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a b s t r a c t 

We introduce an epidemic spreading model on a network using concepts from percolation theory. The 

model is motivated by discussing the standard SIR model, with extensions to describe effects of lock- 

downs within a population. The underlying ideas and behaviour of the lattice model, implemented using 

the same lockdown scheme as for the SIR scheme, are discussed in detail and illustrated with extensive 

simulations. A comparison between both models is presented for the case of COVID-19 data from the USA. 

Both fits to the empirical data are very good, but some differences emer ge between the two approaches 

which indicate the usefulness of having an alternative approach to the widespread SIR model. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

l  

w  

[  

a  

[

 

d  

t  

fi  

t  

p  

w  

o  

l

 

S  

s  

o  

a  

T  

t  

E  

m

a  

m  

U  

o  

S

2

 

t  

i  

e

 

N  

t  

(  

i  

t  

n  

S  

i  

t  

o  

T  

h

0

. Introduction 

The study of epidemics spreading in human populations has a

ong history both on the mathematical aspects (see e.g. [2,4,14] ), as

ell as on the modelling of outbreak and control of their evolution

1,6,11,12,20] . Spreading phenomena has been studied extensively

lso in the realm of statistical physics of disordered systems (e.g.

3,5,17] ). 

In this paper, we introduce a lattice network model for epi-

emics spreading based in part on concepts taken from percola-

ion theory. To motivate the network approach to spreading, we

rst discuss the SIR model [14] , also extending it to encompass

he effects of lockdowns mimicked by using a time decaying re-

roduction number. To assess the usefulness of the lattice model,

e consider COVID-19 data from the USA and compare the results

f the simulations with SIR predictions, both in the presence of

ockdowns. 

The paper is organized as follows: We start out in

ection 2 with a brief review of the SIR model, with empha-

is on some analytical results and its extension to the description

f lockdown effects. Illustrative examples are shown, together with

 motivation for the need of going beyond a ‘mean-field’ approach.

he network model is then discussed in detail in Section 3 , and

he percolation ideas, relevant to the present case, are discussed.

xtensive (Monte Carlo) simulations are shown to illustrate the
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dvantages and difficulties typically associated with such lattice

odels. In Section 4 , we apply it to the current case of COVID-19

SA data, by comparing the network results with the predictions

f the SIR model. The paper ends with our concluding remarks in

ection 5 . 

. SIR models with extensions to lockdown effects 

Infection spreading is typically modelled by the SIR model, in-

roduced in [14] . We briefly review it for the purpose of introduc-

ng the notation and presenting extensions to describe lockdown

ffects. We follow standard terminology in epidemic literature 1 

We consider a population with a fixed number of individuals,

 . To describe the outbreak of an infectious disease, the popula-

ion can be divided into the following four categories: Susceptible

 S ), Infected ( I ), Recovered ( R ) and Dormant ( D ). The number of

ndividuals in each of the first three categories depends on time

 , so that we will indicate them as S ( t ), I ( t ) and R ( t ), while the

umber of Dormant D remains constant during the whole process.

usceptible subjects are initially healthy but can become infected;

nfected people carry the infection and can transmit it to suscep-

ible ones, while recovered people are infected who have healed

r have died, thus they do not spread the infection any further.

he fourth category, D , includes non-susceptible subjects (perhaps
1 It is widespread usage in epidemiology (see e.g. [16] ) to refer to ‘Susceptible’, 

Infected’ and ‘Recovered’, rather than using longer phrases such as ‘population of 

usceptible individuals’ or ‘the susceptible category’. Here, we add the ‘Dormant’ 

ategory, referring to individuals who temporally do not interact with others. 

https://doi.org/10.1016/j.chaos.2020.110077
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110077&domain=pdf
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Fig. 1. Structure of a population of N individuals before the outbreak of the dis- 

ease: Susceptible, N − N 0 , versus non-susceptible or dormant, N 0 . The latter are as- 

sumed to be inaccessible to the infection and being disseminated uniformly within 

the population. Although this classification is apparently superfluous within a SIR 

approach, it becomes useful for spreading phenomena on networks. 
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Fig. 2. (Upper panel) SIR model for β = 1 . 1 , γ = 1 / 30 , R 0 = β/γ = 33 and f 0 = 

N 0 /N = 0 . 5 , yielding β̄ = 0 . 55 and R̄ 0 = 16 . 5 . The case f 0 = N 0 = 0 (dashed lines) 

is shown for comparison. (Lower panel) SIR model with distancing effects for 

β̄(t) = β̄(τ0 /t) q , with τ0 = 18 and q = 2 . The dashed lines represent the solution 

without lockdowns, and are shown for comparison. 
immune individuals to the specific disease), and in general healthy

subjects who do not get in contact with infected ones during the

whole spreading process ( Fig. 1 ). The reason for introducing the

fourth category will become clearer when discussing solutions of

the SIR system of equations. 

At any time t , the number of individuals in each category must

obey the conservation equation, 

S(t) + I(t) + R (t) + N 0 = N, (1)

where we have denoted N 0 = D . We assume the unit of time to be

one day. 

The SIR model is described by a set of three differential equa-

tions for the time variation of the number of individuals in each

category, S ( t ), I ( t ) and R ( t ), which, upon taking into account the

condition Eq. (1) , read, 

dS 

dt 
= −β S(t) 

I 

N 

= β̄ S(t) 
I 

N eff 

, (2)

dI 

dt 
= β I (t) 

S 

N 

− γ I (t) = β̄ I (t) 
S 

N eff 

− γ I (t) , (3)

dR 

dt 
= γ I(t) , (4)

where N eff = N − N 0 = S(t) + I(t) + R (t) , is the effective number of

individuals taking part in the process, β is the infection (or con-

tact) rate between infected and susceptible subjects, β̄ = βN eff /N

is the effective infection rate in the presence of dormant, and γ is

the healing (or immunization) rate of infected. It is convenient to

work with normalized quantities, s (t) = S(t ) /N eff , i (t ) = I(t) /N eff ,

and r(t) = R (t) /N eff , so that the SIR equations become, 

ds 

dt 
= −β̄ s (t) i (t) , (5)

di 

dt 
= ( ̄β s (t) − γ ) i (t) = ( ̄R 0 s (t) − 1) γ i (t) , (6)

dr = γ i (t) . (7)

dt 
he above equations have exactly the same form as in the case

 0 = 0 . The idea of considering explicitly a fraction of the whole

opulation not taking part in the spreading phenomenon, f 0 =
 0 /N (0 ≤ f 0 ≤ 1), allows us to interpret the so-called reproduc-

ion number, R 0 , as composed of two factors, a purely ‘biologi-

al’ one, ~ β/ γ , and a ‘structural’ one ∼ (1 − f 0 ) , denoted as,
¯
 0 = (β/γ )(1 − f 0 ) . The second factor represents the effect of dor-

ant individuals non-in-contact with others, thus ‘hindering’ or

lowing down the spreading process. The fraction f 0 can change in

ime, but for simplicity we assume it constant. Within the realm

f the SIR model dormant people do not seem necessary, however,

hey play a prominent role within the context of network mod-

ls of infection spreading, as we will discuss in detail in Section 3 .

ore generally, dormant subjects can be considered as those indi-

iduals who interact very weakly with others, thus representing a

ubset of the population being in a sort of ‘quarantine’ from others.

One can derive some general relations between the cate-

ories by considering ratios between the SIR differential equations

Eqs. ( 5,6,7 )). First, divide (6) by (5) , yielding, 

di 

ds 
= − 1 + 

γ

βs 
, i ( t ) − i ( 0 ) = s (0) − s (t) + 

1 

R 0 

log (s (t) /s (0)) , (8)

nd dividing (5) by (7) , we find, 

ds 

dr 
= − β̄s 

γ
, log (s (t) /s (0)) = −R̄ 0 (r(t) − r(0)) . (9)
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y specifying the conditions, i (0) = 1 /N eff , s (0) = 1 − 1 /N eff , and

 (∞ ) = 0 , Eq. (8) becomes, 

 (∞ ) = 1 + 

1 

R̄ 0 

log (s (∞ ) /s (0)) , (10)

hich can be written as, 

 (∞ ) = s (0) e −R̄ 0 (1 −s (∞ )) . (11)

otable limits are, s (∞ ) = s (0) when R̄ 0 → 0 , and s (∞ ) = 0 when
¯
 0 → ∞ . Also Eq. (6) admits a partial solution when d i/d t = 0 , in

articular at t = t peak , i.e. at the peak of the infected curve, yield-

ng, 

 

(
t peak 

)
= 

1 

R 0 

, and i 
(
t peak 

)
+ r 

(
t peak 

)
= 1 − 1 

R 0 

. (12) 

Lockdown effects can be modelled using an exponential time

ependence of β (see e.g. [15] ). Here, we employ a softer decay

hat appears to work very well, i.e. 

¯ (t) = β̄
(
τ0 

t 

)q 

, t ≥ τ0 , (13)

nd β̄(t) = β̄, for t ≤ τ 0 , where τ 0 is the time at which lockdown

tarts, and q > 0 is a parameter. This means we deal with a time
ig. 3. The graph of connected individuals used in the simulation. Each site of the (100x1

S) Susceptible (green), (I) Infected (red), (R) Recovered (blue), (D) Dormant (yellow). Pane

nd D = 4957 ; (Upper right) t = 50 ; (Lower left) t = 60 ; (Lower right) t = 70 . The mode

ime) and γ = 1 / 30 , yielding R 0 = β/γ = 15 , and τL = 10 (long range transmission time)

tarting configuration is 〈 k 〉 = 2 , while additional links are added dynamically as the n

 

�k 〉 = 1110 / 5043 ∼= 

0 . 22 , corresponding to an effective mean node degree 〈 k eff 〉 = 2 . 22 .

eferred to the web version of this article.) 
ecaying reproduction number, R̄ 0 (t) = β̄(t) /γ . Using this form in

q. (6) , we can obtain the time t lock at which the infected curve

isplays its new maximum. The condition is, R̄ 0 (t lock ) s (t lock ) = 1 ,

hich, together with Eq. (12) , yields, 

 lock = τ0 

(
s (t lock ) 

s (t peak ) 

)1 /q 

> τ0 , (14) 

ince s ( t lock ) > s ( t peak ), as there are more susceptible subjects in

he presence of lockdowns than otherwise. Illustrative examples

re reported in Fig. 2 , for R̄ 0 = 16 . 5 (with β = 1 . 1 and γ = 1 / 30 )

nd f 0 = 1 / 2 . 

In the upper panel, we show the standard case, with γ rep-

esenting the inverse of a typical COVID-19 healing period. We

how also for comparison the case f 0 = 0 (dashed lines). In this

ase, Eq. (11) predicts s ( ∞ ) ∼= 

0, clearly consistent with the numeri-

al data. As is apparent from the upper panel of Fig. 2 , the effect of

 0 > 0 is to shift the infected peak at longer times by keeping a still

igh reproduction number. The effects of lockdowns, using rela-

ion Eq. (13) , are displayed in the lower panel of the figure, for the

ypical cases τ0 = 18 days and q = 2 . Notice that Eq. (14) predicts

 lock 
∼= 

18 
√ 

0 . 6 6 / 0 . 0 6 ∼= 

60 days, in agreement with the numerical

esults, and the infected peak is reduced by a factor of about 4. 
00) square lattice represents an individual belonging to one of the four categories: 

ls : (Upper left) Starting configuration ( t = 0 ) for f 0 = 0 . 5 with S = 5042 , I = 1 , R = 0 

l parameters are: τI = 2 (transmission time) and β = 1 /τI = 1 / 2 , τH = 30 (healing 

 yielding βL = 1 / 10 . Times are expressed in days. The average node degree for the 

etwork evolves in time. The newly created links yield an additional mean degree 

 (For interpretation of the references to colour in this figure legend, the reader is 
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Let us return to Eq. (11) . In the language of random graph the-

ory [4,9,10] , Eq. (11) is formally equivalent to the self-consistent

relation for the fraction of nodes, P ∞ 

≡ 1 − s (∞ ) , belonging to the

giant component of random graphs with a finite mean node degree

< k > , given by, 

P (∞ ) = 

(
1 − e −〈 k 〉 p P(∞ ) 

)
, (15)

where 0 < p < 1 is the probability of occupancy of a link be-

tween two nodes. It can be shown that a giant cluster exists when

〈 k 〉 p = c > 1 . This model is also related to the mean-field the-

ory of random spin glasses with finite coordination number (see

e.g. [13] ). Clearly, P ( ∞ ) → 1 if c → ∞ , while for c − 1 = ε, with

0 ≤ ε � 1 we find, 

P (∞ ) = 2 p 
c − 1 

c 2 
, when c → 1 

+ . (16)

The correspondence with Eq. (11) is achieved if we take R̄ 0 ≡ c and

assume s (0) = 1 , which is the case since s (0) ≈ 1 in our spreading

model. Using 1 − s (∞ ) = r(∞ ) , we find, 

r(∞ ) = 2 

R̄ 0 − 1 

R̄ 

2 
0 

, when R̄ 0 → 1 

+ . (17)

This correspondence is actually not surprising since the SIR equa-

tions are valid in a mean-field sense, where fluctuations and corre-

lations among the categories are neglected. This analogy suggests
Fig. 4. Same as in Fig. 3 in the case of lockdowns: Panels : (Upper left) Starting lockdowns

parameters are: τ0 = 20 (start of lockdowns) and τL = ∞ (no long range transmissions) 

while additional links are added dynamically until t = τ0 . The newly created links yield 

mean node degree 〈 k eff 〉 = 2 . 03 . 
s that we should go beyond mean-field theory by studying in-

ectious spreading on a network where correlations can be imple-

ented. This is done in the following Section. 

. Spreading phenomena on random graphs: Percolation 

oncepts 

Tracing infected people in a population and how they move is

ssential to make an accurate assessment of the extent a virus has

pread in a region, country or the whole world, in order to im-

lement effective lockdowns in each particular place (see e.g. [7] ).

ere we discuss a simple network model defined on a two dimen-

ional square lattice. The sites of the lattice represent individuals

elonging to one of the four categories ( S, I, R, D ), which we will

istinguish with different colours in the plots, i.e. green, red, blue,

nd yellow, respectively. 

Two individuals are said to be connected, i.e. transmission of

he disease can occur, if they are nearest-neighbours (NN) on the

attice, representing a ‘short-range’ contact interaction. The NN

hoice is done just for convenience, and it can be relaxed in other

ersions of the model. The bonds between sites represent therefore

he links in the graph, and the coordination number of 4 gives the

aximum node degree, under ‘static’ conditions. The latter means
 ( t = 20 ); (Upper right) t = 50 ; (Lower left) t = 60 ; (Lower right) t = 70 . The model 

yielding βL = 0 . The average node degree for the starting configuration is 〈 k 〉 = 2 , 

an additional mean degree 〈 �k 〉 = 156 / 5043 ∼= 

0 . 03 , corresponding to an effective 
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Fig. 5. Time evolution of the normalized SIR functions for the lattice network- 

spreading model. (Upper panel) No lockdowns ( Fig. 3 ). (Lower panel) Lockdowns: 

t ≥ τ0 = 20 ( Fig. 4 ). 
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hat the individuals are considered to be at rest in their lattice lo-

ations, initially, while the virus can move around from site to site

f the following rules are obeyed: (1) The virus can cross a bond

rom an infected site to a susceptible one; (2) no virus transmis-

ion occurs otherwise; (3) infected sites heal after τH days, becom-

ng recovered sites, so that they can neither infect others nor being

nfected again (immune sites); and (4) dormant sites do not partic-

pate in the spreading process. 

It is essential to consider additional links ‘dynamically’ as the

preading goes on. This is done in order to describe those individ-

als who move around for different reasons. Thus, any infected site

an reach sites that are not NN to it, and the infection can spread

ccording to the above rules. In this case, the infection is trans-

itted with a probability βL = t 0 /τL , with τ L > t 0 , and t 0 = 1 day,

rovided the target site is a susceptible one. 

In summary, we have taken a two dimensional lattice to facil-

tate the visualization of the network, and considering both NN

ransmissions as well as long-range ones, though with a lower

robability. Since the extra links are not determined from the be-

inning, but are added dynamically, we do not show them in the

lots, facilitating the identification of the categories. Another rea-

on for choosing a square lattice is that the percolation threshold

or site percolation (in this case the susceptible sites) is about 0.6,

eaning that if we take say, f 0 = 1 / 2 , there are not percolating

‘infinite’) clusters of susceptible subjects on the lattice. This ‘hin-

ering’ effect is useful when implementing lockdowns, since the

emaining susceptible clusters (of connected NN sites) are discon-

ected from each other (they are indeed ‘finite’). One can say that

long-range’ links can connect different susceptible clusters, which

therwise would remain disconnected. 

We show in Fig. 3 and 4 results of simulations for a sin-

le configuration, without and with lockdowns, respectively, on a

100x100) lattice for times t ≤ 100 days. Fixed boundary condi-

ions are employed. The starting configuration has a random dis-

ribution of either susceptible or dormant sites, chosen with prob-

bility f 0 = 1 / 2 . The initial conditions include a single infected

ite right at the centre of the lattice, and no recovered subject.

e keep track of the existing infected sites, each carrying a clock

hat starts ticking when the site gets infected. After a time τH it

ecomes recovered (immune). Death sites are not implemented,

ut they can be estimated simply as a fraction of recovered

nes. 

We count the number of dynamical links generated during

he spreading, from which we can determine, a posteriori, the

ffective mean node degree, < k eff > , in our network. We find

 k eff > 

∼= 

2.22 without lockdowns ( Fig. 3 ) and < k eff > 

∼= 

2.03

ith lockdowns ( Fig. 4 ), indicating an effective reproduction num-

er R eff = 〈 k eff 〉 − 1 � 1 . It turns out that the relatively small re-

uction of the mean node degree in the presence of lockdowns is

ufficient to reduce the number of infected subjects considerably,

s one can see from the very different structure of recovered clus-

ers from both figures. The time evolution of the three categories

re displayed in Fig. 5 , and look qualitatively similar to those from

he SIR model in Fig. 2 . We should mention that a single lattice

imulation takes few seconds on a typical laptop, even for lattices

f size (40 0x40 0), allowing to obtain accurate mean values by av-

raging over several configurations if required. 

. Analysis of COVID-19 USA data 

As an application of the present ideas we consider COVID-19

SA data (see also [8,18,19] ), from the point of view of both SIR

nd network models. In order to do so, and due to the complexity

f the data, we need to introduce additional features in particular

or the SIR model. 
For the USA data ( Fig. 6 ), the lockdown regime can be described

y the Ansatz, similar to Eq. (13) , 

¯ (t) = β̄D 

(
τ0 

t 

)q (t) 

, t ≥ τ0 , (18)

here β̄D = (βD /γ )(1 − f 0 ) , with, in general, a time dependent

xponent q ( t ). 

Let us consider first the case of the SIR model (upper panel in

ig. 6 ). For the latter, we use the decreasing function with time,

 (t) = q − t/ 100 , with the constant value q = 2 . 5 . This feature was

eeded in order to reproduce the slowly decreasing behaviour of

he daily cases (blue circles in Fig. 6 ). In addition, a rather com-

licated form for the factor d ( t ) determining the time evolution of

eaths, Deaths = d(t) × R (t) , was required. We find that the form

(t) = 0 . 17 [0 . 3 + 1 / (t/ 60)] reproduces the curve of deaths quite

ell (black circles in Fig. 6 ), but the results might be improved

sing more parameters. This remains to be understood. The whole

tting curves were shifted in time by an amount t Lag = 29 days,

hat is, the initial data were actually discarded from the fits. 

In the case of the network model (lower panel in Fig. 6 ), the

ituation is simpler since all parameters can be taken as constants;

he values depending on the regime under consideration. Regard-

ng lockdowns ( t ≥ τ 0 ), the value q = 2 . 5 works rather well, while

e take a finite long-range transmission probability βLD = 1 / 32 ,

.e. 4 times smaller than its value βL = 1 / 8 ( t < τ 0 ), suggesting

hat indeed the lockdowns are not fully implemented and few ad-

itional infected subjects are still moving around. Also the number

f deaths can be estimated from the actual recovered ones using

 single value d = 0 . 06 (6%). As well as in the case of SIR, also
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Fig. 6. Time evolution of COVID-19 in the USA. SIR model (upper panel): N = 3 10 6 , 

f 0 = 1 / 2 , β = 0 . 65 , γ = 1 / 30 , R̄ 0 = 9 . 75 ; Lockdowns: τ0 = 36 , βD = 0 . 45 , q (t) = 

2 . 5 − t / 100 , d(t ) = 0 . 17[0 . 3 + 1 / (1 + t/ 60)] . Time lag t Lag = 29 . Network model 

(lower panel): L = 400 , N = 90 10 6 , β = 0 . 65 , γ = 1 / 30 , R̄ 0 = 9 . 75 , βL = 1 / 8 , 〈 k 〉 = 

1 . 994 , 〈 �k 〉 = 661 / 79900 ∼= 

0 . 008 and 〈 k eff 〉 = 2 . 002 ; Lockdowns: τ0 = 20 , βD = 

0 . 55 , βLD = 1 / 32 , q = 2 . 5 , d = 0 . 06 . Time lag t Lag = 45 for cases and t Lag = 21 for 

deaths. Data up to May 25, 2020. 
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here we used times lags for the fits, i.e. t Lag = 45 for the cases and

 Lag = 21 for deaths. 

5. Conclusions 

We have introduced a network model for the spreading of an

infectious disease in a population based on random graph and per-

colation theory concepts. The model is conveniently defined on a

square lattice allowing a simple visualization of the four different

categories in the problem: Infected, susceptible, recovered and dor-

mant subjects. The first three groups form the core of the widely

used SIR model, while the fourth one is introduced here for rep-

resenting those individuals who are disconnected to some extent

from the rest of the population. They do not participate in the

spreading phenomena but their presence acts as an effective slow-

ing down of spreading by blocking an otherwise direct transmis-

sion between infected and susceptible people. In the language of

percolation theory, the ‘connected’ susceptible subjects form finite

clusters on the lattice that are separated from each other. To al-

low the spreading to overcome these ‘connection gaps’ as the pro-

cess evolves in time, we allow infected people to reach any other

susceptible site in the lattice, and infect it with a relatively lower

probability than inside a finite cluster via NN contacts. We denote
hese new links, not present initially in the ‘lattice graph’, dynam-

cal links. This dynamical approach allows us to describe lockdown

ffects in terms of the slowing down or total lacking of the dynam-

cal links. 

We have assessed the performance of the network model by

tting COVID-19 USA data and compared the results with predic-

ions using the SIR model. The network model works very well by

ust using constant parameters, while the SIR model requires more

nvolved time dependent parameters to achieved similar fitting ac-

uracy. We conclude that the present network model can become

 valuable technique to complement the widely used SIR model. 
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