fgenðQ1;Q3Þ ¼ 6=ð9 þ 11 � 6Þ ¼ 0:428571

fgenðQ1;Q4Þ ¼ 4=ð9 þ 9 � 4Þ ¼ 0:285714

fgenðQ2;Q3Þ ¼ 7=ð10 þ 11 � 7Þ ¼ 0:500000

fgenðQ2;Q4Þ ¼ 5=ð10 þ 9 � 5Þ ¼ 0:357143

fgenðQ3;Q4Þ ¼ 5=ð11 þ 9 � 5Þ ¼ 0:333333:

In terms of the criterion fgen, the pair fQ2;Q3g has a higher degree of similarity than

the cospectral pair fQ1;Q2g. This may seem strange at first sight, but we must keep

in mind that the genealogical similarity index is not intended to be a measure of

cospectrality between graphs. The criterion fgen does not focus on characteristic

polynomials but on genealogies. The graphs Qk’s belong to the class C6 of con-

nected graphs of order 6. This class has 112 members and, therefore,

card½!ðC6Þ� ¼ ð1=2Þ 112ð112 � 1Þ ¼ 6216:

By evaluating fgen at each one of the 6126 pairs in !ðC6Þ, we get the average value

lðfgen;C6Þ ¼ 0:382692, cf. Table 2. Hence, the cospectral pair fQ1;Q2g has a

genealogical similarity degree below average on C6.

Example 3 Consider the pairs fX1; Y1g; . . .; fX4; Y4g shown in Fig. 3. Recall that

each fXk; Ykg is a pair of generalized co-permanental connected graphs of order 10.

The pair fM;Ng shown in Fig. 2 is formed with connected graphs of order 10 with a

common generalized characteristic polynomial. Constructing genealogies by hand is

quite painful, so we do it with the computer:

fgenðX1; Y1Þ ¼ 38=ð46 þ 44 � 38Þ ¼ 0:730769

fgenðX2; Y2Þ ¼ 36=ð48 þ 42 � 36Þ ¼ 0:666667

fgenðX3; Y3Þ ¼ 75=ð108 þ 115 � 75Þ ¼ 0:506757

fgenðX4; Y4Þ ¼ 59=ð99 þ 97 � 59Þ ¼ 0:430657

fgenðM;NÞ ¼ 53=ð87 þ 110 � 53Þ ¼ 0:368056:

The class C10 of connected graphs of order 10 has 11716571 members. Computing

Table 2 Mean and extreme

values of fgen on pairs of

connected graphs of order n

n aðfgen;CnÞ bðfgen;CnÞ lðfgen;CnÞ

4 0.333333 0.666667 0.497778

5 0.200000 0.777778 0.446368

6 0.142857 0.800000 0.382692

7 0.086957 0.809524 0.321122

8 0.047619 0.850000 0.264879
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lðfgen;C10Þ requires to evaluate fgen on card½!ðC10Þ� 	 6:9 � 1013 pairs. Such a

numerical operation is of course cost prohibitive. For the reader’s convenience, we

did compute however lðfgen;CnÞ for n up to 8. At the same time, we did compute

the extreme values aðfgen;CnÞ and bðfgen;CnÞ, cf. Table 2.

We open a parenthesis and discuss various aspects concerning the information

displayed in Table 2. To start with, we comment on the asymptotic behavior of

aðfgen;CnÞ as n goes to infinity. Inequality (6) is coarse, but sufficient to prove that

fgen is lower-AWS. Table 2 suggests that aðfgen;CnÞ goes to 0 faster than 1/n. In

fact, the next proposition shows that aðfgen;CnÞ goes to 0 faster than any power of

1/n. In what follows, we use the notation

hn :¼ max
G2TFn

rðGÞ;

where TFn stands for the class of triangle-free connected graphs of order n. That a

graph is triangle-free means that is does not admits the triangle graph K3 as induced

subgraph.

Proposition 2 Let n� 4. Then

aðfgen;CnÞ� 2ðhn þ n� 2Þ�1 ð9Þ

and, in particular, limn!1 nkaðfgen;CnÞ ¼ 0 for all k 2 N.

Proof Let n� 4. Clearly,

aðfgen;CnÞ� min
G2Cn

fgenðG;KnÞ� min
G2TFn

fgenðG;KnÞ:

The last minimization problem can be worked out a bit further. A triangle-free

connected graph of order n has only two connected induced subgraphs in common

with Kn, namely, K1 and K2. On the other hand, it is clear that rðKnÞ ¼ n. Hence,

fgenðG;KnÞ ¼ 2ðrðGÞ þ n� 2Þ�1

for all G 2 TFn. By passing to the minimum, we get

min
G2TFn

fgenðG;KnÞ ¼ 2ðhn þ n� 2Þ�1;

completing the proof of (9). The integer hn corresponds to the maximal number of

connected induced subgraphs that can have a triangle-free connected graph of order

n. It is very difficult to derive an explicit formula for hn. Anyhow, by using the proof

of Theorem 6 in Fernandes et al. [13] and the fact that any starlike tree is a triangle-

free connected graph, we see that hn goes to infinity faster than any polynomial in n.

h

Computing hn is much cheaper than computing aðfgen;CnÞ. The values of hn for n

until 10 inclusive are displayed in Table 3. The computation of aðfgen;C8Þ took
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around 30 h in a computer OS High Sierra, processor 3.4 GHz Intel Core i5 and

memory 8 GB. The codes were implemented with Matlab R2017a. We did not

compute aðfgen;C9Þ, because this would take a month.

The last two columns of Table 4 show that (9) holds as an equality for all n until

7 inclusive, but it is a strict inequality for n ¼ 8. The upper bound (9) can be

sharpened by adapting the proof of Proposition 2. In fact,

min
G2Cn

fgenðG;KnÞ ¼ min
G2Cn

xðGÞ
rðGÞ þ n� xðGÞ

¼ min
q2f2;...; ng

q

hn;q þ n� q
;

ð10Þ

where xðGÞ stands for the clique number of G and

hn;q :¼ max
G2Cn
xðGÞ¼q

rðGÞ:

In comparison to 2ðhn þ n� 2Þ�1
, the minimum (10) is a sharper upper bound for

aðfgen;CnÞ. However, computing hn;q for all q 2 f2; . . .; ng is much harder than

computing just hn ¼ hn;2. In praise of (10), we mention that

min
q2f2;...; 8g

q

h8;q þ 8 � q
¼ 3

h8;3 þ 8 � 3
¼ 0:047619 ¼ aðfgen;C8Þ;

i.e., the bound (10) is optimal at least until n ¼ 8.

As far as the asymptotic behavior of bðfgen;CnÞ is concerned, the lower bound (7)

is not sharp but sufficient to prove that fgen is upper-AWS. Obtaining a good

estimate for bðfgen;CnÞ seems a difficult problem. It is not clear to us how to

construct a pair fG;Hg of distinct connected graphs of order n such that fgenðG;HÞ
is as large as possible or nearly as large as possible. Optimal pairs for n ¼ 7 and

Table 3 Behavior of hn n 4 5 6 7 8 9 10

cardðTFnÞ 3 6 19 59 267 1380 9832

hn 4 7 10 18 33 61 122

Table 4 Upper bounds and

experimental evaluation of

aðfgen;CnÞ
n ðn� 1Þ�1

2ðhn þ n� 2Þ�1 aðfgen;CnÞ

4 0.333333 0.333333 0.333333

5 0.250000 0.200000 0.200000

6 0.200000 0.142857 0.142857

7 0.166667 0.086957 0.086957

8 0.142857 0.051282 0.047619

9 0.125000 0.029412

10 0.111111 0.015385
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n ¼ 8 are displayed in Fig. 4. These optimal pairs were obtained by exhaustive

numerical testing. For n ¼ 7, there are two optimal pairs, but we are displaying only

one of them. As we can see from Fig. 4, it is hard to identify the general structure of

the graphs forming an optimal pair. Our last comment concerns the asymptotic

behavior of the average value lðfgen;CnÞ. Table 2 suggests that such average value

is decreasing as function of n. It is not clear however if lðfgen;CnÞ goes all the way

down to zero.

2.2 The Maximum Common Connected Induced Subgraph Problem

Besides fgenðG;HÞ, there are other similarity indices based on the genealogies of the

graphs G and H. For instance, Bunke and Shearer [6] suggest to consider the ratio

fmccisðG;HÞ :¼ nðG;HÞ
maxfjGj; jHjg ; ð11Þ

where jGj stands for the order of G and nðG;HÞ is the largest number of vertices in a

connected graph that is an induced subgraph of G and H simultaneously, i.e.,

nðG;HÞ :¼ max
F2SðGÞ \ SðHÞ

jFj: ð12Þ

Note that G and H are not required to be of the same order. A solution F to problem

(12) is called a maximum common connected induced subgraph (MCCIS) of the

pair fG;Hg. Such an optimal graph F may not be unique, but the term nðG;HÞ is

always finite and well defined. Fig. 5 displays a pair of graphs whose MCCIS is

unique.

Actually, the maximum common subgraph problem considered in Bunke and

Shearer [6] is somewhat different from (12). These authors work with possible

disconnected directed graphs and with subgraphs that are not necessarily induced.

We are adapting their definition of nðG;HÞ to the context of our work. The ratio

(11) is a natural candidate as measure of similarity between connected graphs.

Wallis et al. [28] suggest to consider

fwallisðG;HÞ :¼ nðG;HÞ
jGj þ jHj � nðG;HÞ ;

an expression that is reminiscent of (8).

Proposition 3 fmccis and fwallis are similarity indices on C, both of them being AWS.

Fig. 4 Pair achieving the
maximal value bðfgen;CnÞ when

n ¼ 7 (left) and n ¼ 8 (right)
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Proof The functions fmccis and fwallis clearly satisfy Axioms A1 to A3. For checking

that fmccis satisfies Axiom A4, we consider connected graphs G and H such that

fmccisðG;HÞ ¼ 1. Let F be any solution to (12). In such a case,

jFj ¼ maxfjGj; jHjg: ð13Þ

Since F is an induced subgraph of both G and H, we have jFj � minfjGj; jHjg. It

follows that jGj ¼ jHj ¼ jFj and, a posteriori, G ¼ H ¼ F. For checking that fwallis

satisfies Axiom A4, we proceed exactly as before, except that (13) must be changed

by jFj ¼ ð1=2ÞðjGj þ jHjÞ. For proving the asymptotic well-scaledness of fmccis and

fwallis, we simply observe that

aðfmccis;CnÞ ¼ fmccisðPn;KnÞ ¼ 2=n

bðfmccis;CnÞ ¼ fmccisðPn;CnÞ ¼ 1 � ð1=nÞ
aðfwallis;CnÞ ¼ fwallisðPn;KnÞ ¼ ðn� 1Þ�1

bðfwallis;CnÞ ¼ fwallisðPn;CnÞ ¼ 1 � 2ðnþ 1Þ�1:

This completes the proof of the proposition. h

It is worthwhile mentioning that dmccis :¼ 1 � fmccis and dwallis :¼ 1 � fwallis do

not satisfy the triangle inequality on C. To see this, consider for instance the graphs

fG1;G2;G3g displayed from left to right in Fig. 6. These three graphs are of order 7.

Since nðG1;G2Þ ¼ 6, nðG2;G3Þ ¼ 6, and nðG1;G3Þ ¼ 4, we get

dmccisðG1;G3Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

3=7

[ dmccisðG1;G2Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1=7

þ dmccisðG2;G3Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1=7

dwallisðG1;G3Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

3=5

[ dwallisðG1;G2Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1=4

þ dwallisðG2;G3Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1=4

:

This example shows that the similarity indices fmccis and fwallis are not of metric

type.

Since the average between two numbers cannot exceed their maximum, we

readily see that

Fig. 5 The third graph is the MCCIS of the first two graphs, cf. [27]

Fig. 6 Counter-example for the
triangle inequality in dmccis and
dwallis
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fwallisðG;HÞ � 2

fmccisðG;HÞ � 1

� ��1

:

If G and H are of the same order, then this inequality becomes an equality and we

can write

1 þ 1

fwallisðG;HÞ ¼
2

fmccisðG;HÞ : ð14Þ

A major inconvenience of the similarity index fmccis, or the variant fwallis, is that the

resolution of the maximization problem (12) is a computational nightmare if G and

H are not of moderate order. There is a rich literature devoted to various formu-

lations of the maximum common subgraph problem, cf. [9, 20, 27] and references

therein. For the sake of illustration, we present below a small order example.

Example 4 Consider the graphs Q1; . . .;Q4 in Fig. 1. Since we have already

computed each genealogy SðQkÞ, cf. Example 2, it is easy now to see that

nðQ1;Q2Þ ¼ jU8j ¼ 4; fmccisðQ1;Q2Þ ¼ 4=6;

nðQ1;Q3Þ ¼ jU8j ¼ 4; fmccisðQ1;Q3Þ ¼ 4=6;

nðQ1;Q4Þ ¼ jU6j ¼ 4; fmccisðQ1;Q4Þ ¼ 4=6;

nðQ2;Q3Þ ¼ jU9j ¼ 4; fmccisðQ2;Q3Þ ¼ 4=6;

nðQ2;Q4Þ ¼ jU11j ¼ 5; fmccisðQ2;Q4Þ ¼ 5=6;

nðQ3;Q4Þ ¼ jU6j ¼ 4; fmccisðQ3;Q4Þ ¼ 4=6:

The pair fQ1;Q2g is cospectral, but fQ2;Q4g is not. Despite this fact, Q2 is more

similar to Q4 than to Q1. So, at least with respect to the criterion fmccis, cospectrality

is not a guarantee of maximal degree of similarity.

It is not clear to us whether there is some correlation between fmccis and fgen, but

we did observe in numerous examples that fmccis is less discriminating than fgen.

Note that fmccisðG;HÞ may take at most minfjGj; jHjg different values, because the

order of an optimal solution to (12) is an integer between 1 to minfjGj; jHjg
inclusive. If we focus for instance on the class of connected graphs of order 10, then

fmccis may take at most 10 different values: 0:1; 0:2; . . .; 0:9; 1. In fact, the value 0.1

must be ruled out because P2 is a common connected induced subgraph of any pair

of connected graphs of order 10. By way of example, we did solve the maximization

problem (12) for each pair fXk; Ykg in Fig. 3. We used a brute force method which

consists in building the genealogies SðXkÞ and SðYkÞ, forming the intersection

SðXkÞ \ SðYkÞ, and selecting a graph of largest order in this intersection. We got

nðX1; Y1Þ ¼ 9; fmccisðX1; Y1Þ ¼ 0:9

nðX2; Y2Þ ¼ 9; fmccisðX2; Y2Þ ¼ 0:9

nðX3; Y3Þ ¼ 9; fmccisðX3; Y3Þ ¼ 0:9

nðX4; Y4Þ ¼ 9; fmccisðX4; Y4Þ ¼ 0:9

In a sense, fmccis is a rather coarse measure of similarity for connected graphs. The
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impression of coarseness of fmccis is even more striking in a situation like the

following one: consider for instance the class G of connected graphs of order 6 that

admit the path P5 as induced subgraph. This class has 18 members. If we pick at

random two distinct graphs G and H from this class, then we always get

fmccisðG;HÞ ¼ 5=6. So, with respect to this class G at least, the criterion fmccis is

totally blind: it does not discriminate among different pairs. Given the relation (14),

the same remark applies to the criterion fwallis.

3 Similarity Pseudo-Index Based on Complementarity Spectra

As an alternative to the generalized permanental polynomial, we may use the

complementarity spectrum as a tool for distinguishing connected graphs. The idea

of using complementarity spectra in graph theory is relatively new and was

suggested for the first time in Fernandes et al. [13]. Such an idea was further

explored in Seeger [22, 23], Seeger and Sossa [24, 25], and Pinheiro et al. [19],

just to mention a few published works. The transition from classical eigenvalues to

complementarity eigenvalues is a major change in the way of perceiving the concept

of spectral information contained in a graph. Recall that a real k is a

complementarity eigenvalue of a graph G if it is a complementarity eigenvalue

(or Pareto eigenvalue) of the associated adjacency matrix AG, i.e., if there exists a

nonzero vector x 2 Rn satisfying the complementarity system

x 
 0; AGx� kx 
 0; x>ðAGx� kxÞ ¼ 0;

where n is the order of G and x 
 0 means that x is componentwise nonnegative.

The complementarity spectrum or set of complementarity eigenvalues of G is

denoted by PðGÞ. The set PðGÞ is nonempty and finite, whether G is connected or

not. See Seeger [21] for the theory of complementary spectra of general matrices.

Remark 1 Following a request of one of the referees, we would like to add a few

comments on the numerical computation of the complementarity eigenvalues of a

symmetric matrix, be it an adjacency matrix or not. If the order of the matrix is

moderate, say n� 20, then Theorem 4.1 in [21] provides an efficient method for

detecting all the complementarity eigenvalues: everything boils down to solving a

family of classical eigenvalue problems and checking for each one of these

problems if the corresponding eigenvectors satisfy a certain system of inequalities.

The details can be consulted in [21]. This numerical linear algebra approach is not

however the only possibility, one could equally well use a brunch-and-bound

optimization algorithm as suggested in [12]. With either method, the computational

cost of detecting all the complementarity eigenvalues becomes prohibitive if n goes

beyond 30. Nonsmooth Newton type algorithms, as implemented for instance in

[1, 2], perform fairly well even if n ¼ 200, but, in such a case, it is no longer a

realistic aim to capture the entire complementarity spectrum: suffices it to say that a

symmetric matrix of order n could have as much as 2n � 1 complementarity

eigenvalues, cf. [18, Proposition 3].
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As shown in Fernandes et al. [13], the complementarity spectrum of a connected

graph G admits the representation

PðGÞ ¼ f.ðFÞ : F 2 SðGÞg; ð15Þ

where .ðFÞ stands for the spectral radius of F. In particular, the complementarity

spectrum of a connected graph is a nonempty finite subsets of R. The reader should

be aware that

cðGÞ :¼ card½PðGÞ� ð16Þ

may change if G is substituted by another graph of the same order. By way of

example, Table 5 displays the complementarity spectra of the graphs of order 6

shown in Fig. 1. For easy of visualization, the complementarity eigenvalues are

listed in decreasing order and rounded to 6 decimal places. The second row in

Table 5 displays the cardinality of each complementarity spectrum.

Suppose that we wish to measure how similar are the cospectral graphs Q1 and

Q2. We did consider already the use of the genealogical similarity index fgen.

Another possibility is to compare the complementarity spectra of Q1 and Q2. Note

that Q1 and Q2 have a certain number of complementarity eigenvalues in common:

2.709275, 2.561553, 2.170086, and so on. There are also some complementarity

eigenvalues in one graph but not in the other; for instance, 2.641186 is a

complementarity eigenvalue of Q2 but not of Q1. A natural way of measuring

spectral similarity between Q1 and Q2 is to compare the proportion of common

complementarity eigenvalues with respect to the number of complementarity

eigenvalues of at least one of the two graphs. This leads to the criterion

fspecðG;HÞ :¼ JðPðGÞ;PðHÞÞ; ð17Þ

where we use again Jaccard’s coefficient for quantifying similarity between finite

sets.

Table 5 Complementarity

spectra of the graphs shown in

Fig. 1

Q Q1 Q2 Q3 Q4

c(Q) 9 10 11 8

.1 2.709275 2.709275 2.791288 2.236068

.2 2.561553 2.641186 2.685544 2.135779

.3 2.342933 2.561553 2.561553 2.000000

.4 2.170086 2.170086 2.302776 1.732051

.5 2.000000 2.000000 2.170086 1.618034

.6 1.732051 1.732051 2.000000 1.414214

.7 1.414214 1.618034 1.732051 1.000000

.8 1.000000 1.414214 1.618034 0.000000

.9 0.000000 1.000000 1.414214 –

.10 – 0.000000 1.000000 –

.11 – – 0.000000 –
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Proposition 4 fspec is similarity pseudo-index on C. Furthermore:

(a) fspec is AWS.

(b) dspec :¼ 1 � fspec satisfies the triangle inequality on C.

(c) fspec is a similarity index on any class of connected graphs on which P is

injective.

Proof The proof of the first part is as in Proposition 1, except for Axiom A4. From

the very definition of the Jaccard function, it is clear that

fspecðG;HÞ ¼ 1 , PðGÞ ¼ PðHÞ

for all G;H 2 C. It is unknown to us whether the function P : C ! 2R is injective or

not. This issue is quite complex and, despite a considerable effort, we have been

unable to clarify this point. Given our current knowledge on the function P, we can

only assert that fspec is a similarity pseudo-index on C. Of course, if G is any subset

of C on which P is injective, then fspec is a similarity index on G. The asymptotic

well-scaledness of fspec follows from the relations

aðfspec;CnÞ� fspecðPn;KnÞ ¼ ðn� 1Þ�1 ð18Þ

bðfspec;CnÞ� fspecðPn;CnÞ ¼ 1 � 2ðnþ 1Þ�1: ð19Þ

For writing the equalities in (18)–(19), we use the known formulas

PðKnÞ ¼ f0; 1; 2; . . .; n� 1g
PðPnÞ ¼ b1; . . .; bn�1;bnf g
PðCnÞ ¼ b1; . . .; bn�1; 2f g;

where bk :¼ 2 cos p=ðk þ 1Þð Þ, cf. [22, Example 2.3]. h

We call fspec the spectral similarity pseudo-index on C, because measuring the

similarity between two connected graphs G and H is a matter of comparing the

complementarity spectra of both graphs. Consistently, we say that fspecðG;HÞ is the

spectral similarity degree between G and H. Written in full extent, the term (17)

reads

fspecðG;HÞ ¼ cðG;HÞ
cðGÞ þ cðHÞ � cðG;HÞ ;

where c(G) is defined as in (16) and c(G, H) is the cardinality of PðGÞ \PðGÞ.

Example 5 Let n� 4 be large. We wish to compare the spectral similarity between

the complete graph Kn and the almost complete graph AKn. Since AKn is obtained

from Kn by removing only one edge, one may naively think that fspecðKn;AKnÞ is

near 1. In fact, the deletion of one edge from a graph could change significatively its

complementarity spectrum. In the present example,
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PðKnÞ ¼ f0; 1; 2; . . .; n� 2; n� 1g
PðAKnÞ ¼ f0; 1; 2; . . .; n� 2g [ fs3; s4; . . .; sng;

where sk :¼ .ðAKkÞ is an irrational between k � 2 and k � 1. Note that

fspecðKn;AKnÞ ¼
n� 1

nþ ð2n� 3Þ � ðn� 1Þ ¼
1

2

does not go 1 as n goes to infinity.

Example 6 Consider again the four graphs mentioned in Example 2. Table 5

displays the complementarity spectrum of each graph and shows that

fspecðQ1;Q2Þ ¼ 8=ð9 þ 10 � 8Þ ¼ 0:727273

fspecðQ1;Q3Þ ¼ 7=ð9 þ 11 � 7Þ ¼ 0:538462

fspecðQ1;Q4Þ ¼ 5=ð9 þ 8 � 5Þ ¼ 0:416667

fspecðQ2;Q3Þ ¼ 8=ð10 þ 11 � 8Þ ¼ 0:615385

fspecðQ2;Q4Þ ¼ 6=ð10 þ 8 � 6Þ ¼ 0:500000

fspecðQ3;Q4Þ ¼ 6=ð11 þ 8 � 6Þ ¼ 0:461538:

In terms of the criterion fspec, the most similar pair is the cospectral pair fQ1;Q2g.

Note that the conclusion is not the same as with the criterion fgen. On the other hand,

by evaluating fspec on each one of the 6126 elements of !ðC6Þ, we get

lðfspec;C6Þ ¼ 0:439708, cf. Table 6. Hence, the cospectral pair fQ1;Q2g has a

spectral similarity above average on C6.

Example 7 Consider the pairs fX1; Y1g; . . .; fX4; Y4g shown in Fig. 3 and the pair

fM;Ng shown in Fig. 2. A matter of computation shows that

Table 6 Mean and extreme

values of fspec on pairs of

connected graphs of order n

n aðfspec;CnÞ bðfspec;CnÞ lðfspec;CnÞ

4 0.333333 0.800000 0.555556

5 0.222222 0.857143 0.523495

6 0.166667 0.909091 0.439708

7 0.096774 0.923077 0.351142

8 0.052632 0.916667 0.277023
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fspecðX1; Y1Þ ¼ 31=ð37 þ 36 � 31Þ ¼ 0:738095

fspecðX2; Y2Þ ¼ 27=ð33 þ 31 � 27Þ ¼ 0:729730

fspecðX3; Y3Þ ¼ 70=ð96 þ 102 � 70Þ ¼ 0:546875

fspecðX4; Y4Þ ¼ 61=ð89 þ 89 � 61Þ ¼ 0:521368

fspecðM;NÞ ¼ 49=ð70 þ 90 � 49Þ ¼ 0:441441:

Note that X1 and Y1 have 31 complementarity eigenvalues in common. This is a big

proportion compared to the 37 þ 36 � 31 ¼ 42 complementarity eigenvalues in

either one of the graphs. On the other hand, X3 and Y3 have 70 complementarity

eigenvalues in common. This number is higher than 31, but less important in

comparison to 96 þ 102 � 70 ¼ 128.

Let us have a closer look at the asymptotic behavior of aðfspec;CnÞ as n goes to

infinity. Inequality (18) is coarse, but sufficient to prove that fspec is lower-AWS. It

turns out that aðfspec;CnÞ goes to 0 faster than any power of 1/n. This point is

explained in the next proposition. Some preliminary words on notation are in order.

In general, a complementarity eigenvalue is either an integer or an irrational. This is

clear from the representation formula (15) and the fact that the spectral radius of any

graph is either an integer or an irrational. In what follows, jðGÞ denotes the number

of integers in the complementarity spectrum of G. Consequently, cðGÞ � jðGÞ is the

number of irrationals in the complementarity spectrum of G. We also use the

notation

cn :¼ max
G2Cn

cðGÞ:

The asymptotic behavior of cn has been the object of a long discussion in Seeger and

Sossa [25], see also Fernandes et al. [13].

Proposition 5 Let n� 4. Then

ðcn � 1Þ�1 � aðfspec;CnÞ� nn �ðn� 1Þð1 þ cnÞ�1; ð20Þ

where

nn :¼ min
G2Cn

jðGÞ
cðGÞ � jðGÞ þ n

: ð21Þ

In particular, limn!1 nkaðfgen;CnÞ ¼ 0 for all k 2 N.

Proof It is clear that cðG;HÞ� 2 for all G;H 2 Cn. The first inequality in (20) is

because

2

2cn � 2
� 2

cðGÞ þ cðHÞ � 2
� cðG;HÞ

cðGÞ þ cðHÞ � cðG;HÞ :

The second inequality in (20) is shown as follows. Let G 2 Cn. The integers in

PðGÞ are necessarily in PðKnÞ. Hence, cðG;KnÞ ¼ jðGÞ. Computing fspecðG;KnÞ is
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essentially a matter of counting the number of integers and the number of irrationals

in the complementarity spectrum of G. Indeed,

fspecðG;KnÞ ¼
jðGÞ

cðGÞ � jðGÞ þ n
:

By passing to the minimum with respect to G 2 Cn, we get the desired inequality.

The last inequality in (20) is a consequence of the next three observations: firstly,

the graph Kn does not attain the minimum in (21); secondly, if G 2 Cn is different

from Kn, then jðGÞ is at most n� 1; and, thirdly, the function

k 2 f0; 1; . . .; n� 1g7!ðcðGÞ � k þ nÞ�1k

is increasing. For proving the last part of the proposition, we simply recall that cn
goes to infinity faster than any polynomial in n, cf. [13]. h

Table 7 shows that, for n until 8 at least, aðfspec;CnÞ is equal to nn. We did not

compute aðfspec;C9Þ because such a computation is too expensive. Seeger and Sossa

[25, Section 3] conjecture that ð1=nÞ ln cn remains away from 0 as n goes to infinity.

If such a conjecture is true, then aðfspec;CnÞ goes down to 0 at exponential rate.

Anyhow, what is clear from (20) is that

lim
n!1

lnð1=aðfspec;CnÞÞ
ln cn

¼ 1;

i.e., the logarithms of 1=aðfspec;CnÞ and cn are asymptotically equivalent.

4 Similarity Pseudo-Indices Based on Spectral Codes

4.1 Inverse-Square and Exponential Decay Versions

The idea behind the concept of spectral code is to arrange the complementarity

eigenvalues of a connected graph, say G, by order of importance. To be more

precise, the members of the set PðGÞ are displayed as a sequence

Table 7 Bounds and experimental evaluation of aðfspec;CnÞ

n ðcn � 1Þ�1 aðfspec;CnÞ nn ðn� 1Þð1 þ cnÞ�1 ðn� 1Þ�1

4 0.250000 0.333333 0.333333 0.500000 0.333333

5 0.142857 0.222222 0.222222 0.444444 0.250000

6 0.071429 0.166667 0.166667 0.312500 0.200000

7 0.034483 0.096774 0.096774 0.193548 0.166667

8 0.017857 0.052632 0.052632 0.120690 0.142857

9 0.008333 0.026786 0.065574 0.125000
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CðGÞ :¼ ð.1ðGÞ; .2ðGÞ; .3ðGÞ; . . . Þ ð22Þ

that starts with the largest complementarity eigenvalue of G, then it continues with

the second largest, and so on. In general, .kðGÞ corresponds to the kth largest

complementarity eigenvalue of G, with the convention .kðGÞ ¼ 0 for all k� cðGÞ.
The eventually zero sequence (22) is called the spectral code of G. It is reasonable

to view two connected graphs G and H as similar if the corresponding spectral codes

CðGÞ and CðHÞ are close to each other. If we were to adopt such an approach, then

we could consider for instance a similarity index of the form

fdistðG;HÞ :¼ 1 � dist½CðGÞ;CðHÞ�;

where

distðc; lÞ :¼
X

1

k¼1

wk
jck � lkj

1 þ jck � lkj

measures the distance between two eventually zero sequences. The weight or decay

factor wk can be chosen in various ways. Actually, the numerical value of each term

ck � lk ¼ .kðGÞ � .kðHÞ is somewhat irrelevant to us. What we wish to do in fact

is to identify which of these terms are different from zero and count such nonzero

terms with a suitable decay factor. This way of proceeding gives an idea of the

degree of similarity between the spectral codes CðGÞ and CðHÞ. We propose to

examine a similarity criterion of the form

fwðG;HÞ :¼
X

1

k¼1

wk vð.kðGÞ � .kðHÞÞ ð23Þ

with

vðtÞ :¼
1 if t ¼ 0

0 if t 6¼ 0:

�

As decay factor in (23) we can use any decreasing sequence w :¼ fwkgk� 1 of

positive numbers such that
P1

k¼1 wk ¼ 1. Two particular instances of (23) are

fedðG;HÞ :¼
X

1

k¼1

2�k vð.kðGÞ � .kðHÞÞ

fisdðG;HÞ :¼ 6p�2
X

1

k¼1

k�2 vð.kðGÞ � .kðHÞÞ;

where the acronyms ‘‘ed’’ and ‘‘isd’’ stand for exponential decay and inverse-square

decay, respectively.

Proposition 6 Let w :¼ fwkgk� 1 be a decreasing sequence of positive numbers that

add up to 1. Then fw is a similarity pseudo-index on C. Furthermore:
(a) fw is lower -AWS.
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(b) dw :¼ 1 � fw satisfies the triangle inequality on C.

(c) fw is a similarity index on any class of connected graphs on which P is
injective.

Proof Axioms A1 and A3 are obvious. Axiom A2 is because
P1

k¼1 wk ¼ 1. The

discussion concerning (c) is as in Proposition 4. For proving (b), we observe that

dwðG;HÞ ¼
X

1

k¼1

wk zkðG;HÞ;

where each term

zkðG;HÞ :¼ 1 � vð.kðGÞ � .kðHÞÞ ¼
0 if .kðGÞ ¼ .kðHÞ
1 if .kðGÞ 6¼ .kðHÞ

�

is a f0; 1g -variable. It is clear that

zkðG;HÞ� zkðG;FÞ þ zkðF;HÞ ð24Þ

for all k� 1. Indeed, if zkðG;FÞ ¼ 0 and zkðF;HÞ ¼ 0, then .kðGÞ ¼ .kðFÞ and

.kðFÞ ¼ .kðHÞ, respectively. Hence, .kðGÞ ¼ .kðHÞ and zkðG;HÞ ¼ 0. Now, by

multiplying each side of (24) by wk and passing to the sum, we see that dw satisfies

the triangle inequality. Finally, we take care of (a). That fw is lower-AWS is simply

because

aðfw;CnÞ ¼ fwðPn; YnÞ ¼ 0: ð25Þ

The second equality in (25) needs perhaps an explanation. The spectral code of the

path Pn is

CðPnÞ ¼ bn; bn�1; . . .; b3; 1; 0; . . .ð Þ;

where the bk’s are as in the proof of Proposition 4. The spectral code of the snake

graph Yn is also easy to obtain. Indeed, the connected induced subgraphs of Yn are

either paths or smaller order snake graphs:

SðYnÞ ¼ fPj : j ¼ 1; . . .; n� 1g [ fYi : i ¼ 4; . . .; ng:

Hence, PðYnÞ ¼ X1 [ X2 with

X1 :¼ f.ðPjÞ : j ¼ 1; . . .; n� 1g ¼ fbj : j ¼ 1; . . .; n� 1g
X2 :¼ .ðYiÞ : i ¼ 4; . . .; nf g ¼ b2i�3 : i ¼ 4; . . .; nf g:

As observed in the proof of [23, Theorem 2], the sets X1 and X2 intersect each

other, but if we let i start from bn=2c?2, then we remove from X2 the elements that

are already in X1. Here, b�c stands for the lower integer part function. We have

identified in this way the
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cðYnÞ ¼ 2n� bn=2c � 2

elements of PðYnÞ. For forming the specral code of Yn, we just need to arrange these

elements in decreasing order. By way of example, for n ¼ 5 and n ¼ 6, we get

CðP5Þ ¼ x5;x4;x3; 1; 0; . . .ð Þ
CðY5Þ ¼ x7;x5;x4;x3; 1; 0; . . .ð Þ;

�

CðP6Þ ¼ x6;x5;x4;x3; 1; 0; . . .ð Þ
CðY6Þ ¼ x9;x7;x5;x4;x3; 1; 0; . . .ð Þ;

�

respectively. In general, CðPnÞ and CðYnÞ share a certain number of terms, but these

terms are not placed in the same rank. We see that .kðPnÞ 6¼ .kðYnÞ for all k� 1.

Consequently, each vð.kðPnÞ � .kðYnÞÞ is equal to 0 and

fwðPn; YnÞ ¼
X

1

k¼1

wk vð.kðPnÞ � .kðYnÞÞ ¼ 0:

Parenthetically, (25) shows not only that fw is lower-AWS, but also lower-AWS on

trees. h

Determining whether or not the similarity pseudo-index fw is upper-AWS is a

rather difficult question. We shall discuss this issue in tandem with the similarity

pseudo-index presented next.

4.2 Lexicographic Version

The first two terms in a spectral code (22) are by far the most important ones. Such

terms are easy to compute because they are given by the explicit formulas

.1ðGÞ ¼ .ðGÞ; ð26Þ

.2ðGÞ ¼ max
F2SðGÞ

jFj¼jGj�1

.ðFÞ: ð27Þ

We use (26) and (27) if we need to compute only the first two complementarity

eigenvalues of a graph, but we rely on Theorem 4.1 in Seeger [21] if we need to

compute the entire spectral code. The lexicographic criterion flex for measuring the

degree of similarity between two connected graphs G and H works as follows. We

consider the spectral radius as a fundamental parameter of a graph, so we start by

computing the spectral radiuses of G and H. If they are different, then we view G
and H as highly dissimilar graphs and set flexðG;HÞ ¼ 0. If G and H have the same

spectral radius, then we proceed to compute the second largest complementarity

eigenvalue of each graph. If .2ðGÞ and .2ðHÞ are different, then we view G and H as

partially similar graphs and set for instance flexðG;HÞ ¼ 1=2. In general, if the

truncated spectral codes
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CtðGÞ :¼ ð.1ðGÞ; .2ðGÞ; . . .; .tðGÞÞ
CtðGÞ :¼ ð.1ðHÞ; .2ðHÞ; . . .; .tðHÞÞ

are equal, then we compare .tþ1ðGÞ and .tþ1ðHÞ and see whether we continue or

stop. What we do in practice is to set

flexðG;HÞ :¼ 1 � 1

sðG;HÞ ;

where the expression

sðG;HÞ :¼ inffk : .kðGÞ � .kðHÞ 6¼ 0g

has a clear interpretation and, most important, it is computationally tractable. The

function flex enjoys a number of properties.

Proposition 7 flex is a similarity pseudo-index on C. Furthermore:
(a) flex is lower-AWS.

(b) dlex :¼ 1 � flex satisfies the strong triangle inequality

dlexðG;HÞ� maxfdlexðG;FÞ; dlexðF;HÞg ð28Þ

for all G;F;H 2 C.

(c) flex is a similarity index on any class of connected graphs on which P is
injective.

Proof We just check (28), everything else is now well understood. Let SeqðRÞ be

the set of sequences fkkgk� 1 of real numbers. Such a set is known to be a metric

space if equipped with the distance function

d ðk; lÞ :¼ 1

inffk� 1 : kk 6¼ lkg
;

where, by convention, the infimum over an empty set is 1 and 1=1 is equal 0. In

fact, it is known that d satisfies the strong triangle inequality

d ðk; lÞ� maxfd ðk; cÞ; d ðc;lÞg ð29Þ

for all k; c; l 2 SeqðRÞ. Said in other words, the set SeqðRÞ equipped with the

distance function d is a ultrametric space. Inequality (28) is obtained by applying

(29) to the sequences k ¼ CðGÞ, c ¼ CðFÞ, and l ¼ CðHÞ. h

For better understanding the similarity pseudo-indices fed, fisd, and flex, suppose

for a moment that we wish to quantify the degree of similarity between two strings

of letters, say

G � johniscalm £. . .;

H � johnesclamt £. . .;

The symbol £ represents a void space or empty character. Each string is completed
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with infinitely many void spaces after the first one. The first difference between the

strings G and H appears in the 5-th letter (‘‘i’’ versus ‘‘e’’). Hence, we set

flexðG;HÞ ¼ 1 � ð1=5Þ ¼ 0:800000, without paying attention to what happens after

the 5th letter. The pseudo-index fed does take into account what happens after the 5-

th letter, but the differences observed after the 5-letter are considered less and less

important as we move to the right. In this example, we have

fedðG;HÞ ¼ 2�1 þ 2�2 þ 2�3 þ 2�4 þ 2�6 þ 2�7 þ 2�10 þ
X

1

k¼12

2�k

¼ 1 � 2�5 þ 2�8 þ 2�9 þ 2�11
� �

¼ 0:962402

The term 2�11 in the above line is because ‘‘t’’ is different from the void space.

Analogously,

fisdðG;HÞ ¼ 6p�2 1�2 þ 2�2 þ 3�2 þ 4�2 þ 6�2 þ 7�2 þ 10�2 þ
X

1

k¼12

k�2

 !

¼ 1 � 6p�2 5�2 þ 8�2 þ 9�2 þ 11�2
� �

¼ 0:953655

Let us come back to connected graphs. As far as our usual test examples are

concerned, the situation is summarized in Table 8.

Table 8 shows that flex takes the value 0 on non-cospectral pairs. In fact,

flexðG;HÞ ¼ 0 if and only if .ðGÞ 6¼ .ðHÞ. In practice, this equivalence means that

the lexicographic criterion flex is of interest only if we wish to compare the degree of

similarity of two connected graphs that have the same spectral radius. If

.ðGÞ ¼ .ðHÞ, then flexðG;HÞ� 1=2, i.e., flex jumps from 0 to a value which is at

least 1/2. In view of Table 8, it it natural to ask whether flexðG;HÞ could be higher

than 1/2 for some pair fG;Hg of distinct connected graphs. This question has a

positive answer, but it is not clear to us which is the largest possible value of

flexðG;HÞ. By way of example, consider the pairs fZ1;W1g and fZ2;W2g displayed

from left to right in Fig. 7.

Table 8 flex, fed, fisd on test

examples
G, H sðG;HÞ flexðG;HÞ fedðG;HÞ fisdðG;HÞ

Q1;Q2 2 0.500000 0.611328 0.751060

Q1;Q3 1 0.000000 0.000977 0.057854

Q1;Q4 1 0.000000 0.003906 0.071439

Q2;Q3 1 0.000000 0.125977 0.125402

Q2;Q4 1 0.000000 0.001953 0.063933

Q3;Q4 1 0.000000 0.000977 0.057854

X1;Y1 1 0.000000 0.250000 0.168636

X2;Y2 1 0.000000 0.406250 0.262550

X3;Y3 4 0.750000 0.923630 0.896669

X4;Y4 2 0.500000 0.703125 0.742860

M, N 4 0.750000 0.875031 0.836951
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The first pair consists of connected graphs of order 8 and the second pair consists

of connected graphs of order 9. Since sðZ1;W1Þ ¼ 9 and sðZ2;W2Þ ¼ 16, we have

flexðZ1;W1Þ ¼ 0:888889 and flexðZ2;W2Þ ¼ 0:937500. An exhaustive numerical

computation shows that the pair fZ1;W1g 2 !ðC8Þ achieves the maximal value

bðflex;C8Þ and the pair fZ2;W2g 2 !ðC9Þ achieves the maximal value bðflex;C9Þ.
Note that flexðZ2;W2Þ is not far from 1. If we wish to get closer to 1, say higher than

0.95, then we must work with connected graphs of order 10 at least. As a matter of

intensive numerical experimentation, we found a pair fZ3;W3g of graphs in C10

such that sðZ3;W3Þ ¼ 29, cf. Fig. 8.

Although flexðZ3;W3Þ ¼ 0:965517 is fairly close to 1, we do not know if the pair

fZ3;W3g achieves the maximal value bðflex;C10Þ. We did not compute bðflex;C10Þ
because they are nearly 6:9 � 1013 pairs of connected graphs of order 10. A quick

inspection at Table 9 suggests to conjecture that

sn :¼ max
fG;Hg2!ðCnÞ

sðG;HÞ ð30Þ

goes to infinity with n, but we prefer not to advance such a bold statement without a

solid justification. The above mentioned conjecture says that bðflex;CnÞ ¼ 1 �
ð1=snÞ goes to 1 as n goes to infinity, i.e., that flex is upper-AWS. And what about

the similarity pseudo-index fw? Is it upper-AWS? Again, this depends on whether or

not the term (30) goes to infinity with n. It is not difficult to check that

X

sðG;HÞ�1

k¼1

wk � fwðG;HÞ� 1 � wsðG;HÞ ð31Þ

for all G;H 2 C. By convention, the sum on the left-hand side of (31) is equal to 0 if

sðG;HÞ ¼ 1. From here we get

Fig. 7 With respect to the
criterion flex, which pair is more
similar?

Fig. 8 Graphs sharing the 28
largest complementarity
eigenvalues, but not the 29th
largest
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X

sn�1

k¼1

wk � bðfw;CnÞ� 1 � wsn

and see that fw is upper-AWS if and only if limn!1 sn ¼ 1. Unfortunately, it not

clear to us which is the behavior of sn as n goes to infinity. It seems that sn increases

and goes all the way to infinity, but we do not have a formal proof of this fact.

We mention in passing that (31) yields in particular the estimates

6p�2
X

sðG;HÞ�1

k¼1

k�2 � fisdðG;HÞ � 1 � 6p�2 ½sðG;HÞ��2 ð32Þ

1 � ð1=2ÞsðG;HÞ�1 � fedðG;HÞ � 1 � 1=2ð ÞsðG;HÞ; ð33Þ

where the sum on the left-hand side of (32) is taken as 0 if sðG;HÞ ¼ 1. As shown in

the next proposition, the sandwich (33) can be rewritten as a relation between the

similarity pseudo-indices fed and flex.

Proposition 8 For any pair fG;Hg of distinct connected graphs, we have

flexðG;HÞ
1 � flexðG;HÞ �

lnð1 � fedðG;HÞÞ
lnð1=2Þ � 1

1 � flexðG;HÞ : ð34Þ

For getting (34), it suffices to substitute sðG;HÞ ¼ ð1 � flexðG;HÞÞ�1
into (33),

rearrange terms, and pass to logarithms. Let us return to the discussion on the pairs

fZ1;W1g, fZ2;W2g, and fZ3;W3g. If we apply the sandwich (33) to the pair

fZ3;W3g, then we get

1 � ð1=2Þ28

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

0:9999999963

� fedðZ3;W3Þ� 1 � 1=2ð Þ29

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

0:9999999981

:

Note that fed is nearly constant on pairs fG;Hg with sðG;HÞ large enough, say

sðG;HÞ� 20. This explains why we are using 10 decimal places in the last entry of

Table 10. The criterion fed is obviously not well adapted to handle such sort of pairs.

This problem can be fixed by rescaling fed in a suitable way; for instance, the

exponential decay factor ð1=2Þk can be changed by an exponential decay factor like

Table 9 Behavior of bðflex;CnÞ, bðfed;CnÞ, and bðfisd;CnÞ

n 4 5 6 7 8 9

sn 1 2 2 4 9 16

bðflex;CnÞ 0.000000 0.500000 0.500000 0.750000 0.888889 0.937500

bðfed;CnÞ 0.500000 0.750000 0.750000 0.921883 0.996902 0.999969

bðfisd;CnÞ 0.392073 0.848018 0.848018 0.903390 0.956644
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ð1=9Þð9=10Þk. Another alternative is to work with the inverse-square decay criterion

fisd. Note that

6p�2
X

28

k¼1

k�2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

0:978671

� fisdðZ3;W3Þ � 1 � 6p�2 29�2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0:999277

is a more reasonable range of values. Table 10 displays the values of the similarity

criteria

f�
|{z}

graph matching

; fgen

z}|{

genealogy

; fmccis ; fwallis

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

common subgraph

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

induced subgraphs

; fspec

z}|{

compl: spectrum

; flex; fisd; fed

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

spectral code

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

spectral information

on the pairs fZk;Wkg. For pedagogical reasons, we are partitioning our collection of

similarity criteria into different classes and subclasses.

Table 10 shows that fflex; fisd; fedg take values near 1 on each fZk;Wkg. This

observation is consistent with the fact that fflex; fisd; fedg take values near 1 on any

pair fG;Hg such that sðG;HÞ is large. In fact, our three similarity criteria based on

the comparison of spectral codes have been constructed on purpose so that fðG;HÞ
is near 1 whenever sðG;HÞ is large. The motivation behind the construction of the

other similarity criteria is somewhat different, but we observe that fðZk;WkÞ is still

high for other choices of f. For instance,

fmccisðZ3;W3Þ ¼ 0:900000 ¼ bðfmccis;C10Þ;

i.e., fZ3;W3g is a pair of connected graphs of order 10 that achieves the value

bðfmccis;C10Þ. Although

fgenðZ3;W3Þ ¼
140

210 þ 205 � 140
¼ 0:509091

is much lower than the maximal value bðfgen;C10Þ, it is nonetheless well above the

average value lðfgen;C10Þ. Note that Z3 and W3 have 140 connected induced sub-

graphs in common. On the other hand, there are 275 connected induced subgraphs

Table 10 Different ways of

measuring similarity in the pairs

fZk;Wkg
Z1;W1 Z2;W2 Z3;W3

f� 0.750000 0.685730 0.717157

fgen 0.500000 0.467213 0.509091

fmccis 0.875000 0.888889 0.900000

fwallis 0.777778 0.800000 0.818182

fspec 0.600000 0.546296 0.575510

flex 0.888889 0.937500 0.965517

fisd 0.956644 0.968627 0.983579

fed 0.996902 0.999969 0.9999999963
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of either Z3 or W3, but not of both graphs. The presence of these 275 non-common

induced subgraphs explains why fgenðZ3;W3Þ is not that large.

Remark 2 It was hard to detect a pair fZ3;W3g with sðZ3;W3Þ as large as 29. Most

likely there is another pair, say fZ4;W4g, with sðZ4;W4Þ equal to 30 or higher, but

finding such a pair requires an heavy computational investment. In any case, we

have no theoretical strategy that helps in detecting such a pair fZ4;W4g.

5 Conclusions

The criteria fgen and fspec have something in common: both of them can be expressed

as

fðG;HÞ :¼ JðrðGÞ; rðHÞÞ; ð35Þ

where r : C ! M is function that converts a connected graph into a nonempty finite

set. The role of the set rðGÞ is to gather relevant information on the structure of

G (for instance, the induced subgraphs of G, the complementarity eigenvalues of G,

etc). According to (35), the task of measuring the degree of similarity between two

connected graphs G and H is a matter of evaluating the Jaccard coefficient between

rðGÞ and rðHÞ. As an alternative to (35), we could perfectly well consider a

criterion

f�ðG;HÞ :¼ J�ðrðGÞ; rðHÞÞ;

in which Jaccard’s coefficient is changed by Sørensen-Dice’s coefficient

J�ðA;BÞ :¼ 2 cardðA \ BÞ
cardðAÞ þ cardðBÞ : ð36Þ

The ratio (36) is yet another way of measuring the degree of similarity between a

pair of finite sets. Such a ratio was introduced independently by the botanists

Thorvald Sørensen and Lee Raymond Dice in 1948 and 1945 respectively. It turns

out that J� and J are equivalent in the sense that

J�ðA;BÞ ¼ wðJðA;BÞÞ

for some increasing w mapping [0, 1] onto [0, 1], namely, wðtÞ :¼ 2t=ð1 þ tÞ. So,

there is no loss of generality in focusing on Jaccard’s coefficient. The important

question is not whether we use J or J�, but whether we choose rðGÞ ¼ SðGÞ or

rðGÞ ¼ PðGÞ as set representing the structure of G.

Of all the similarity criteria mentioned in Table 11, which one is the best? This is

a question whose answer depends on the context and, in any case, it remains subject

to interpretation. There is no universal agreement on how the expression ‘‘similarity

between graphs’’ is to be understood. We propose an axiomatic approach for

handling the concept of similarity: in order to measure the degree of similarity

between two connected graphs, we suggest to use a similarity index or, more

generally, a similarity pseudo-index. Similarity indices and similarity pseudo-

123

Graphs and Combinatorics (2021) 37:493–525 521



indices are functions f : C � C ! R satisfying certain axioms, cf. Definition 1.

There are at least three interesting ways of constructing the bivariate function f,

namely,

– fðG;HÞ is a number that depends on the genealogies SðGÞ and SðHÞ; for

instance, the similarity indices fgen, fmccis, and fwallis, belong to this category.

– fðG;HÞ is a number that depends on the complementarity spectra PðGÞ and

PðHÞ; an example of this case is the similarity pseudo-index fspec. The rationale

behind the definition of fspec is that the complementarity spectrum of a graph

represents well the graph under consideration.

– fðG;HÞ is a number that depends on the spectral codes CðGÞ and CðHÞ; for

instance, the similarity pseudo-indices flex, fed, and fisd, fit into this model.

Should we give the priority to genealogies, to complementarity spectra, or to

spectral codes? In fact, each choice has its own advantages and disadvantages. From

a practical point of view, it is helpful to keep in mind the following three facts.

Firstly, for a connected graph G of arbitrary order but with special structure (broom,

complete bipartite graph, starlike tree, etc), it is easier to construct the genealogy

SðGÞ than to compute the complementarity spectrum PðGÞ. Secondly, for a

randomly generated (or unstructured) connected graph G, it is cheaper to compute

PðGÞ than SðGÞ. For computing PðGÞ we do not need to bother with the problem of

testing connectedness in each induced subgraph, nor with the expensive task of

testing whether two induced subgraphs are isomorphic (when represented as labeled

graphs). As it is well known, evaluating the cardinality of SðGÞ is an old and

difficult problem of graph theory, cf. [3, 13, 14]. And, thirdly, computing CðGÞ is

the same cost as computing PðGÞ. The only difference between both mathematical

objects is that CðGÞ contains the elements of PðGÞ is a prescribed order: largest

elements comes first. The difference between CðGÞ and PðGÞ is conceptual, not

computational.

From a theoretical point of view, it may be of interest to ask f to satisfy not just

the axioms of a similarity pseudo-index, but also some additional properties: being

Table 11 Properties of various

similarity indices and/or pseudo-

indices

Metric type Axioms AWS

A1-A3 A4 Lower Upper

f� 4 4 4 4 4

fgen 4 4 4 4 4

fmccis � 4 4 4 4

fwallis � 4 4 4 4

fspec 4 4 ? 4 4

fed 4 4 ? 4 ?

fisd 4 4 ? 4 ?

flex 4 4 ? 4 ?
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of metric type and being ASW are of course two favorable properties. Table 11

summarizes our current knowledge on the different similarity criteria considered in

this work.

A question mark in Table 11 simply means that we do not know how to fill the

corresponding place. The four question marks under the column A4 are because we

do not know whether the complementarity spectrum of a connected graph is enough

to determine the graph itself. Such an issue is very difficult to settle and remains

unsolved. As a partial answer obtained by exhaustive numerical experimentation,

we mention that the implication

PðGÞ ¼ PðHÞ ) G ¼ H ð37Þ

is true at least if G and H are connected graphs on fewer than 10 vertices. Impli-

cation (37) is also true if G and H belong to some special classes of highly struc-

tured connected graphs. This specific theme is the object of a work of ours that is

still in progress.

We close this work with a few words concerning the link between cospectrality

and graph similarity. It was hinted in Sect. 1 that cospectral graphs may not

resemble each other. From our large battery of numerical experiments, we have

learned that a cospectral pair fG;Hg can be highly dissimilar, even if the similarity

criterion f under consideration is reasonable and intuitive. For instance, as seen in

Example 2, the cospectral pair fQ1;Q2g has a genealogical similarity degree below

average. Along the same lines, it is possible to construct cospectral pairs that are

highly dissimilar with respect to fspec. Specially striking examples are the cospectral

pairs fQ5;Q6g and fQ7;Q8g displayed from left to right in Fig. 9.

The first cospectral pair has low genealogical similarity degree, namely,

fgenðQ5;Q6Þ ¼ 0:192308, whereas these second cospectral pair has low spectral

similarity degree, namely, fspecðQ7;Q8Þ ¼ 0:260000. Table 12 displays the minimal

value

eðf;CnÞ :¼ minffðG;HÞ : G;H 2 Cn with fG;Hg cospectral g

when the similarity criterion f is either fgen or fspec. We let n range from 6 to 8

inclusive, going beyond would take too much computational time.

Fig. 9 Cospectral pairs with low genealogical and spectral similarity degrees, respectively
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Appendix

Connected graphs can be enumerated in manifold ways. This work uses the

enumeration system fUkgk� 1 introduced in Seeger [22]. There is no need of

explaining here the rationale behind such an enumeration technique. Suffices it to

say that one starts with the small graphs U1 ¼ K1, U2 ¼ K2, U3 ¼ P3, and U4 ¼ K3.

Then one continues with the connected graphs on 4 vertices, arranged in increasing

order according to the spectral radius, cf. Fig. 10.

Next comes the graphs on 5 vertices, also arranged in increasing order according

to the spectral radius. Since C5 and S5 have the same spectral radius, the graph with

smallest second largest complementarity eigenvalue comes first. Figure 11 shows

the connected graphs on 5 vertices mentioned in this work.
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