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Abstract 

1. Individual identification of sea turtles is important to study their biology and aide in 

conservation efforts. Traditional methods for identifying sea turtles that rely on physical or 

GPS tags can be expensive, and difficult to implement. Alternatively, the scale structure 

on the side of a turtle’s head has been shown to be specific to the individual and stable over 

its lifetime, and therefore can be used as the individual’s “fingerprint”.   

2. Here we propose a novel facial recognition method where an image of a sea turtle is 

converted into a graph (network) with nodes representing scales, and edges connecting two 

scales that share a border. The topology of the graph is used to differentiate species.  

3. We additionally develop a robust metric to compare turtles based on a correspondence 

between nodes generated by a coherent point drift algorithm and computing a graph edit 

distance to identify individual turtles with over 94% accuracy. 

4. By representing the special and topological features of sea turtle scales as a graph, we 

perform more accurate individual identification which is robust under different imaging 

conditions and may be adapted for a wider number of species. 

 

Keywords: Animal Biometrics; Coherent Point Drift; Facial Recognition; Individual 

Identification; Map Graphs; Networks; Sea Turtles 
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1. Introduction 

Computer-assisted individual photo identification has been employed in a variety of species, 

including whale sharks (Arzoumanian et al. 2005), seadragons (Martin-Smith, 2011), salamanders 

(Gamble et al, 2008), leopards (Miththpala, et al. 1989), and sea turtles (Gatto et al., 2018; Jean et 

al., 2010; Reisser et al., 2008). Visually comparing all possible combinations of individuals is 

impractical as the number of images grows, so an automated method for performing individual 

identification is used, typically based on identifying biological markers of the specific species. 

These natural markers are often specific patterns of spots, lines, or unique markings/patterns which 

can be automatically detected based on contrast enhancement or line/edge detection filters. In 

many cases, such as in sea turtles, the spatial distribution (position and number) of the markers is 

not enough to uniquely identify an individual.  

A significant challenge with marine animal imaging is that images are not generated in a 

consistent or controlled manner; images are collected under different conditions of light, visibility, 

and background, at different distances, from different angles, with different cameras, and by 

different observers. Existing software for performing individual recognition of sea turtles and other 

marine animals relies mainly on manual region selection and automated feature identification on 

the plastron of the turtle using the features generated by SIFT (Kisku et al. 2007), SURF (Leonardis 

et al. 2006), or ORB (Rublee et al. 2011). The main limitation of this approach is the reliance on 

the SIFT-based descriptor (Beugeling & Branzan-Albu, 2014), which has little physical relevance 

to the turtles’ scale structures and often relies on detection of general edges or regions of intensity 

that could vary widely based on the region analyzed. Furthermore, this approach produces 

inconsistent results under the wide variety of water and lighting conditions in which turtles are 

photographed, without extensive preprocessing (Calmanovici et al. 2018). Additional false 
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negatives are generated when the tilt of the turtles’ head differs by more than ~30% which is 

difficult to control when taking pictures of moving turtles under water (den Hartog & Reijns, 

2019). Once identified, features can be compared across databases in many different ways using a 

variety of hierarchical methods to rank the most similar individuals (Duyck et al., 2015).  

Reisser et al. 2008 explored descriptors of the turtles’ facial scale structures that were more 

representative physically using a purely qualitative visual inspection of the scale pattern to validate 

tagging data, and identify individuals. Recently, Jean et al. 2010 assigned each facial scale a unique 

three digit ID number encoding the relative position of the scale with the first two digits (indicating 

the approximate row and column positions of the scale), and the third digit describing the number 

of sides. Individual comparisons were done by measuring the difference between each of the 

equivalent scale IDs. The main limitation with this procedure is the reliance on maintaining a 

consistent region in which to identify scales. Including or removing a scale from the compared 

identifiers will significantly change the probability of a true positive match. Additionally, since 

the scales do not follow a simple grid pattern, the row and column designations for scales further 

from the eye are more subject to errors. A similar method of analyzing scute patterns was used to 

identify alligators (Balaguera-Reina et al. 2017), but similarly neglected any topological 

information of the patterns. We propose performing individual identification for sea turtles by 

representing and comparing the scale patterns as mathematical graphs. 

Mathematical graphs or networks have been used to describe many biological systems such 

as protein-protein interactions (Uetz et al. 2000), gene regulation (Arnone & Davidson, 1997), 

evolutionary history (Huson & Bryant, 2006), social interactions (Lusseau, 2003), and food webs 

(Briand & Cohen, 1984). As a result, pattern recognition on graphs is useful in many fields (Foggia 

et al. 2014). The performance of pattern recognition algorithms depends primarily on the choice 
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of the algorithm used to compare the similarity of two given graphs. One of the most efficient 

classes of matching algorithms are spectral methods (Caelli & Kosinov, 2004b; Wilson & Zhu, 

2008) which involve eigenvalue decomposition of the adjacency or Laplacian matrix of the graph 

and can be computed in polynomial time. A more flexible and versatile class of methods involves 

calculating the graph edit distance (Sanfeliu et al. 1983; Fischer et al. 2017), which is known to be 

NP-complete. Many polynomial algorithms have been suggested to approximate the graph edit 

distance, but only work for certain classes of graphs, or are not guaranteed to find global minima 

solutions (Justice & Hero, 2006). Finally, graph kernels (Gaüzère et al. 2012; Bai et al. 2015; 

Kondor & Pan, 2016) represent another general procedure in which the graph is converted to some 

vector which in turn is used as the input to a machine learning algorithm or support vector machine 

for further classification/matching. 

The pattern of facial scales of sea turtles is specific to an individual and stable over its 

lifetime; thus, it can serve as the basis for automated facial recognition (Carpentier et al. 2016). 

We introduce an algorithm that accomplishes individual identification in two steps. First, an 

observer identifies scales (nodes), marks their positions, and collects the pattern of connections 

between them (edges). The nodes and edges define a map graph (Chen et al. 2002) for the face. 

We then generate a mapping between the nodes of each map graph using a coherent point drift 

algorithm (Myronenko & Song, 2010) on the scale positions, along with the eye and beak as points 

of reference. Second, we measure the similarity between the map graphs using a modified graph 

edit distance metric. Our algorithm correctly match turtles in a database 94% of the time. The main 

novelty and impact of this paper is to combine information on the positions and the pattern of 

connections of scales to perform individual identification. 
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2. Materials and Methods 

We analyzed 164 photos of sea turtles, taken over a span of 10 years (2009–2019), in a range of 

locations and conditions (e.g. lighting, distance, angle), by different researchers, using different 

cameras. Included in this sample were green turtles, C. mydas, of both the black and green 

morphotype, and hawksbill turtles, E. imbricata (Table 1). All photos were of the right side of the 

face. Previously, these images had been judged to belong to at most 139 individuals, with 20 

individuals photographed multiple times (20 viewed twice, 4 viewed 3 times, and 1 viewed 4 

times). The database is maintained by J.P.M.P. and D.A.R. A map graph was generated from each 

image independently by K.K.R. and R.B.R.A. resulting in two sets of graphs for each image. The 

algorithms used to compare the images do not require any fitting, so no train/test/validation split 

is needed. 

 

2.1 Generating Map Graphs from Images 

We used each image of a sea turtle face to construct an undirected graph, 𝐺 = (𝑉, 𝐸), where 𝑉	is 

a set of nodes (or vertices) and 𝐸 is a set of edges (or pairs of nodes). The nodes represent scales 

and the edges represent pairs of scales sharing a common border. We included two additional 

nodes: the eye and the tip of the beak, designated nodes 1 and 2, respectively. The eye is connected 

to its neighboring scales, but the beak is not connected to any other scales. We disregard the scales 

on the top of the head and the small scales on the neck and on the bottom of the turtle’s face. Thus, 

if we exclude node 2 (beak), graph G is the map graph (Chen et al., 2002) of the eye and scales. 

The resulting map graphs are unlabeled (except for nodes 1 and 2) and mostly planar, that is, they 

consist of edges that do not intersect each other. However, edges will intersect if three or more 
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scales meet at one point (corner). The pixel coordinates of the nodes (at approximately the center 

of the scale) are also recorded as node attributes. 

Some turtles have complex facial patterns that make scale identification difficult and 

neighborhood unclear, especially if the quality of the image is poor. In addition, light conditions 

may create artifacts that can be mistaken for scale borders. These problems make graph generation 

difficult to automate. As a result, one of the main sources of error in our approach is inconsistent 

generation of graphs. An example is shown in Figure 1 with additional sample images of the 

Hawksbill and Yellow morphotype are given in Figure S1. 

To evaluate the effect of these variations in graph reconstruction, two sets of the turtle 

graphs were obtained by two researchers independently generating one graph from each image. 

When multiple images were thought to belong to the same turtle (based on earlier evaluations), 

each investigator made sure that their graphs were generated independently, at least two hours 

apart, to minimize the impact of memory on graph generation.  

 

2.2 Graph Topology Metrics 

The graph topology of the scale structure guarantees three invariances. First, invariance to 

translation; the picture of the turtle may occur anywhere on the image. Second, invariance to 

rotation of the turtle’s face in three dimensions. Third, invariance to lighting and visibility 

conditions. The first two properties show that the graph is a global property of the turtle’s face. 

Ultimately, the graph is insensitive to how the photo is taken, provided the relevant scales and 

borders are clearly visible. For a given graph G, there are many global measures of the size and 

connectivity. We consider 11 different metrics of the size and connectivity of the graphs (see Table 
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S1) and perform principal component analysis (PCA) on these metrics to evaluate the variation in 

graph topology within and among species. 

 

2.3 Graph Spectrum 

Two metrics we used to compare the topology of two graphs were based on the spectrum of their 

adjacency and Laplacian matrices. The adjacency matrix (A) of graph G is a square matrix whose 

element 𝐴!" is 1 if nodes 𝑖 and 𝑗 are connected and 0 otherwise (𝐴!! = 0	∀!). The Laplacian matrix 

(L) of G is defined as 

𝐋 = 𝐃 − 𝐀 (3) 

where 𝐃 is the degree matrix of G, a diagonal matrix, whose element 𝐷!! is the degree of node 𝑖, 

that is, the number of edges connecting to that node. The spectrum of the A or L matrices is the 

set of eigenvalues 𝜆!. We calculate the following distance (S) between the spectra of the two 

graphs: 

𝑆 =67𝜆!
($) − 𝜆!

(&)8
&

!

	 (4) 

where 𝜆!
(") is the ith eigenvalue of graph j and i indexes over the minimum number of eigenvalues 

needed to capture 90% of the total power of the spectrum, typically 𝑚𝑖𝑛(𝑛$, 𝑛&) − 1 where 𝑛" is 

the number of nodes in graph j. Two isomorphic graphs will have S = 0, but S = 0 does not 

guarantee isomorphism. S does not make any assumptions about which nodes (i.e. scales) match 

between two turtle faces. 

 

2.4 Coherent Point Drift with Scale Positions 
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The nodes were selected to lie approximately on a plane, so the positions of the nodes in all 

possible orientations or perspectives are related by an affine transformation. Solving for the affine 

transformation that aligns a series of unmarked points has been thoroughly studied in computer 

science as the point set registration problem (Besl & McKay, 1992). Considering the two sets of 

unlabeled points (nodes) G and H from two turtle faces with points Gn and Hm, respectively, related 

by some non-rigid, affine transformation T: 

𝑇(𝑯'; 𝑹, 𝒕, 𝑠) = 𝑩𝑯𝒎 + 𝒕	 (5) 

where B is an affine transformation matrix (including rotation R and scale, s), t is a translation 

vector, and 𝑯𝒎 refers to point m in graph H. The coherent point drift (CPD) algorithm proposed 

by Myronenko & Song, 2010 is applied to both solve for the ideal transformation and determine a 

mapping between two sets of nodes. As defined in the CPD algorithm, the probability of 

correspondence between nodes Gn and Hm can be calculated as 

𝑝') =

⎩
⎪
⎨

⎪
⎧ 𝛿')	𝑖𝑓	𝑚, 𝑛 = 1,2

exp 7− 1
2𝜎& ‖𝑮) − (𝑩𝑯' + 𝒕)‖&8

∑ exp 7− 1
2𝜎 ‖𝑮) − (𝑩𝑯' + 𝒕)‖&8 + (2𝜋𝜎&) 𝑤

1 − 𝑤
𝑀
𝑁	

*
'+$

(6)	 

where 𝛿')is the Dirac Delta function, w is a weight parameter (we assume 𝑤 = 2), and M and N 

are the total numbers of points in the G and H graphs, respectively. Points 1 and 2 are always 

identified as the eye and tip of the beak in every graph, so we set the probability of correspondence 

of those two points to their corresponding points in the other graph to 1 and the probability of 

correspondence of those two points to all other points to 0. By fixing these probabilities, we bias 

the estimation to align the eye and beak of the turtle at the expense of finding a transformation that 

aligns more nodes. We believe this to be an acceptable trade-off because the physical location of 

the scales is important in the identification of the turtle and prevents the algorithm from finding a 

more accurate matching in which the whole point cloud is arbitrarily rotated or translated. An 
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iterative approach is then used to calculate a transform T that maximizes velocity coherence, which 

is a type of smoothness on the transformation (Yuille & Grzywacz, 1988). After applying the CPD 

algorithm, the most likely mapping between nodes is calculated from the maximum values of p in 

each row. 

Based on the mapping calculated using the CPD algorithm, we can additionally estimate 

the covariance between two point sets G and H as: 

𝜎& =
1

2𝑁𝑀6 6‖𝑮) −𝑯'‖&
*

'+$

,

)+$

	 (7) 

which is a measure of distance between the two sets of coordinates. 

 

2.5 Graph Edit Distance 

The graph edit distance (GED) is a measure of the minimum number of modifications that must 

be made to convert one graph into another by adding or subtracting nodes and edges (substitution 

operations). Here we compare two quadratic-time approximations of GED: Bipartite Matching 

(Fischer et al., 2017; Riesen & Bunke, 2009) and Greedy Edit Distance (Fischer et al. 2015). These 

two approximations to GED do not make any assumptions about which nodes (i.e. scales) match 

between two turtle faces.   

We also introduce a modified position-corrected graph edit (PGED) needed to make G 

isomorphic to H: 

𝑃𝐺𝐸𝐷(𝐺,𝐻) = [𝑁(𝐺) + 𝑁(𝐻) − 2𝑀] +6|𝐸(𝐺!) − 𝐸(𝐻!)|
*

!+$

(8) 

where N(G) is the number of nodes in a graph, and E(Gi) is the number of edges (i.e., the degree) 

of node Gi of graph G. M is the number of nodes that were matched between G and H by the CPD 

algorithm (Section 3.4). Thus, PGED(G, H) is not necessarily equal to PGED(H, G) which means 
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PGED is not strictly a distance metric but is an approximation of the GED which is a true distance 

(Bougleux et al., 2017). Equation 8 is a count of the number of nodes that have no equivalent in 

the other turtle (the expression in square brackets) plus the absolute differences in the degrees of 

matched nodes. Using PGED as the distance metric in the ranking algorithm penalizes graphs with 

larger differences in number of nodes and where the matched nodes have different degrees. Note, 

however, that the comparison of the degrees of two nodes ignores which nodes are actually 

connected to each other. 

 

3. Results and Discussion 

3.1 Matching Via Isomorphism 

For a given graph of a turtle G, and a database of other turtle graphs ℋ we wish to define a distance 

function between G and each graph H in ℋ, 𝐷(𝐺,𝐻), that is minimized if graphs G and H are from 

the same turtle (ideally, equal to 0), and greater than 0 otherwise. The ‘simplest’ form of D would 

be an isomorphism test between G and H: if the two graphs are isomorphic, they belong to the 

same turtle, and if they are not isomorphic, they belong to different turtles. Even ignoring the 

computational complexity of such an algorithm (testing for graph isomorphism is an NP-complete 

problem), such an approach would result in many false negatives because it assumes differences 

in graphs are only a result of actual differences between individuals and not errors in graph 

generation. Although the graph structure itself is a robust description of the scale structure, there 

is a large source of variation associated with uncertainty in determining the graph from different 

images, as well from differences of opinion by different observers or even the same observer at 

different times. 
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An example is shown in Figures 1B and 1D where two images of the same turtle, taken at 

different times, and annotated by the same person, result in different facial map graphs. We know 

G and H belong to the same turtle, but they could differ in the number of nodes, and possible 

connection of edges, and therefore need a more general distance metric than the Boolean 

isomorphism to compare G and H. The average difference in number of nodes between the two 

sets of the same images (generated by different researchers) was 1 ± 2.2 and the average difference 

in total number of edges was 2.6	 ± 	5.5 (mean ± two standard deviations) based on the 164 turtles 

viewed by both researchers. For a given turtle image, the two researchers produced graphs with 

identical numbers of nodes and edges only 22% of the time. Thus, an effective metric must be able 

to tolerate errors in graph generation involving on the order of 1 node and 3 edge differences. 

 

4.2 General Graph Topology 

We consider the distribution of 11 properties of the turtle graphs and perform principal component 

analysis (PCA) to determine if the individuals and species are separable by a linear combination 

of these properties (see Supplemental Information Table S1 for the full list of properties). The first 

two principal components capture 63% and 13% of the variance, respectively, with loadings shown 

in Figure S2. Figure 2A shows that hawksbill and green sea turtles are well discriminated along 

PC1. This indicates that the two species have distinct characteristic facial map graph topologies. 

The yellow and black morphotypes of green turtles, however, do not form distinct clusters based 

on PC1 and PC2 (Figure 2A).  

Although PCA may be adequate for species identification, it is insufficient for the purposes 

of individual identification because even different turtles have similar map graphs, as the distance 

between individuals in this latent space is greater than the average distance between any two points. 
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For the two images of the turtles shown in Figure 1A/C as an example, their corresponding graphs 

are not close to each other along either principal component, so any form of nearest neighbor 

classification, or clustering, would result in many false positive identifications. Since these 

principal components only capture general properties of graph topology, additional information 

regarding the position and local environments of nodes are necessary to distinguish individuals. 

 

4.3 Matching Via the Graph Spectrum and Graph Edit Distance 

Another measure for the general topology of a graph is the spectrum and includes information on 

the algebraic connectivity described in section 3.3. Using the distance metric defined in equation 

4, we compute all pairwise similarities within each of the two sets of image graphs generated by 

the two researchers (26,732 comparisons for each set). We then calculated the rank of all known 

duplicate turtle comparisons, i.e. rank between two different images of the same turtle. If we 

consider a series of cutoff ranks 𝑟- = 0,1, … 163, the false positive rate is the cutoff normalized to 

the total number of comparisons per image, i.e. .!
$/0

, which is in the interval [0,1]. The true positive 

rate is the normalized number of matches with rankings less than the cutoff rank. In Figure 2B we 

plot the true positive rate as a function of false positive rate, i.e., the receiver operating 

characteristics (ROC) curve, and the corresponding area under the curve (AUC) is a measure of 

the overall performance of an algorithm with AUCs closer to 1 indicating better algorithm 

performance. 

Using the Laplacian spectrum, the average rank between two different photos of identical 

individuals is 27.0 with only 60% of true known positive matches captured within the top 20 

candidate images (false positive rate = 0.12), i.e., if a user were manually searching the top 20 

most similar images, there is a 60% chance of the duplicate individual image appearing if such a 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446936doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446936
http://creativecommons.org/licenses/by-nc/4.0/


 14 

match exists in the database (Figure 2b, Table 2). A similar proportion was observed when 

analyzing the second set of independently generated images with the average rank of known 

positive matches of 21.5 and 66.7% of true matches caught within the top 20. Using the adjacency 

spectrum resulted in a worse performance with the average rank of known positive matches at 

51.9, and 46% of true matches occurring in the top 20 candidates. The ROC curves for the 

Laplacian and adjacency spectra are shown in Figure 2b, each with an AUC of 0.85 and 0.72, 

respectively. Both the Greedy and Bipartite algorithms for estimating the GED between two graphs 

perform worse than the Laplacian eigen spectrum with average ranks of known positive matches 

at 45.5 and 49.2, respectively and only 49% and 47% of true matches identified in the top 20 

(Table 2). The poor performance of these GED methods is also reflected in the lower AUC values 

of 0.75 and 0.74 for Greedy and Bipartite respectively, which are of the same order as the 

adjacency spectrum method (Figure 4, Table 2). 

The relatively poor performance of the spectrum and GED measures can be attributed to 

the homogeneity of the size and topology of the graphs among turtles—the standard deviations of 

the numbers of nodes and edges are 1.9 and 4.2, and the graphs are mostly planar being composed 

of a series of non-overlapping triangles. Thus, completely different groups of nodes in different 

turtles can show very similar patterns of connectivity. 

 

4.4 Scale Positions 

Here we investigate if the relative positions of the scales, independent of their map graph, are 

sufficient to identify an individual. Even if G and H are not isomorphic, there exists some mapping 

between a subset of nodes in G and H that match the same scales in each graph which may be 

calculated entirely based on the coordinates of the nodes (and ignoring the connectivity 
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information). Nodes 1 and 2 will always be fixed markers, but the numbering of the nodes is 

arbitrary after nodes 1 and 2. We use the coherent point drift (CPD) algorithm described in section 

3.3 to find the correspondence between nodes in G and nodes in H based on the coordinates of the 

nodes while maintaining the overall topology for the graph (Figure 3A/B). The CPD algorithm 

assigns a probability that node n from G is homologous to node m from H.  

We note that the transform found in the CPD algorithm (and therefore the covariance, σ2) 

is not commutative with respect to the choice of the reference graph, i.e. 𝜎&(𝐺, 𝐻) ≠ 𝜎&(𝐻, 𝐺). 

We set the graph G we are searching for as the reference graph to maintain consistency (i.e., 

calculate the transformation for a graph in the database to match a new graph).  This approach 

results in a normal distribution for 𝜎&. Changing the reference with each comparison and using the 

database graph as the reference significantly changes the distribution of 𝜎& increasing the fraction 

with low covariances (Figure S3). Ranking turtles based on the covariance, after calculating the 

most likely mapping between the two sets of node positions, improves the accuracy of the matching 

algorithm with the average rank of a true positive match decreasing to 23.3 and 71% of true 

positives captured in the first 20 comparisons (Table 2). The resulting ROC curve using only the 

covariance is shown in Figure 4 with an AUC of 0.87.  

The CPD algorithm will provide false positive results when the two graphs have 

significantly different numbers of nodes. If the numbers of nodes in G and H are not of similar 

magnitude, it becomes much easier to fit the point distribution of H to G and vice versa. Using 

only the covariance of equation 7 there is no penalty associated with the number of nodes that are 

discarded and do not have an equivalent node in the other graph. Additionally, the information 

about the shape of the node is lost in the covariance. For example, the eye is always a mappable 

point by definition, but the number of neighboring scales is not considered. 
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4.5 Position-Corrected Graph Edit Distance 

We introduce a new approach combining the GED and CPD algorithms. After determining the 

optimal mapping of nodes based on the CPD algorithm, we calculate the GED between the graphs 

using equation 8 (Figure 3C and 3D). This position-corrected GED (PGED) approach produced 

the best results with the lowest average rank of known true positive results at 9.2 and 91% possible 

true positives captures within the first 20 images. 

Using either just the differences in nodes mapped, or the edges for the mapped nodes did 

not perform as well with average rank of true positives at 14.1 and 13.4 respectively. While the 

difference in nodes measures how many identifiable scales there were, the difference in number 

of edges measures an uncorrelated effect of the shape of the scale, which is why the sum of two 

provides a better performance than either alone. Using the sum of the covariance and the PGED 

did not improve the accuracy of the model because the spread in covariance values was much 

larger than the uncertainty in the differences in edges and lowered the algorithm’s performance. 

The ROC curves for each of these metrics are shown in Figure 4. For the second curated dataset, 

the PGED was similarly the best performing metric with the average rank of duplicates at 12.9 and 

84% presented in the top 20 individuals and AUC of 0.94 (Table 2). The PGED metric performed 

less well on the second dataset, but still outperformed the other metrics. 

While the vast majority of the true positive ranks were less than 10, there appeared to be 6 

outlier comparisons where the known true positive ranked near the bottom with ranks of 81, 121, 

163, 120, 72, and 73 respectively. When we looked at the calculated highest ranking matches for 

each of these cases, we found that the top identified candidate in each of the first four cases was 

actually another true positive that had been erroneously considered as a different individual based 
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on previous analysis. In the second dataset, there were a similar 8 outliers with true positive ranks 

of 46, 58, 134, 45, 120, 44, 119, and 116, which encompass the same 6 previously mentioned 

individuals that contained unknown positive matches. However, the rank of these unknown 

positive matches in the second dataset was slightly lower with an average rank of three compared 

to one in the first dataset. Reevaluating all 163 images (only considering top 5 matches), we found 

an additional 20 duplicate individuals that were missed by previous analyses (in addition to the 4 

mentioned above). Therefore, the number of individuals had been overestimated by at least 14.7% 

in the database. 

 

5 Conclusion 

We introduced an algorithm for individual identification of sea turtles using a map graph 

representation of the facial scale structure. To account for variations in orientation and image 

quality, we used a modified coherent point drift (CPD) algorithm to generate a mapping between 

nodes of two graphs. We then calculated a modified graph edit distance between mapped nodes as 

a distance metric between two graphs. Ranking based on only the position-corrected graph edit 

distance provided the lowest average rank (9.2) than if the covariance between graphs is included 

or with any of the other distance metrics we considered (Table 2). Additionally, our method was 

able to identify at least 24 unknown matches between turtles in our database that had been 

mislabeled as different individuals by experienced observers. 

The main limitation of our approach is the manual process of generating the graphs from 

each image. We estimate the time needed to annotate the graph is approximately 30 seconds and 

is negligible compared to the time needed to acquire the photo of the turtle in the first place, which 

requires swimming, searching, and diving. The high variation in the colors of scales, lighting 
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conditions, and visibility makes automation of this process difficult, but might be approached using 

image segmentation machine learning models (Papandreou et al. 2015).  

 We believe our approach will provide a robust foundation for the use of facial recognition 

for individual identification of turtles and can be used by scientists all around the world to collect 

and share information related to sea turtle populations. This information can also be collected with 

citizen science efforts where naturalist guides, local students, fishermen, and tourists can collect 

and share this critical information in vast areas like the Galápagos Marine Reserve and other 

marine reserves.  

This matching algorithm may also assist in individual identification for other species whose 

scales or spot patterns are unique such as whale sharks (Brooks et al. 2010), giraffes (Halloran et 

al. 2015), and leopards (Miththpala et al. 1989) where connectivity and topology information is 

often discarded in favor of just the positions of key features. More research is needed into machine 

learning approaches to wildlife population surveys. 
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Figure 1. Errors in reconstructing face graphs. (A) and (C) are two photographs of the same turtle taken 
under different conditions and analyzed by the same researcher at different times. (B) and (D) are the 
associated map graphs generated for each image. Node 1 is the eye and node 2 is the tip of the beak. The 
remaining nodes represent scales; their numbers indicate the (arbitrary) order in which they were 
selected. Edges indicate whether scales and/or the eye are neighbors. See Figure 3 for detailed 
comparisons of the map graphs in (B) and (D). 
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Figure 2. The topology of the face graph can be used to distinguish two species of sea turtle. (A) Each 
turtle face graph projected along first two principal components of graph properties. Colors indicate 
species. Hawksbills are clearly separated from the yellow and black morphotypes along PC1. Points 
corresponding to the black morphotype turtles in Figures 1A and 1B and for the yellow morphotype 
and hawksbill shown in Figures S1A and S1B are annotated. (B) ROC curves using the spectrum 
similarity and GED methods to compare turtle graphs. A false positive rate of 0.12 corresponds to only 
considering the top 20 candidate matches. 
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Figure 3. Outline of the various steps needed to compare two face graphs using the position-corrected 
graph edit distance. (A) Original coordinates of the nodes in the face graphs. Numbers indicate the order 
in which the node was recorded. Nodes from Figure 1A/B are in grey, nodes from Figure 1C/D are in 
red.  (B) Calculated transformation by the coherent point drift algorithm (numbers omitted for clarity), 
with mapping between nodes calculated as equivalent connected by a line. (C) and (D) show the two 
graphs after point registration. Nodes with no mapping are highlighted in green (4 total) and edge 
differences of the remaining matched nodes highlighted in blue (5 total) which sum to determine the 
GED between two graphs (PGED = 9). The nodes in (D) are renumbered to match the nodes in (C) 
based on the calculated mapping. 
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Figure 4. ROC characteristics using different metrics for comparing similarity between two turtle 
graphs. The new PGED algorithm performs the best with an AUC of 0.94. 
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Table 1: List of previously identified number of individuals and species used in study  

Species of Turtle Number of Individuals Number of Images 

Green (Yellow Morphotype) 31 39 

Green (Black Morphotype) 101 113 

Hawksbill 7 12 

Total 139 164 
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Table 2: Performance of different graph comparison metrics compared by AUC (area under the 
ROC curve), and fraction of true positive matches found within the top 20 proposed matches. 

Metric AUC Average Match Rank % Caught  < 20 

Laplace Eigen Similarity 0.85 27.00 60.0 

Adjacency Eigen Similarity 0.72 51.93 46.7 

Bipartite GED 0.74 49.22 46.7 

Greedy GED 0.75 45.47 48.9 

Point Covariance 0.87 23.31 71.1 

Delta Nodes 0.92 14.11 82.2 

Delta Edges 0.92 13.42 86.7 

Position GED 0.94 9.20 91.1 

Position GED + Covariance 0.90 16.31 82.2 
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Automation Detection for Side of Face 

Although in this study we only considered the right side of the face, there’s no reason individual 

identification could not be done on the left side. It is important for the matching algorithm to only match 

graphs generated from the same side of the face, so here we present a simple method for determining which 

side of the face the image was taken using the same graph. Automating this step increases the overall 

efficiency of matching and removes one possible source of human error. From the turtle graph we label the 

positions of the eye and beak as 𝑿𝟏 = (𝑥", 𝑦") and 𝑿𝟐 = (𝑥$, 𝑦$), respectively, and a third point as the 

average coordinate of the other nodes: 

𝑿𝟎 = (𝑥&, 𝑦&) =
1

𝑁 − 2
,-𝑛' , 𝑛(/
)

*+,

(1) 
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where N is the number of nodes. We then can define two vectors, 𝑽" = (𝑥" − 𝑥&)𝚤̂ + (𝑦" − 𝑦&)𝚥 ̂and 𝑽$ =

(𝑥$ − 𝑥")𝚤̂ + (𝑦$ − 𝑦")𝚥 ̂which point from the center of the scales to the eye, and from the eye to the beak 

respectively. The cross product of the two vectors has only a k component, whose sign is determined by the 

side of the face: 

𝑽" × 𝑽$ = [(𝑥" − 𝑥&)(𝑦$ − 𝑦") − (𝑥$ − 𝑥")(𝑦" − 𝑦&)]𝑘9	 (2) 

The right side of the face would result in a positive sign for equation 2, and the left side of the face would 

have a negative sign. These signs correspond to a clockwise and counterclockwise rotation between the 

vectors respectively, and can be easily verified in Fig. 1 with the right-hand-rule. This inequality is 

invariant under any rotation of the image. 

 

 

 

A B 

Fig. S1. Image and associated graph of a (A) hawksbill species and (B) a green sea turtle yellow 
morphotype. 
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Fig. S2.  Loadings of the first two principal components.  

Fig. S3. Histogram of covariances between a turtle graph 𝐺 and other graphs 𝐻- using (A) 𝐺 as the 
reference graph, and (B) 𝐻- as the reference graph.  
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Property Include Node 2? (Beak) 

Number of Nodes Yes 

Graph Diameter No 

Graph Radius No 

Estrada Index No 

Average Shortest Path Length No 

Algebraic Connectivity No 

Average Clustering Yes 

Degree Assortativity Coefficient Yes 

Mean Node Degree Yes 

Density of Graph Yes 

Standard deviation of node degrees Yes 

 

 

Table S1: List of Graph Properties considered in PCA analysis 
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