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Graph Theory Analysis of Functional
Connectivity in Major Depression

Disorder With High-Density
Resting State EEG Data

Shuting Sun, Xiaowei Li , Jing Zhu, Ying Wang, Rong La, Xuemin Zhang,
Liuqing Wei, and Bin Hu , Member, IEEE

Abstract— Existing studies have shown functional brain
networks in patients with major depressive disorder (MDD)
have abnormal network topology structure. But the methods
to construct brain network still exist some issues to be
solved.This paper is to explore reliable and robust construc-
tion methods of functional brain network using different
coupling methods and binarization approaches, based on
high-density 128-channel resting state EEG recordings from
16 MDD patients and 16 normal controls (NC). It was found
that the combination of imaginary part of coherence and
cluster-span threshold outperformed other methods. Based
on this combination, right hemisphere function deficiency,
symmetry breaking and randomized network structure were
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found in MDD, which confirmed that MDD had aberrant
cognitive processing. Furthermore, clustering coefficient
in left central region in theta band and node betweenness
centrality in right temporal region in alpha band were sig-
nificantly negatively correlated with depressive level. And
these network metrics had the ability to discriminate MDD
from NC, which indicated that these network metrics might
be served as the electrophysiological characteristics for
probable MDD identification. Hence, this paper may provide
reliable methods to construct functional brain network and
offer potential biomarkers in MDD.

Index Terms— EEG, major depressive disorder, rest-
ing state, functional connectivity, graph theory analysis,
network metrics.

I. INTRODUCTION

MAJOR depressive disorder (MDD) is a globally preva-
lent psychiatric disorder characterized by persistent

low mood, anhedonia and inhibition of thought, cognitive
impairment, and even a great suicidal tendency [1], which
inflicts psychological and economic burdens on individuals,
families and society. With the high prevalence rate of MDD,
it is critical to understand the underlying neurophysiological
bases of MDD for the effective detection and treatment of this
mental disorder.

Within the last decades, investigators have documented that
the symptoms of MDD are related to the dysfunction of distrib-
uted neuronal network activity across cortical and limbic cir-
cuits, rather than to the breakdown of a local specific brain area
[2], [3]. Currently, different neurophysiological techniques
such as functional Magnetic Resonance Imaging (fMRI),
Electroencephalography (EEG) and Magnetoencephalography
(MEG) have been extensively adopted to evaluate the brain
function connectivity patterns of MDD at resting state [4], [5].
fMRI has a high spatial resolution, while EEG and MEG
have high temporal resolution [6]. As we all know, functional
connectivity is defined as temporal dependence relationships
among the neural signals of spatially separated brain areas [7].
So techniques such as MEG and EEG are the best choice for
calculating functional connectivity, especially EEG due to the
advantages of high temporal resolution, non-invasive, relative
low-cost, portability and practicality, has the potential to act

1534-4320 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Universität Leipzig. Downloaded on December 01,2021 at 09:06:34 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7358-6503
https://orcid.org/0000-0003-3514-5413


430 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 27, NO. 3, MARCH 2019

TABLE I
PREVIOUS STUDIES REPORTING ABNORMALITIES OF RESTING STATE EEG FUNCTIONAL BRAIN NETWORKS IN MDD

as an effective biomarker for identifying the subtle changes of
oscillatory activity for MDD [8].

Various coupling methods have been used to obtain the
functional connectivity matrices from fMRI, MEG and EEG
signals of MDD and other datasets [9], [10]. As the references
shown in the Table 1, we find that there are a few researchers
study on functional connectivity of MDD at resting state based
on sensor layer EEG signals. But the functional connectivity
matrices are mainly calculated by coherence (Coh) or cor-
relation (Corr) coupling methods [11]–[14], these methods
have been demonstrated will be strongly influenced by the
artefacts of volume conduction [15]. To address this issue,
researchers [16] have recommended analyzing functional con-
nectivity based on source space instead of sensor space.
However, functional brain network assessment of source space
still has some problems, for example, there is no unique
solution to the inverse problem of mapping from sensor space
to source space, and volume conduction effects also exist in the
estimated source space. Currently, most electrophysiological
studies are analyzed on sensor space, and valuable information
can also be obtained by combining sensor space EEG data
with advanced coupling methods [17], [18]. So in this paper
we will adopt some robust to artifacts of volume conduction
methods including imaginary part of coherence (ICoh) [19]
and phase lag index (PLI) [20] to calculate functional connec-
tivity matrices based on sensor layer EEG signals of MDD.
These methods have been applied to some mental diseases
[15], [20], [21], such as Alzheimers disease, Autism spectrum
disorders, but are rarely applied to MDD.

In addition, graph theory analysis based on functional
connectivity provides important information about topological
properties of brain network [22]–[24]. Graph theory analysis
has been widely applied to explore the abnormalities of
depression in various graph metrics [14], [25], [26], because
they are reliable and easy to compute. And brain network can
be analyzed in either weighted or binary network. Weighted
functional connectivity matrix often contains the spurious
connections, which may obfuscate results. So binarizing the

weighted connectivity matrix is a more popular approach that
not only alleviates the noise level, but also reveals the main
topology of the underlying brain activity. Conventionally, bina-
rization approach determines the connection edge exists or not
by setting a threshold, which may cause the number of links of
functional brain network to be different. Inasmuch as network
properties significantly depend on the links number, results
will biased to this effect when comparing brain networks
with the same threshold. As a binarization method, Density
can solve this problem, which keeps the number of links
same among all brain networks. Though both of these two
approaches have achieved certain success in the study of
depression [12], [14], [27], they are arbitrary and subjective.
Therefore, in this paper, we will adopt state-of-the-art non-
arbitrary unbiased binarization approaches, such as Cluster-
Span Threshold (CST) [28], Efficiency Cost Optimization
threshold (ECO) [29] and Minimum Spanning Tree (MST)
[30], to explore the brain network topology changes of MDD.

According to previous researches, we can find there are two
critical issues in the functional brain network of depression
that need to be further investigated. First, which coupling
method and binarization approach is the most appropriate
estimate of true cortical interaction, there is no gold standard.
Second, there are inconsistencies in functional connectivity
results of MDD. As the references in Table 1, for rest-
ing state EEG studies, we find some inconsistent results.
Some studies found MDD exhibited decreased characteristic
path length (CPL) and clustering coefficient (CC) in dif-
ferent frequency bands [14], [28], but existing study con-
cluded that MDD exhibited increased CPL in alpha band,
and decreased CC and local efficiency in beta band [31].
The reason for this difference is that in addition to the
impact of subjects and environment, it may be due to the
different methods, such as electrode density, reference tech-
nique, coupling method and binarization approach. Recent
research has shown EEG reference choice had effect on func-
tional connectivity results. And reference electrode standard-
ization technique (REST) significantly reduced the distortion
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of connectivity patterns when compared to average refer-
ence (AVE), vertex electrode (Cz), and digitally linked mas-
toids (DLM) [32], moreover, the high-density EEG system
could improve topographic accuracy [33]. However, previ-
ous studies often used low-density EEG system, such as
16- [34], 30- [12], [31], 35- [11], 64-channels [14] EEG
system, and reference methods mainly adopt Cz [13], [31],
DLM [12], [34] and AVE [14], to analyze functional brain
networks of MDD. So this is the first study to explore reliable
functional brain network of MDD using high-density EEG
system based on REST reference.

Hence, aiming at aforementioned issues, in this study,
we focused on functional brain network analysis of
128-channels high-density resting state EEG signals with
REST reference, the EEG data employed was collected from
16 MDD patients and 16 age-, gender- and education-matched
NC. The first purpose of this study was by using Coh, ICoh,
Corr, PLI and phase lock value (PLV) coupling methods
and CST, ECO, MST and Density binarization approaches,
to provide a functional connection and network binarization
methods that could effectively and reliably identify MDD, and
to offer a comparable basis for future research. The second
purpose of this study was to further explore alterations in the
topology of MDD based on the optimal functional connection
and network binarization method, mainly from the following
three aspects: we first analyzed characteristic of topology
distribution of hubs for MDD patients and healthy subjects;
then we studied the symmetry of brain regions based on degree
for both of two groups; in the final, we assessed the potential
relationships between network properties and clinical state and
the classification performance of network measures, we hoped
to find out sensitive biomarkers that could be used for probable
depression diagnosis.

II. METHODS AND MATERIALS

A. Subjects

This study involved 32 subjects: 16 patients with
MDD (female/male = 7/9, 31.31 ± 10.38 years old,
13.94 ± 3.53 years of education) and 16 NC with
no prior or current diagnosis of psychiatric disease
(female/male = 7/9, 30.94 ± 9.67 years old, 15.44 ±
3.44 years of education). There were no significant between-
group differences in age (t = 0.106, p = 0.917), or education
(t = −1.217, p = 0.233), or gender (χ2 = 0, p = 1).
Patients with MDD were recruited among inpatients and
outpatients from Lanzhou University Second Hospital, Gansu,
China, diagnosed and recommended by one clinical psychi-
atrist. The NC were recruited by posters. The study was
approved by the Local Research Ethics Committee, and written
informed consent was obtained from all subjects before the
experiment began. All MDD patients received a structured
Mini-International Neuropsychiatric Interview (MINI) [35]
that met the diagnostic criteria for major depression of Diag-
nostic and Statistical Manual of Mental Disorders (DSM)
based on the DSM-IV [36]. The inclusion criteria for all
participants were the age should between 18 and 55 years
old, and primary or higher education level. For MDD patients,

the inclusion criteria were the diagnostic criteria of MINI met
the criteria for depression, the Patient Health Questionnaire-
9item (PHQ-9) [37] score of subjects was greater than or equal
to 5, and no psychotropic drug treatment having been per-
formed in the last two weeks. For MDD patients, the exclusion
criteria were having mental disorders or brain organ damage,
having a serious physical illness, and severe suicidal tendency.
For NC, the exclusion criteria included a personal or family
history of mental disorders. The exclusion criteria for all
subjects were abused or dependent alcohol or psychotropic
drugs in the past year, women who were pregnant and in
lactation or taking birth control pills. Before the experiment,
the self-reported PHQ-9, and Generalized Anxiety Disorder-7
(GAD-7) [38] were self-rated in all subjects. As expected,
patients exhibited greater scores in PHQ-9 (MDD: 17.69 ±
3.70, NC: 2.56 ± 2.07), and GAD-7 (MDD: 12.63 ± 5.18,
NC: 2.31 ± 1.99) relative to healthy controls (p < 0.05). The
NC group showed no mood disorder. All participants were
rewarded after finishing the experiment.

B. EEG Recording and Preprocessing

For each subject, eye-closed resting state EEG signals
were continuously recorded for approximately 5 min using
a 128 channel HydroCel Geodesic Sensor Net (HCGSN)
with a Cz reference, which were positioned according to the
standard international 10/20 system. The sampling frequency
was 250 Hz with Net Station acquisition software and Elec-
trical Geodesics amplifiers. Electrode impedance was kept
below 50 k� [39]. The EEG recordings were further filtered
between 0.5 Hz and 40 Hz by a FIR band pass filter and
re-referenced against REST [40]. The Net Station waveform
tool was used to discard artifacts due to eye movements and
muscle activity. Since ocular artifacts (OAs) are presented in
the frequency band from 0 to 16 Hz, thus overlapping with
the alpha frequency band of 8 - 13 Hz. Therefore we used
FastICA to de-noise due to this method has been proved to
be effective in delineating overlapping frequency bands [41].
The EEG recordings were continuously divided into 5 s for
each segment, the voltage of segments exceeding 150μV were
removed. Finally, to ensure that the number of segments is
same between subjects, the continuous sixteen valid segments
(16 * 5 s = 90 s) without artefacts were selected from each
subject for further analysis. In this study, frequency bands of
interest were theta (4 - 8 Hz) and alpha (8 - 13 Hz) computed
by Hanning Filter, which had been confirmed to make a vital
role in identifying depression at resting state [42], [43]. Data
processing tool was Matlab R2017a.

C. Construction of Functional Networks

A network consists of nodes and edges between nodes.
In this study, each EEG electrode was defined as a node.
The edges represented the connectivity strength between
different EEG electrodes. To construct functional connec-
tivity matrix, we used 5 coupling methods including Coh,
ICoh, Corr, PLI and PLV (a brief description of 5 coupling
methods are in the supplementary material-A, NBT toolbox
(http://www.nbtwiki.net/) is used in Matlab R2017a). All the
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Fig. 1. Characteristic Path Length (CPL) of EEG-based functional
networks in MDD and NC in (a) theta band (4 - 8Hz) and (b) alpha
band (8 - 13Hz). The central lines in the boxplots indicate the median,
purple and blue circles represent outliers of the MDD and NC respec-
tively. And the asterisk indicates a significant difference (p < 0.05,
non-parametric permutation test). Coupling methods included: coher-
ence (Coh), imaginary part of coherence (ICoh), Pearson correlation
coefficient (Corr), phase lag index (PLI) and phase lock value (PLV).
Binarization approaches included: Cluster-Span Threshold (CST), Effi-
ciency Cost Optimization threshold (ECO), Minimum Spanning Thresh-
old (MST), and Density.

functional connectivity matrices were calculated every 4 s
with a 2 s overlapping window for theta and alpha frequency
bands [8]. In the end, we averaged functional connection
matrices across all epochs to obtain the measures for each
subject and each frequency band. Furthermore, in the fol-
lowing work, we would also study the differences between
MDD and NC groups based on hubs and the symmetry of
brain regions within groups based on degree, so we aver-
aged connection matrices across subjects to obtain connection
matrix for each group and each frequency band, which we
called grouped functional connectivity matrix. The dimension
of functional connectivity matrix was 128 × 128. Finally,
individual and grouped functional connectivity matrices were
converted into binary matrices according to the following
binarization methods.

D. Binarization of Brain Networks

Due to weak and spurious connections were usually con-
tained in functional networks, these links may obscure the
topology of significant connections. So as to solve this problem
binarization method may be a good candidate to remove the
weak connections. In this study, we used CST, ECO, MST and

Density to obtain binary brain networks (a detailed descrip-
tion of these binarization methods are in the supplemen-
tary material-B). Subsequently, all the binary brain network
matrices obtained from coupling methods and binarization
approaches were quantitatively analyzed using graph theory
analysis.

E. Network Metrics

Graphs can be characterized by different measures [24].
In our study, we calculated integration and segregation network
metrics for individual binary brain networks. The network
metrics of functional integration included: 1) CPL, 2) Edge
betweenness centrality (EBC), and 3) Node betweenness cen-
trality (NBC). The network metrics of functional segregation
included: 1) CC, and 2) Modularity (mathematical formula of
the network metrics are in the supplementary material-C).

Subsequently, for the network metrics with significant dif-
ferences between MDD and NC groups, we would examine
the differences of these metrics among brain regions between
two groups, for each subject we averaged the network metric
for eight main brain regions, including left frontal region
(LF), right frontal region (RF), left temporal region (LT),
right temporal region (RF), left central region (LC), right
central region (RC), left parietal-occipital region (LPO) and
right parietal-occipital region (RPO). The partition rule is
according to their anatomical position (detailed electrode sites
of eight brain regions are in the supplementary material-D).
This lobe-based EEG regional analysis is supported by previ-
ous studies [44], [45].

Moreover, we calculated hubs and degree for grouped
binary brain networks. In the brain networks, hubs play an
important role in efficient information communication and
resilience [46]. A node can be considered as a hub if the degree
of the node is at least one standard deviation above the mean
degree of network [47]. Degree of a node is defined as the
number of links connected to this node. Network metrics were
calculated by Brain Connectivity Toolbox (http://www.brain-
connectivity-toolbox.net/) used in Matlab R2017a.

III. STATISTICAL ANALYSIS AND CLASSIFICATION

A. Differences in Network Metrics

In order to assess whether MDD and NC groups have statis-
tically significant network metrics, a non-parametric permuta-
tion test [14] method was used. First, a t-value was calculated
for each studied network metric (CPL, EBC, NBC, CC, Mod-
ularity and degree) as an observed test statistic between two
groups. Next, each subject was randomly reallocated to either
MDD or NC group, resulting in the same number of subjects
for each group, so after permutation the number ratio of MDD
and NC was still 16:16. The t-values were recalculated for the
permutated groups 50000 times, and the null distribution of
test statistics was obtained for the group difference. Finally,
the proportion of sampled permutations where the t-values
were greater than the observed test statistic was determined
as the p-value of the observed group difference. A level
of significance was p < 0.05. In addition, for the network
metrics with significant differences between MDD and NC
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Fig. 2. Edge Betweenness Centrality (EBC) of EEG-based functional
networks in MDD and NC in (a) theta band (4 - 8Hz) and (b) alpha
band (8 - 13Hz). Other descriptions are as Fig 1.

group, one-way ANOVA analysis was used to evaluate the
statistical differences of these network metrics among eight
brain regions between two groups, significance level p was
set to 0.05. Analysis was performed using Matlab R2017a and
SPSS (version 19).

B. Correlation Between Network Metrics and Clinic State

When any network metric between two groups had sig-
nificant differences, we would assess the correlation between
these network metrics and PHQ-9 score by Spearman correla-
tion. A significance level of p < 0.05 was used. Furthermore,
receiver operating characteristic (ROC) curve [48] and related
area under the ROC curve (AUC) [49] were used to evaluate
the ability of these network metrics to discriminate MDD
from NC.

C. Classification Performance Evaluation
of Network Metrics

To check whether network metrics having significant cor-
relation with the PHQ-9 scores and having high AUC value
could be able to classify MDD from NC, we chose Support
Vector Machine (SVM) with RBF kernel based on previous
studies [50], [51]. The classifier was executed for each network
metric and for each frequency band with leave-one-out cross
validation (LOOCV). The performance of the classifier was
quantified using the accuracy, sensitivity and specificity based

Fig. 3. Node Betweenness Centrality (NBC) of EEG-based func-
tional networks in MDD and NC in (a) theta band (4 - 8Hz) and
(b) alpha band (8 - 13Hz). Other descriptions are as Fig 1.

on the results of cross-validation. Note that accuracy repre-
sents the overall proportion of samples correctly predicted,
sensitivity represents the proportion of patients with MDD
correctly predicted, and specificity represents the proportion of
normal controls correctly predicted. In addition, permutation
test with 10000 times was also used to assess the classifier
performance [3], the accuracy was the statistic.

IV. RESULTS

A. Combination of Coupling Methods and
Binarization Approaches

We used network metrics (CPL, EBC, NBC, CC and Mod-
ularity) of functional integration and segregation to assess the
performance of coupling methods and binarization approaches.
As shown in Fig 1a to 5a, for theta frequency band, when
the connectivity values were estimated by ICoh, MDD net-
works showed significant decrease in the CPL when CST
was used for binarization, but MDD networks showed sig-
nificant increase in the CPL when MST and Density (30%)
were used for binarization. And when the connectivity values
were estimated by Corr, MDD networks also showed signif-
icant decrease in the CPL when Density (10%) was used
(see Fig 1a). Similar pattern of EBC and NBC were also
observed between MDD and NC, when the connectivity values
were estimated by ICoh, MDD networks showed significant
decrease in the EBC and NBC when CST was used for bina-
rization, but contrary results were found in the EBC and NBC
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Fig. 4. Clustering Coefficient (CC) of EEG-based functional net-
works in MDD and NC in (a) theta band (4 - 8Hz) and (b) alpha band
(8 - 13Hz). Other descriptions are as Fig 1.

when MST were used for binarization (see Fig 2a and 3a).
MDD exhibited reduced CC when coupling method ICoh and
binarization approaches CST and Density (10%-50%) were
used (see Fig 4a).

As shown in Fig 1b to 5b, for alpha frequency band,
when the connectivity values were estimated by ICoh, MDD
networks showed significant reduction in CPL, EBC, NBC,
and Modularity when CST was used for binarization (see
Fig 1b to 3b and 5b), otherwise, MDD also exhibited sig-
nificant reduction in Modularity when Density (25%-35%)
was used to binarize (see Fig 5b). MDD showed reduced CC
when coupling method ICoh and binarization approach ECO
were used (see Fig 4b). What should be noted was that CC
calculated from network constructed by MST was zero, due
to MST was a no-looping graph. And we found that network
metrics had no significant differences between two groups in
theta and alpha bands when other coupling methods (Coh,
Corr, PLI and PLV) were used. So the combination of ICoh
and CST outperformed other combined methods.

In this paper, all the functional brain networks were cal-
culated every 4 s with a 2 s overlapping window for theta
and alpha frequency bands. However, previous studies selected
variable epoch length (from 1 to 16 s in step of 2 s) with non-
overlapping windows, and they found MST parameters stabi-
lized for epochs between 1 and 6 s based on PLI [52]. So we
also tried to calculate the functional brain networks based
on 4 s epoch length with non-overlapping windows (detailed
results were provided in the supplementary material-E), which

Fig. 5. Modularity of EEG-based functional networks in MDD and
NC in (a) theta band (4 - 8Hz) and (b) alpha band (8 - 13Hz). Other
descriptions are as Fig 1.

Fig. 6. Distribution of hubs of MDD group and NC group in
(a) theta band and (b) alpha band. Nodes that are labeled represent
network hubs. The volume of the spheres represents the degree of
the corresponding brain region. Red color hubs represent frontal brain
region, yellow color hubs represent central brain region, green color hubs
represent temporal brain region, and blue color hubs represent parietal-
occipital brain region.

also confirmed that the combination of ICoh and CST was
optimal for MDD identification. Hence, we would further
explore the aberrant network topology of MDD based on this
combination method.

B. MDD-Related Alterations in Hubs Characteristic

The distribution of hubs in MDD and NC groups was shown
in Fig 6. For theta frequency band (see Fig 6a), the hubs in
the MDD group were mainly distributed in the left frontal,
left temporal and left central brain regions. However, the
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TABLE II
THE SYMMETRY RESULTS OF DEGREE AMONG BRAIN REGIONS WITHIN MDD GROUP AND NC GROUP IN THETA AND ALPHA BANDS

Fig. 7. The topography and ROC curves of significant network
metrics between MDD group and NC group and the relationship
between these network properties with PHQ-9 scores in (a) theta
and (b) alpha frequency bands. r is the correlation coefficient, p is the
statistic value. The ROC curve is plotted using a solid line. AUC represent
area under the ROC curve.

hubs in the NC group were mainly distributed in frontal and
temporal brain regions. For alpha frequency band (see Fig 6b),
the network hubs identified in MDD group were in frontal, left
temporal, left central and left parietal-occipital brain areas,
whereas network hubs in NC group were in frontal, temporal,
central and parietal-occipital brain areas. According to the
above results, we found that hubs in MDD mainly distributed
in left hemisphere, but hubs in NC were distributed in both of
left and right hemispheres. We speculated that asymmetry may
exist in MDD group. So we studied symmetry among brain
regions within MDD group and NC group based on degree
(see below).

C. MDD-Related Symmetry in Brain Regions

The symmetry results of degree among brain regions within
MDD group and NC group in theta and alpha band was shown
in Table 2. From Table 2 we found that asymmetry of brain

regions did exist in MDD group, but not in the NC group.
For theta frequency band, the degree in LF (76.54 ± 17.31)
of MDD was remarkably higher than that of RF (59.62 ±
15.26, p = 0.016). For alpha frequency band, the degree in
LT (57.53 ± 24.74) of MDD was remarkably higher than that
of RT (38.65 ± 22.77, p = 0.028). And the degree in LC
(73.69 ± 21.43) of MDD was also significantly higher than
that of RC (49.25 ± 17.88, p = 0.002).

D. MDD-Related Biomarkers in Network Metrics

According to Fig 1 to 5, we concluded that CC,
EBC, NBC and CPL in theta band and Modularity, EBC,
NBC and CPL in alpha band had significant differences
between MDD group and NC group. So we further exam-
ined the differences of the mean values of these metrics
for eight brain regions between two groups in theta and
alpha bands, results were shown in Table 3. For theta
frequency band, MDD had significant lower CC values
(p < 0.05) at LF and LC and lower CPL value (p < 0.05)
at LC, whereas no significant differences were found at
other brain regions. Neither EBC value nor NBC value
showed difference between two groups. For alpha fre-
quency band, MDD showed significantly lower both of
EBC values (p < 0.05) and NBC values (p < 0.05)
at RT, and also had decreased CPL values (p < 0.05) at LF,
whereas no significant differences were found at other brain
regions. Modularity value showed no differences between two
groups.

For the purpose to find out potential biomarkers that can
effectively detect depression. We assessed the relationships
between the network metrics having significant differences and
the PHQ-9 score, performing Spearman correlation analysis.
And we also evaluated the ability of these network metrics to
discriminate MDD patients from NC, using ROC plots. Results
were in Fig 7. For theta band, the CC in the LC and LF was
negatively correlated with PHQ-9 scores (p < 0.05), and the
AUC value were 0.777 and 0.664 respectively (note: AUC
value less than 0.70 indicates the precision of the diagnostic
test is poor, so the ROC curve of CC in the LF is not shown in
Fig 7.), and the CPL in the LC showed significant negatively
correlation with PHQ-9 scores (p < 0.05), the AUC value was
0.762. The brain topology of CC and CPL indicated depression
group was lower than normal group, especially in central (see
Fig 7a). For alpha band, the NBC in the RT was negatively
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TABLE III
ONE-WAY ANOVA RESULTS OF THE AVERAGE VALUES OF SIGNIFICANT NETWORK METRICS FOR

EIGHT BRAIN REGIONS BETWEEN MDD AND NC GROUPS IN THETA AND ALPHA BANDS

TABLE IV
CLASSIFICATION PERFORMANCE EVALUATION OF NETWORK

METRICS (LC-CC, LC-CPL, RT-NBC)

(p < 0.05) correlated with PHQ-9 scores, the AUC value was
0.777, and the EBC in the RT showed marginally significant
(0.05 < p < 0.1) correlation with PHQ-9 scores, the AUC
value were 0.727. However, the CPL in the LF showed no
correlation with PHQ-9 (p > 0.05), the AUC value was
0.723. The brain topology of EBC, NBC and CPL indicated
depression group was lower than normal group, especially
temporal of EBC and NBC and frontal of CPL (see Fig 7b).

However, in order to better prove whether these net-
work metrics were able to classify MDD from NC, Net-
work metrics (CC and CPL of LC in the theta band,
and NBC of RT in the alpha band) having significant
correlation with the PHQ-9 scores and having high AUC
value were further used as feature vectors. Classification
results were shown in the Table 4. For theta frequency
band, when CC in the LC was used as feature vector,
classification accuracy achieved 78.13% (p < 0.05), sensi-
tivity achieved 87.50% and specificity achieved 68.75%;
when CPL in the LC was used as feature vector, classi-
fication accuracy was 65.63% (p > 0.05), sensitivity was
68.75% and specificity was 62.50%. For alpha frequency
band, classification accuracy yielded 87.50% (p < 0.05),
sensitivity yielded 93.75% and specificity yielded 81.25%,
when NBC in the RT was used as feature. So the network
metrics: CC of LC in the theta band and NBC of RT in the
alpha band had the ability to discriminate MDD from NC.

V. DISCUSSION

This study used functional connectivity and graph the-
ory analysis to investigate the topological alterations of

high-density resting state EEG functional brain networks in
patients with MDD. Our main findings were: (1) ICoh was
used to estimate the connectivity matrix and CST was used for
binarization which could achieve effective MDD identification;
(2) the hubs in MDD was predominant in left hemisphere;
(3) symmetry breaking existed in MDD, especially frontal
in theta band, and temporal and central in alpha band;
(4) decreased CC, CPL, EBC, NBC and Modularity in MDD
revealed that patients with MDD had more random network
structure, altered CC in the LC in theta band and altered NBC
in the RT in alpha band were negative correlated with PHQ-9
score, and had good discrimination ability for depression.
In conclusion, our findings confirmed that the functional topo-
logical structure of resting state brain network is disrupted in
MDD, and provide reliable methods and sensitive biomarkers
that can be used for probable MDD diagnosis.

A. Why the Combination of ICoh and CST Is Optimal?

In this pilot study, we try to adopt different coupling
methods to construct functional connectivity matrices and
binarization approaches to binarize functional networks, which
not only including some methods (coupling methods: ICoh,
PLV, binarization approach: CST, ECO) that haven’t been used
in MDD, but also including some methods (coupling methods:
Coh, Corr, PLI, binarization approach: MST, Density) that
have been applied to MDD. However, in this research, topolog-
ical metrics of networks constructed using ICoh method and
CST binarization show more significant difference between
MDD patients and NC than the other methods. However net-
work metrics computed by other methods do not have distinct
differences between two groups, the reasons we analyzed may
be influenced by the reference electrode. Previous research
has observed the network properties computed from functional
brain networks are significantly affected by the EEG reference
choice [32]. Our study used REST, other researches used
AVE, DLM and Cz. So using different reference schemes may
come to different conclusions. But REST has been proved
significantly decreased the distortion of connectivity patterns
than other reference techniques [32], [53]. Hence, the study
of functional connectivity patterns using high-density EEG
system [21] based-on REST reference can obtain more reliable
results.
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In addition, commonly used coupling methods (Coh, Corr,
PLV) face limitations caused by volume conduction when
dealing with sensor layer EEG data [54]. ICoh and PLI are
robust to artefacts of volume conduction [19], [20]. But in
this paper when using PLI to construct functional connectiv-
ity matrices, network properties of functional brain network
did not show significant differences between MDD and NC
groups, which may be affected by the epoch length [52]. And
a research has demonstrated that the performance of other
functional connectivity methods was strongly influenced by
the number of sample available for the estimation process [55],
which maybe also exist in the ICoh. So in the future work,
we will explore how the epoch length affect ICoh. As we know
ICoh method has been proved useful for functional connec-
tivity analysis when applying to various datasets [56], [57].
So ICoh may be a good choice for functional connectivity of
MDD. For binarization approach Density is arbitrary and sub-
jective. Though MST and ECO are unbiased and non-arbitrary,
these two methods leads to highly sparse networks (MST and
ECO networks with N nodes respectively has N-1 edges and
1.5N edges), thus some important connections information
maybe absent, in turn resulting in insensitive to more subtle
differences in cognitive function [28]. And MST and ECO are
still sensitive to network size [8]. Moreover, a recent study
indicates that when there are differences in overall functional
connectivity between two groups, we should carefully choose
Density binarization approach, because even a small differ-
ence in functional connectivity can have a potential impact
on the between-groups differences of network metrics (e.g.
global efficient and CC) [58]. What should we note is that
MST or ECO approach can be seen as one of the strictest
cases of Density, hence MST or ECO may also face the same
problems of Density. When using Density, MST and ECO
to binarize the functional networks, the network metrics com-
puted from these binary brain networks almost have not signif-
icant differences between MDD group and NC group, which
may due to in this paper there is no evident differences of
functional connectivity between two groups. However, CST is
from a novel perspective to select the threshold, which chooses
the threshold by adjusting the ratio of closed to open triples
to reach balance, rather than fixing connection density at an
arbitrary value. This method can ensure a trade-off of sparsity
and density of information [28]. CST captures the differences
found at both high and low threshold levels, which may
make different network metrics become more sensitive [28].
There are researches indicated that CST outperforms the MST,
ECO and Density [21], [59]. Therefore, according to the above
analysis, we conclude that the combination of coupling method
ICoh and binarization approach CST is optimal to explore the
aberrant brain network topology structure of MDD.

B. Aberrant Brain Network Structure and Potential
Biomarkers in MDD

In this paper, we continued to study the alteration of brain
network architecture of MDD based on ICoh coupling method
and CST binarization approach. Our results revealed that the
topology distribution of hubs of patients with MDD had an

aberrant patterns compared to NC. Specifically, the hubs of
MDD mainly distributed in left frontal, left temporal and left
central regions in theta band, and in frontal, left temporal,
left central and left parietal-occipital regions in alpha band.
But hubs in NC group distributed both in left and right hemi-
spheres. Aiming at the phenomenon of hubs of MDD mainly
distributed in left hemisphere, we speculate that patients with
MDD have abnormal information processing, which is consis-
tent with the right hemisphere dysfunction in depression [60].
Early behavioral studies indicated that right hemisphere of
depressed patients showed greater deficits in functions com-
pared to left hemisphere [61]. A previous EEG study reported
in-degree of left hemisphere in depressed patients was larger
than that of right hemisphere, which indicated that left hemi-
sphere was strongly influenced by its right hemisphere in
depressed patients [34]. Left hemisphere lateralization found
in this study might be a characteristic of cognition functional
impairment in MDD, which needs more researches to further
study the information processing mechanisms of MDD.

Asymmetry has great contribution to revealing the intrinsic
properties of MDD. Many EEG studies have found asymmetric
connection patterns within the frontal region of patients with
MDD compared to NC in theta and alpha bands [42], [62].
And frontal lobe is proven to be an important part related to
MDD [63]. Similar results were found in our study, symmetry
breaking was found in frontal lobe (degree of LF > degree of
RF) in theta band for MDD. But we also obtained different
results that for alpha band asymmetry was found in temporal
lobe (degree of LT > degree of RT) and central lobe (degree of
LC > degree of RC) of MDD. Previous studies also concluded
the alpha asymmetry at parietal region in depressed patients,
which showed less activity over right parietal than left parietal,
when compared to healthy individuals [64]. Likewise, there
was a study found that right temporal region dysfunction may
be particularly evident in melancholic depression [65], which
can further support our findings.

In addition, our results also revealed the brain networks
structure of MDD patients tended to be randomized. MDD
exhibited decreased CC, EBC, NBC and CPL in theta band
and Modularity, EBC, NBC and CPL in alpha band, when
compared to NC group, which are consistent with the results
of previous studies [12], [14], [27], [66]. Specifically, we found
CC and CPL of LC in theta band and NBC of RT in
alpha band were significantly negatively related to the PHQ-9
scores, indicating the more severe the depression, the lower
the CC and NBC. These correlations have been found in
previous studies. For example, a comparable study found that
the CC of the left amygdala was negatively related to the
scores of Hamilton Depression Rating Scale-17 (HAMD-17),
PHQ-9 and Trait Anxiety Inventory (T-AI) [14]. Another study
suggested that reduced CC of the prefrontal cortex, striatum,
and medial temporal cortex are likely to be associated with
the generation of depressive symptoms, such as persistent
sadness, guilt, worthlessness, and recurrent reflective self-
focus [67]. From the view of node centrality, Zhang et al. [68]
found the node centrality of the left hippocampus and the left
caudate nucleus were significantly related to the course and
severity of depression. Furthermore, related studies suggested
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that temporal lobe also plays a vital role in depression studies.
For example, Fan et al. [69] claimed that aberrant right
superior temporal gyrus activity might be a potential marker of
suicide tendency in MDD. And Blackhart et al. [70] suggested
relatively less right parietotemporal activity was correlated
with higher depression scores. These findings confirmed the
validity of results obtained from this study. More importantly,
when network metrics CC of LC in the theta band and NBC of
RT in the alpha band were used as feature vectors respectively,
the classification accuracy achieved above 78.00%. Especially,
when network metric NBC of RT in the alpha band was
used as feature, classification accuracy was 87.50%, sensitivity
was 93.70% and specificity was 81.25%. Our results are
equal or better than previous research [11], [12], [71]. So the
network metrics computed in our study have the ability to
discriminate patients with MDD from NC.

VI. CONCLUSION

To explore reliable and robust construction methods of func-
tional brain networks, this study systematically compared the
combination of different coupling methods (Coh, ICoh, Corr,
PLI, PLV) and binarization approaches (CST, ECO, MST,
Density) using high-density 128-channel resting state EEG
recordings of MDD patients. We found that the combination
of ICoh and CST was optimal. Applying this combination
to further explore the aberrant brain network structure in
MDD, we found right hemisphere function deficiency existed
in MDD. Symmetry breaking was found in frontal lobe in
theta band and in temporal lobe and central lobe in alpha
band for MDD. Randomized brain topology structure likewise
was found in MDD. These results confirmed that patients
with MDD had abnormal information processing. Moreover,
clustering coefficient in left central region in theta band and
node betweenness centrality in right temporal region in alpha
band were significantly negatively correlated with depres-
sive level. And these network metrics possessed the ability
to discriminate patients with MDD from NC, which may
offer effective electrophysiological characteristics for probable
MDD diagnosis. In summary, these findings provided insights
into our understanding of aberrant topology organization in
functional brain networks of MDD.
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