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Abstract

Networks have been widely used to model the structure of various biological systems. Currently, a series of approaches have
been developed to construct reliable biological networks. However, the ultimate understanding of a biological system is to
steer its states to the desired ones by imposing signals. The control process is dominated by the intrinsic structure and the
dynamic propagation. To understand the underlying mechanisms behind the life process, the control theory can be applied
to biological networks with specific target requirements. In this article, we first introduce the structural controllability of
complex networks and discuss its advantages and disadvantages. Then, we review the effective control to meet the specific
requirements for complex biological networks. Moreover, we summarize the existing methods for finding the unique
minimum set of driver nodes via the optimal control for complex networks. Finally, we discuss the relationships between
biological networks and structural controllability, effective control and optimal control. Moreover, potential applications of
general control principles are pointed out.
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Introduction

The last decade has witnessed paramount development of net-
work science from several interdisciplinary areas, mainly in
engineering, physics, mathematics, biology and social science
[1, 2]. As the large data are assembling and the ability of com-
putation is enhancing, more and more complex networks have
been constructed for modeling and understanding the real com-
plex systems. Most of complex networks have been found to
show special properties including the small-world property [3]
and the scale-free property [4]. With the development of network
science, network structure and dynamics have been the key
factors for network analysis [5]. The structural properties mainly
contain nodal centrality for measuring the importance of a node
[6, 7] and network communities for detecting the set of nodes
with close relationships [8, 9], both of which try to identify the
important nodes in complex networks. Jeong et al. [10] found that
the proteins with high degree in protein–protein interaction (PPI)
network play an important role in the survival of cells. Norton
et al. [11] proposed a graph-based method called 3DNetMod for
communities detection. On the other hand, the dynamics of
complex networks has been used to analyze the mechanism of
real systems [12], such as epidemic spreading [13]. Wu et al. [14]
found that cell fate can be determined by initializing the state
of gene regulatory networks (GRNs). Abel et al. [15] considered
the average dynamics of the population as a single oscillator to
control biological time. The study of controllability is to identify
the set of steering nodes through the dynamics model. Generally,
controlling nonlinear dynamics system is still so difficult that
the linear system can be studied at the first step.

Although classical linear control theory is suitable for com-
plex biological networks mathematically, there are still great
challenges for controlling complex biological networks. The lin-
ear control theory is built on the state space represented by
vectors and matrices. The purpose of control is to steer the
states of complex systems to the optimal or desired states. Sev-
eral approaches have been proposed to judge whether a linear
system is controllable, including the Kalman’s controllability
condition [16] and Popov-Belevitch-Hautus (PBH) controllability
condition [17], both of which can be algebraically verified in
principle. However, the real complex biological networks usually
have hundreds and thousands of nodes so that the algebraic
approaches are prohibited. In addition, it is still impossible to
accurately determine the parameters in complex biological sys-
tems although the technologies have been developed rapidly.
Hence, the control principles of complex biological networks
should be robust to large-scale models and parameter inaccu-
racy.

Recently, the concept of structural controllability gives us the
ability to investigate the controllability of complex biological
networks through a minimum set of steering nodes [18]. Struc-
tural controllability was first proposed by Lin [19] based on graph
theory, which focuses on the structure of systems. In structural
controllability, some special structures have been defined for
testing network controllability. The graph-theoretic framework
has two distinct advantages. First, structural controllability only
has to know whether there is an edge or not, which is good for
complex biological networks whose structures are known easier
than their parameter values. Second, the graph-theoretic meth-
ods can be tested with efficient algorithms instead of computing
complex matrix operations.

Structural controllability connects the structure with the
dynamics of complex biological networks. Under this frame-
work, the study of network structure can help understand the

mathematical dynamics. Liu et al. [18] defined the classification
of nodes as critical, redundant and ordinary nodes if its absence
increases, decreases or equals to the driver nodes, which can
be used to study the robust of network controllability [20, 21].
Wang et al. [22] showed that the networks with strong power-
law degree distribution are easier to control, indicating a new
way by adding edges to optimize structural controllability. Pósfai
et al. [23] found that the degree correlation between in-degree
and out-degree has a robust effect on network controllabil-
ity while the clustering and modularity don’t. Wang et al. [24]
derived the control range to measure the size of subnetwork a
node can control. Similarly, Liu et al. [25] proposed the control
centrality to quantify the ability of a single node to control a
directed complex network, which is closely related to hierar-
chical structure in complex networks. Jia et al. [26] redefined a
classification of nodes as critical, intermittent and redundant
nodes if it acts as a driver node in all, some or none of the control
configurations and discovered two important control modes for
complex systems: centralized and distributed control. Ruths
et al. [27] defined the control profiles of complex networks from
the properties of structure, which found that the control profiles
in real-world networks are different from the random network
models. Jia et al. [28] formulated the control capacity measure
for quantifying the importance of a node, indicating that the
possibility decreases by the in-degree while it is independent of
the out-degree of the node. Menichetti et al. [29] showed that the
density of nodes with in-degree and out-degree equal to one or
two determines the number of driver nodes required to control
complex networks. In addition, several control strategies have
been proposed to control complex biological networks. Further-
more, Nepusz et al. [30] used switchboard dynamics model to
control edge dynamics instead of nodal dynamics through sig-
nals imposed on the minimum set of nodes. Moreover, Yuan et al.
[31] proposed a general control framework in which the complex
weighted and undirected networks can also be controlled.

With the development of structural controllability, many
applications to complex biological networks have verified that
structural controllability can provide meaningful results, which
can be divided into three aspects. The first aspect is based
on Liu’s classification [18], which has been applied to identify
disease genes and drug targets [32], viral targeted proteins [33]
in the directed human PPI (dPPI) network and find robust control
structures in yeast stress response pathways [34]. Similarly,
Jia’s classification [26] is able to be applied to detect driver
metabolites in the human liver metabolic network [35], driver
proteins in human signaling network [36] and critical regulatory
genes in cancer signaling network [37] as well. What’s more,
Wang et al. [38] studied both type classifications in a gene
network for Arabidopsis, indicating that different sets of nodes
may be preferentially related to specific biological function and
progress by Gene Ontology enrichment analysis. The last aspect
uses the control centrality [25] to identify dysregulated pathways
in the tissue-specific GRN [39]. These applications can be found
in Table 1.

Though the tools to analyze biological networks have been
developed [40], the ultimate purpose to control complex biolog-
ical systems is still too far to be directly solved by structural
controllability. First, based on the fully structural controllability,
the minimum set of driver nodes (MDSs) may contain a large pro-
portion of nodes. However, the biological system is built to suit
for different situations. The complex biological networks may
have large non-functional nodes in special processes, indicating
that full controllability should be shifted to partial controllability.
On the other hand, the fully structural controllability cannot
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2256 Li et al.

Figure 1. An outline of the control principles for biological networks. The biological networks serve as the complex dynamics system models to design powerful control

principles so that different control tasks in biology can be understood distinctly.

give a reasonable set of driver nodes, indicating that the control
strategy has not been well understood with structural control-
lability yet. From the aspect of biological function and systems
biology, the structural controllability is non-efficient and non-
optimal, the limitation of which hinders the applications of
control theory.

In the rest of this article, as shown in Figure 1, we first
introduce the structural controllability theory. Next, we discuss
how to design effective control for complex biological networks.
Then, we show how to address the controllability of complex
biological networks based on the control energy. Finally, we
emphasize the demands of effective control and optimal control
in complex biological networks and discuss the challenges of
general control principles which can be potentially applied to
complex biological networks.

Controllability of complex networks
Generally, the classical linear control theory has its computa-
tional limitations to be applied to complex biological networks
that may contain thousands of nodes, such as the Saccharomyces
cerevisiae PPI network which has 1870 proteins [10]. Such chal-
lenges force us to develop feasible and effective approaches to
determine whether the state of complex biological systems can
be steered to its desired state. An important framework derived
from the classical control condition is the structural controllabil-
ity [18], which uses graph-theoretic algorithms to judge whether
a complex network is controllable, even though the weight of
edges may be unknown. So far, this approach has been widely
applied to analyze the mechanism of biological networks.

Controllability of linear systems

The linear, time-invariant (LTI) dynamic system has been widely
used as the model of systems, which can be described as

follows [52]:

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where A is a N × N state transition matrix representing inter-
actions between state nodes, where aij �= 0 if state node j
affects state node i. B is a N × M input matrix associated to
input control signals, where the strength of the j-th external
signal injects into state node i denoted by bim. C is a S × N
output matrix describing the relationship between the measured
signals and state nodes. x(t) = {x1(t), x2(t), . . . , xN(t)}T is the state
vector representing the activity values of N state nodes at time t.
y(t) = {

y1(t), y2(t), . . . , yS(t)
}T is the output vector representing the

measured signals from the network. u(t) = {u1(t), u2(t), . . . , uM(t)}T

is the control signals actuated on the driver nodes.
Controllability quantifies the ability to drive a system from

an initial state to a desired final state in finite time. Kalman’s
rank condition [16] was first proposed to check whether an LTI
system is fully controllable. Mathematically, a system (A, B) is
fully controllable if and only if the controllability matrix

CC ≡ [
B, AB, A2B, . . . , AN−1B

]
(2)

has the full rank, that is,

rank (CC) = N (3)

The concept of controllability has been successfully applied
to control complicated behavior of robot [53, 54] and optimize
the process of industry [55, 56]. However, when N is large, the
elements of AN are very large (or small) when the absolute value
of the eigenvalue of A is larger (smaller) than one. Hence, the
controllability matrix CC can become ill-defined and the rank (CC)
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Figure 2. Inaccessibility and dilation. (a) There is no path from u1 to v4, and therefore, node v4 is inaccessible. (b) Considering a set S = {v2, v3}, we have T(S) = {v1}.
Since |T(S)| < |S|, there exists a dilation.

cannot be accurately calculated. Moreover, the entries of A are
impossible to be measured exactly in practice, directly resulting
in worse computational results. These limitations in computing
the rank of controllability matrix of large complex networks
prompt us to develop efficient algorithms from the aspect of
graph theory.

Structural controllability of complex networks

Structural controllability theorem

We introduce the Lin’s structural controllability of LTI system
[19], which has clear graph-theoretic interpretations. Usually, an
LTI system can be represented by a digraph G (A, B) = (V, E).
The node set V = VA ∪ VU contains both state nodes VA and
input nodes VU. The edge set is E = EA ∪ EU where EA contains
edges among state nodes in VA while EU contains edges between
input nodes VU and state nodes VA. An LTI system is called a
structural system (A, B) if the entries in A and B are either fixed
zeros or independent free parameters. A structural system (A, B)

is fully structurally controllable if it satisfies Kalman’s condition
[16] with some setting of the non-zero entries of A and B. We
introduce two important definitions before the description of
structural controllability theorem.

Consider a network represented by a digraph G (A, B)

(Figure 2),
Definition 1. (Inaccessibility). A state node vi is inaccessible in

graph G (A, B) if and only if there are no directed paths reaching vi from
any input nodes Vu.

Definition 2. (Dilation). A digraph G (A, B) contains a dilation if
and only if there is a subset of nodes S ∈ VA such that |T(S)| < |S|,
where T(S) is the neighborhood set of S containing the set of all nodes
vj which point to any node in S.

Based on two definitions above, we can state the sufficient
and necessary conditions for the structural controllability of a
controlled network.

Theorem 1. (Structural controllability theorem [19]). A structural
system (A, B) is structurally controllable if and only if

(i) the digraph G (A, B) contains no dilations,
(ii) no node in VA is inaccessible.

The structural controllability theorem has algebraic interpre-
tations. In the view of algebra, an LTI system has inaccessible
nodes if the structured matrix [A; B] is reducible, i.e. there exists

a permutation matrix P such that

A = P

[
A11 0
A12 A22

]
P−1 and B = P

[
0
B2

]
(4)

where A11 ∈ R(N−K)×(N−K), A22 ∈ RK×(N−K) and B2 ∈ RK×M with 1 ≤ K ≤
N. An LTI system has dilation if the structural matrix [A; B] has
generic rank less than N, i.e.

rankg [A; B] < N (5)

Hence, the system (A, B) is structural controllable if and only
if both the structure matrix [A; B] is irreducible and has generic
rank equal to N.

Minimum input theorem

Generally, structural controllability is a yes/no concept, which
cannot provide a feasible control strategy. Given a set of sig-
nals imposed on network, we can judge whether the system is
controllable. However, if we impose signals on every node of a
network, the network is controllable in any case, which is trivial.
However, it is non-trivial to find out the minimum number of
input signals required to steer the state of system to any desired
state. Liu et al. [18] first formed the problem as an optimization
problem named the MDSs and theoretically proved that the
MDSs can be determined by the maximum matching algorithm
proposed by Hopcroft and Karp [57].

To obtain the set of MDSs, we first introduce the concept of
maximum matching.

Definition 3. (Maximum matching). A maximum matching M is
the maximum set of edges which do not share the same start node or
end node. The end node of the matching edge is called matched; the
others are called unmatched.

From the definition of structural controllability, each node
must have its unshared father node in order to make a system
fully controllable. The inaccessible nodes cannot be influenced
by signals from the others, indicating that the node doesn’t
have its unshared father node. The isolated node is a simple
example. On the other hand, the structure of dilation cannot
transfer independent signals from a node to more than one node,
indicating that only one child node can have its unshared father
node in the structure. The relationship between a father node
and a child node forms a specific matching edge in structural
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controllability. Obviously, a child node is the matched node,
which can be controlled by its unshared father node indepen-
dently. Moreover, an unmatched node does not have unshared
father node, which should be controlled by an external signal.
Based on such analysis, we can use maximum matching to find
out the minimum set of unmatched nodes. In summary, the
minimum inputs theorem can be described as:

Theorem 2. (Minimum input theorem). If all nodes are matched,
the matching is perfect and the number of driver node is 1; otherwise,
the number of MDSs is ND = N − M∗, where M∗ is the number of
matched nodes.

Based on minimum input theorem, Liu et al. [18] found
that the structure of complex networks may determine how
to impose the controllers. The conclusion can be described from
three important properties of structural controllability. First, the
MDSs are determined by the degree distribution of network.
Second, it is hard to control heterogeneous networks than
homogeneous networks. Finally, the set of driver nodes tends to
avoid the high-degree nodes in both real and model networks.
However, MDSs from the minimum input theorem (Theorem 2)
is a necessary condition for fully structural controllability. As it
can only guarantee that condition (1) in structural controllability
theorem, but not condition (2), is satisfied. For example, the
source strongly connected component (sSCC), which is a cycle
without input edges, is always a perfect matching, but all nodes
in sSCC are inaccessible from the input signals [58].

Applications to biological networks

Identify disease genes and drug targets

The dPPI network can be inferred from original PPI data which
maps the mutual regulations supporting the process of life in
a cell [59]. The dPPI network contains 6339 proteins and 34 813
interactions, where the edge direction and the edge weight
are related to the signal flow along the interaction proteins
and the confidence of the predicted direction, respectively. A
recent study applied the structural controllability theory to clas-
sify these proteins into one of the following three categories:
indispensable, dispensable and neutral if its absence increases,
decreases or equals to the number of driver nodes [32]. The
result of classification showed that 21% of proteins are indis-
pensable, 37% of proteins are dispensable and 42% of proteins
are neutral. In the context of classification, the indispensable
node proteins have been found its biological regulation effect
(e.g. disease genes and drug targets) on altering a cell state
transition between healthy and disease states. To further study
the indispensable proteins, 56 genes had been discovered to
be related to cancer through analyzing data from 1547 cancer
patients, 46 of which are new potential disease genes of cancer.

Identify dysregulated pathway

Complex diseases usually are induced by a set of genes in
dysregulated pathways, rather than a single gene [60]. GRNs pri-
marily built from gene expression data have been used to predict
dysregulated pathways [61]. Considering the tissue-specific GRN
of Type 2 Diabetes (T2D), the set of genes predicted to control the
tissue-specific GRN may be the reason inducing the progress of
T2D. In the area of structural controllability, control centrality
had been proposed, which quantifies the ability of a single
node to control a directed complex network [25, 62]. Hence, a
recent study found that those genes with high control centrality
pathways might control other downstream genes resulting in

disease manifestation [39]. The prediction of dysregulated path-
ways based on control centrality is superior to other centrality
measures, including betweenness centrality, degree centrality,
eigenvector centrality and closeness centrality. Moreover, the
mechanistic connections of NFATC4 with downstream targets
have been discovered from four important T2D pathways.

General limitations to biological networks

The results of structural controllability may be helpless to design
efficient control strategy. The driver nodes to control biologi-
cal networks are more than 80% of all nodes offering useless
prediction of drug targets in biological experiment [63]. The
phenomenon means that most of prediction nodes are useless
and indicates that being fully controllable is not necessary. In
practical applications, not all nodes can be altered by drugs.
Hence, we may consider drug sensitivity, drug toxicity and so
on to measure the ability of drugs. Furthermore, not all states
need to be achieved. Hence, we are interested in transitting
between disease states and health states so that the specific and
personalized combination of drugs can be identified with known
databases, which can be one of strategies for drug repurposing.
On the other hand, the set of driver nodes usually is not unique
for complex networks. Given a set of certain MDSs, the control
trajectory may be non-local in phase space and the transition
of states may diverge, which may result in control failure [64].
Because the control energy in some directions is very large so
that it is only theoretically correct but practically infeasible. The
practical explanation is that the dose of drugs must be limited.
Hence, these principles should consider both control nodes and
control energy so that they are feasible to biological networks.

The structural controllability of directed networks assumes
that all edge weights are independent while the edge weights
are dependent in the undirected networks as the system matrix
A of an undirected biological network is a symmetry matrix,
where the elements aij and aji in A must be equal. Therefore,
the structural controllability theory [18, 19] of directed networks
isn’t suitable for undirected biological networks. Fortunately, if
the system matrix A of undirected networks is diagonalizable,
the MDSs has been proved to be determined by the maximum
algebraic multiplicity of A’s eigenvalues [31]. Under this condi-
tion, we can also control the undirected biological networks by
a set of driver nodes and utilize the above constraints to find
optimal control principles for undirected biological networks.

Effective control for complex biological
networks
As full controllability of complex networks is hardly effective in
real applications, especially biological applications, we consider
more effective control cases in this section. First, we consider
that only partial nodes can participate in control. On the other
hand, we consider that only specific states with biological mean-
ing need to be reached.

Control partial nodes

Output control of complex networks

A linear dynamic system (A, B, C) described by (1) is output
controllable if and only if any output state of network (1) can
be steered to any desired output states within finite time tf .
Mathematically, a dynamic system (A, B, C) is controllable output
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if and only if the rank of output control matrix

CO ≡
[
CB, CAB, CA2B, . . . , CAN−1B

]
(6)

is equal to S, where S is the dimension of the output states [16].
For a structural system (A, B), the free parameters in matrices
A and B determine the dimension of its controllable subspace.
We define the dimension of the controllable subspace as the
generic dimension of the controllable subspace of the structural
system (A, B) which is denoted by generic dimension of the con-
trollable subspace (GDCS) (A, B) [65]. Similarly, the dimension of
the output controllable subspace of a system (A, B, C) is defined
as the generic dimension of the controllable output subspace
and denoted by GDCOS (A, B, C). Hence, a system (A, B, C) is output
controllable if and only if GDCOS (A, B, C) = S.

Though there are exact graph-theoretic algorithms to cal-
culate GDCS (A, B) [65] efficiently, there is no exact graph-
theoretic algorithm to calculate GDCOS (A, B, C) efficiently. Hence,
an approximate method is used to provide the lower bound of
GDCOS (A, B, C) for determining the minimum driver nodes [66].
A weighted bipartite graph had been constructed corresponding
to the network matrix A and the output matrix C [67], and Kuhn–
Munkres algorithm [68, 69] can be used to find out the maximum
weight complete matching. The method can efficiently predict
some special drug targets in arachidonic acid metabolic network
and human pathway networks. A similar study naming output
controllability as target control used a greedy algorithm to find
the minimum driver nodes approximately based on graph-
theoretic algorithm as well [70].

The core difference between output controllability and struc-
tural controllability is to choose eligible output or target nodes.
Note that if every node is considered as an output node, the
output controllability is the full controllability. Generally, target
nodes are chosen according to the importance of nodes [71] or
special structure [72]. For example, phenotype genes can act as
target nodes in GRN when one is interested in steering a cell from
abnormal state to healthy state.

Application to neuronal network

The nervous system of Caenorhabditis elegans is the only organ-
ism which had been mapped with reasonable accuracy at the
cellular level [73]. The locomotion patterns of C. elegans are
only determined by the motor muscles controlled by the muscle
neurons. Hence, we can choose the muscle neurons of C. elegans
as target nodes in neuronal networks and the sensory neurons as
the sensory inputs to control the locomotion of C. elegans [43]. In
this condition, if the removal of a neuron affects the locomotion
of C. elegans, the neuron plays an important role in controlling
the corresponding locomotion. With this analysis framework,
several neurons had been found, in which some neurons have
been experimentally validated to be related to the locomotion
of C. elegans. An example is the ablation of both DA and DB
results in the loss of backward/forward locomotion of C. elegans.
Moreover, the new neuron ‘PDB’ had been theoretically identified
its impact on signal propagation and verified its relationship
with the locomotion of deep body bends by new experiments
[74].

Constrained target control of complex networks

Constrained target control (CTC) is the same kind problem
of output control, where CTC should choose both the con-
strained control nodes and partial target nodes. For a linear

dynamic system described by (1) containing a set of nodes
V = {v1, v2, . . . , vN }, we assume that O = {

vc1 , vc2 , . . . , vcNo

}
and

U = {
vb1 , vb2 , . . . , vbNc

}
represent the set of target nodes and

the set of constrained control nodes, respectively, where both{
c1, c2, . . . , cNo

}
and

{
b1, b2, . . . , bNc

}
are the subset of {1, 2, . . . , N}.

No and Nc are the number of target nodes and the number of
constrained control nodes, respectively. A system is constrained
target controllable if and only if

max
{
rank

[
CB, CAB, CA2B, . . . , CAN−1B

]}
= No (7)

where A is a N × N system matrix; B is a N × M input matrix
constrained by the set of nodes in O, where M ≤ Nc; and C is
a No × M output matrix determined by the set of nodes in U.
As shown in Figure 3, we demonstrate how to control partial
nodes. It compares different definitions between target control
and CTC.

A system must be target controllable when all constrained
control nodes in U act as the driver nodes. This condition
guarantees the upper bound of driver nodes so that the lower
bound of driver nodes can be found by removing the redundant
nodes. Sometimes, it is impossible to satisfy such a condition.
An extreme example is that target nodes are all of the source
nodes while constrained control nodes are all of the sink nodes.
Hence, whether the method is feasible is closely related to the
strategy of choosing both constrained control nodes and target
nodes. On the other hand, identifying the minimum driver
nodes in constrained control nodes is to meet the requirement
of practices. Guo et al. [75] proposed a novel graph-theoretic
algorithm named constrained target control algorithm (CTCA)
to find the minimum driver node of a given network with
constraints. The approach can efficiently identify the MDSs,
some of which are approved drug targets and new potentials in
the case study of biological networks.

Applications to identify driver mutations

Recently, a single-sample controller strategy (SCS) had been
proposed to discover personalized driver mutation profiles of
single samples through a driver mutation network for each
patient [45], which is derived from a large reference network
containing 11 648 genes and 211 794 edges [76]. The applications
assumed that the differentially expressed genes are controlled
by gene mutation through other genes. Hence, the mutation
genes are the set of constrained control nodes and the differen-
tially expressed genes are target nodes. The results indicate that
SCS can improve the precision of predicted driver genes com-
pared with Dawnrank [76], OncoImpact [77] and so on. Moreover,
SCS can efficiently identify personalized driver genes, some of
which are rare driver genes.

Control two-state transition

Transittability of complex networks

Unexpected state transitions of complex networks are very
harmful phenomenon in real biological processes, most of
which are irreversible process. Compared to fully structural
controllability that concerns the possibility to steer the complex
networks from any unexpected state to any desired state [18],
the transittablity concerns the possibility to steer the complex
networks from a specific unexpected state to a specific desired
state [46]. It has been mathematically proved that a system is
transittable between two specific states if and only if

rank
(
C
) = rank (C) (8)
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Figure 3. Target control and constrained target control. (a) In target control, the set of target nodes {v4, v6} can be controlled by the set of a single driver node {v1}.
(b) In constrained target control, the set of target nodes {v4, v6} can be controlled by the set of two driver nodes {v2, v5}.

where C =
[
B, AB, A2B, . . . , AN−1B

]
and B = [x0 − x1, B]. Generally,

one of the states of transition must be stable. Given that x1 be
the stable state and x0 − x1 can be replaced by x0 due to x1 = 0
without loss of generality. Hence, a system is transittable from a
specific state x0 to the origin if and only if

rank (C0) = rank (C) (9)

where C0 = [
B0, AB0, A2B0, . . . , AN−1B0

]
and B0 = [x0, B]. The form of

equation (9) is very similar to Kalman’s condition. Wu et al. [46]
formulated the problem as an optimal assignment problem of a
weighted bipartite graph to obtain the minimum steering nodes
for transittability.

Transittability is more feasible than structural controllability
with more practical constraints. First, transittability only focuses
on effective transition. In biological network, states have specific
functions in cell life, such as proliferation and apoptosis. These
states are discrete, where any desired states defined in structural
controllability are not suitable. Moreover, several state transi-
tions are irreversible. When normal state has transferred to some
disease state, we can usually cure the disease state to another
healthy state, which may not be the original normal state. On the
other hand, the disease states of complex networks are typically
determined by a small set of nodes. In medical testing, we only
need to detect a set of certain biomolecules to predict whether
or not they are potentially sick. Furthermore, those unchanging
nodes are redundant so that the number of minimum input
signals in structural controllability can be largely reduced.

Application to T helper differentiation cellular network

T helper cells (Th cells) are a type of white blood cells that release
T cell cytokines to stimulate the activity of other immune cells.
Matured Th cells can be classified into one of the following three
states: Th0 (precursor), Th1 and Th2 (effector) cells, according
to the expressed surface proteins. To deeply understand the
mechanism of differentiation, the helper differentiation cellular
network containing 17 nodes and 27 edges has been constructed
[78]. When applying the transittability to the T helper differential
cellular network, Wu et al. [46] found three different types of
steering strategies of transition, which are in agreement with
existing results [79–81]. For example, the transition between Th0
and Th1 can be steered by nodes SOCS1 and T-bet, the transition

between Th0 and Th2 can be steered by nodes IL-4 and GATA3
while the transition between Th1 and Th2 can be steered by
T-bet and GATA2. These results indicate that the transittability
is a feasible approach to study complex biological networks.

Application to epithelial–mesenchymal transition network

The invasion and metastasis of cancer cells is one of the
critical hallmarks [82, 83]. Accumulating evidence shows that the
progress of epithelial–mesenchymal transition (EMT) network,
in which epithelial cells acquire the properties of mesenchymal
cells, plays an important role in the initiation of the invasion
of cancers beginning at the metastasis. Hence, the EMT net-
works have been constructed, which contains 6 nodes and 15
interactions [84]. To study the progress, Wu et al. [46] defined
significantly differentially expressed nodes representing the
phenotypes and found that only SNAI1 can steer the occurrence
of transition, which has been verified in [84]. Moreover, except for
SNAI1, any one of MIR203, MIR200, ZEB1 and ZEB2 can also steer
the transitions between the two phenotypes. MIR203 and MIR200
have been verified to be able to steer the transitions [84, 85] while
ZEB1 and ZEB2 are deserved the further investigations. These
different selections provide the opportunities to investigate
the mechanisms of the EMT from different aspects. Similarly,
transittability can potentially be applied to others hallmarks
of cancer, such as self-sufficiency in growth signals, evading
programmed cell death and so on.

Optimal control for complex biological
networks
The MDSs for structural controllability is usually not unique.
Some preference approaches have been proposed to identify
unique MDSs [86] through modifying the algorithm and adding
more practical information, e.g. drug binding data [87]. To find
the optimal MDSs in complex biological networks theoretically,
control energy which should be minimized or limited to the
acceptable scope has been investigated.

Control energy of complex networks

Mathematically, given an LTI system is controllable by a set of
input signals, we define the energy required to control system to

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/6/2253/5099476 by U

B Leipzig user on 01 D
ecem

ber 2021



Control principles for biological networks 2261

a desired state as [88, 89]

E
(
tf

) =
∫ tf

t0

‖u(t)‖2dt (10)

where t0 and tf are the initial time and the final time through the
process of control, respectively. u(t) is the input vector variable
associated to time. We define the optimal problem to choose the
optimal u(t) as follows:

minu(t)J =
∫ tf

t0

‖u(t)‖2dt (11)

subject to

ẋ(t) = Ax(t) + Bu(t)

x (t0) = x0; x
(
tf

) = xtf

The optimal problem can be solved by utilizing Potryagin’s
Maximum Principle. Specifically, the optimal input signals can be
determined by u(t) = BTeAT(tf −t)W−1(xtf

− eAtf x0), t ∈ [t0, tf ], where

W(tf ) ≡ ∫ tf
t0

eAτ BBTeATτ dτ is the positive-defined and symmetry
Gramian matrix if system (A, B) is controllable. The minimum
control energy can be determined by

E
(
tf

) =
∫ tf

t0

‖u(t)‖2dt =
(
xtf

− eAtf x0

)T
W−1

(
xtf

− eAtf x0

)
(12)

Two useful special cases are as follows:
(i) x0 = 0 (Reachability problem, which concerns the ability to

steer the state of system from x0 = 0 to any desired final state
xtf

�= 0)

E
(
tf

) = xT
tf

Wr
−1xtf

(13)

(ii) xtf
= 0 (Null controllability problem, which concerns the

ability to steer the state of system from any initial state x0 �= 0 to
the desired final state xtf

= 0)

E
(
tf

) = xT
t0

Wc
−1xt0 (14)

where Wr = W and Wc = e−Atf We−ATtf are the reachability
Gramian matrix and null controllability Gramian matrix [88, 89],
respectively.

Control metric

From (12), the minimum control energy is determined by the
initial state x0, final state xtf

and the Gramian matrix W. Gramian
matrix W is associated with system matrices A and B while
initial state and final state are the inherent state of complex
network. Hence, we can describe the control metrics associated
with Gramian matrix [90].

λmin(W): the smallest eigenvalue of the controllability
Gramian is related to the worst-case of the maximum control
energy, where the direction of state space is the hardest to
control. Given ‖xtf

‖2 = 1, we can normalize the control energy
using the Rayleigh–Ritz theorem

λ−1
max = Emin ≤ E

(
tf

) ≤ Emax = λ−1
min (15)

where λmin and λmax are the minimum and the maximum eigen-
values of the Gramian matrix W, respectively. Especially, if xtf

is

the ith eigenvector of the eigenvalue λi, the minimum control
energy is the λ−1

i .
trace

(
W−1

)
: the trace of the inverse of the Gramian matrix is

the measurement of the average control energy around on the
state space. The average energy can be calculated as follows:∫

xTW−1xdx∫
dx

= 1
n

trace
(
W−1) (16)

The trace of W−1 is ill-condition when the system is very
large. Instead, we maximize the trace of W to minimize the
average energy required to control system to any desired states.

det(W): the determinant of the controllability Gramian is pro-
portional to the volume of ellipsoid in the state space consisting
of all states reached by a unit-energy control input. The volume
of ellipsoid can be calculated as follows:

V = πn/2

Γ
(

n
2 + 1

) n
√

det(W) (17)

where Γ is the Gamma function. Note that the ellipsoid volume
is zero when the system is not fully controllable.

Applications to brain dynamic network

The human brain containing about 86 billion neurons [91] shows
a very complex structure and various dynamics, some principles
and mechanisms of which have been uncovered. Gu et al. [47]
used the approaches from control theories and network analysis
to provide deep understanding of how the state transitions
of brains happen. A brain network is an undirected network
and contains a number of nodes, each of which represents a
specific region of a brain. Based on the linear control theory, the
brain network is theoretical controllable because the smallest
eigenvalue of Gramian matrix is consistently greater than zero,
indicating that one node can control the whole system. However,
the maximum energy increases as Emax ∼ eN, indicating that con-
trolling the system is energetically prohibitive in some directions
of state spaces by one node [92]. On the other hands, we want
to find the critical regions which facilitate the changes in brain
state trajectories. Gu et al. [47] used the average energy matric
trace(W) to identify those regions that can steer the system
into different states with little energy cost. The results showed
the default mode in human brain has large values, which is
the densely connected areas in brain network. Moreover, the
approach is robust to different scale brain networks and species.

Discussion and future work
This survey of control principles for complex biological networks
has discussed structural controllability and analyzed the biolog-
ical requirements for control theory. In this section, combining
aforementioned control principles and applications in Table 1,
we discuss more detail about the demands of effective control
and optimal control in complex biological networks and chal-
lenges for general control principles when applying to complex
biological networks.

Demands of effective control and optimal control

Structural controllability only needs to know the structure of
complex networks and can provide the upper bound of the
minimum number of driver nodes efficiently [18]. The mathe-
matical form of classical control theory is not suitable for current
complex networks, which may contain thousands of biological
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nodes. Moreover, the weight of edges is hard to be precisely
inferred from biological data. Under such practical conditions,
structural controllability is good for complex biological networks
when studying how to control cell fate, cure disease and so on.

However, the framework has two distinct disadvantages: (1)
controlling biological networks needs too many driver nodes [63]
and (2) the MDSs is usually not unique. Generally, the appli-
cations to complex biological networks are divided into one of
three aspects: Liu’ classification [18], Jia’s classification [26] and
control centrality [25], rather than identifying a set of driver
nodes. Considering the aforementioned applications to identify
disease genes and drug targets, Vinayagam et al. [32] don’t take
specific disease into consideration so that the results are only
meaningful in the whole cell progress. Alternatively, Sharma et
al. [42] only identified sets of critical targets of different phe-
notypes in osteosarcoma combining multi-type biological net-
works. Although these both studies identified the sets of critical
targets based on the principles of network controllability, they
did not focus on identifying the optimal sets of driver nodes
for the transition between health states and disease states.
Another application is to identify dysregulated pathway via the
measurement of pathways [39]. Though the definition of control
centrality takes the dynamics and directionality of signaling
transduction into consideration, the measurement of control
centrality lacks the ability to find a biologically meaningful set of
driver nodes for biological networks. In practice, the meaningful
set of driver nodes can enhance the designation of control
strategy. Hence, these disadvantages should be carefully taken
into consideration when one wants to propose a control strategy
instead of identifying controllable related nodes for biological
networks.

Therefore, we discuss effective control and optimal control
to complement fully structural controllability. The key idea of
effective control is to ignore the redundant nodes and states that
aren’t necessary to be controlled. For example, cancer is usually
altered by a few driver mutations [93]. The cancer phenotypes
are determined by part of differentially expressed genes [77].
The cancer state is just associated to a small part of whole
state space [94]. Hence, effective control for complex biological
networks can minimize the set of driver nodes to control. On the
other hand, optimal control takes the cost of control strategy into
consideration. At the first step, the steering nodes (drug targets)
and corresponding drugs are selected for steering a cell from the
cancer state to a healthy state. Then, whether these drugs can
efficiently achieve the transitions should be considered in terms
of the drug dosage, the transition time, the transition trajectories
and so on. Usually, optimal control is to select a detailed control
strategy through the balance between the practical constraints
and the selection of driver nodes. In the view of current effective
control and optimal control, we still face many challenges in
controlling complex biological networks.

Effective control should also consider the side effect for con-
trolling partial nodes or two-state transition. Output control and
transittability study the partial nodes of networks representing
special nodes or states. By actuating signals on the driver nodes,
the task of partial control can be finished. However, when the
effective nodes or states have been controlled, the side effect
induced by the redundant signals or nodes may be observed.
In medical practice, it’s a common phenomenon that the drugs
used to cure disease cause a side effect for allergic people. Gen-
erally, the side effect should be minimized so that the progress
of control is suitable for most people. Hence, when developing a
new algorithm, the controller placement should be sufficiently
considered to minimize the side effect while making sure sys-

tems are controllable. For a specific person, partial control is
constrained by the allergic drugs, indicating that some areas
should be segregated from the external signals.

The objective function could take more constraints into con-
sideration in full controllability. Though a set of driver nodes can
be found based on the minimum energy control theory, there
are more complex conditions for us to study. In real biological
networks, the control energy has a bound distinguishing the
feasible edges of control energy [95], indicating that the dose
of drugs is feasible with a range. Moreover, given a set of drugs
which has several targets, the form of control energy could be
largely different. Hence, we can get more reasonable results by
adding constraints corresponding with drug properties.

Both effective control and optimal control should compen-
sate each other. The results of effective control are not unique as
well. The algorithms to solve output control and two-state tran-
sition can only get approximate solutions that may have many
combinations. The computation of optimal control is also time-
consuming. The operation of a large matrix may consume a large
amount of time to obtain a unique result. Recently, a cutting-
edge approach is to optimize the output control of complex
networks by solving Hamiltonian equation [96]. Studies indi-
cated that the required energy for output control can be reduced
substantially with the decrease of target nodes. On the other
hand, the most importance in two-state transition is to design
feasible trajectories with limited control energy [64, 97]. The
results can provide fundamental insights into the mechanisms
of state transitions between healthy state and disease state.
Hence, the combination can be potentially applied to complex
biological networks.

As outlined above, effective control and optimal control are
important for complex biological networks. The development of
effective control and optimal control can potentially reveal the
mechanism of biological systems.

Challenges for general control principles

Recently, several control principles had been reported to con-
trol complex networks [98], but controlling complex biological
networks is still hindered by network data. Generally, networks,
such as power grid network, WWW and so on, can be diagramed
more accurately than complex biological networks whose data
are limited. In biological networks, we usually utilize directed
biological networks to model the flow of signaling transduc-
tion. However, such a network only contains partial molecules
which is far from complete. The typical example is the signaling
pathway network. The low coverage of the genome in curated
pathway databases including KEGG [99], Reactome [100] and
Panther [101] enforces us to extend them to signaling pathway
data with high coverage [102], roughly 50% of total SwissProt
proteins. Similarly, we can also predict the direction of edges in
human PPI network that shows high coverage [59]. On the basis
of high coverage signaling pathway network, we can extract
subnetworks possessing the properties including tissue specific,
disease specific and state specific, which is crucial for us to use
control principles to understand the mechanism of signaling
transduction.

Though structural controllability is robust to the edges
missing, controlling nonlinear dynamic in biological networks,
which are constrained by precise data of biological networks,
isn’t robust. The advantage of nonlinear dynamics is able to
deeply mine the dynamics properties of biological networks,
while structural controllability guides us to find a set of driver
nodes. Cornelius et al. [103] developed a physically admissible
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compensatory perturbations on biological systems to steer the
state to the attractor of desired state under the assumption
that the cell state can evolve without drug stimulation. When
applying it to T cell survival signaling networks, it can identify
the drug targets to reprogram the state to its desired state, but it
requires a complete data of the detailed model. Similarly, Wang
et al. [104] proposed a control strategy of nonlinear dynamics by
small parameter perturbation, which is constrained by the data
of the detailed model as well.

Sometimes, these detailed models cannot be extracted from
the biological data so that we can focus more on the structure
of biological networks, by which controlling nonlinear dynamics
may be more feasible. Mochizuki and Fiedler [105, 106] developed
a structure-based control method through open-loop control
applied to the feedback vertex set, which can completely steer
the other nodes to the desired attractors by following desired
trajectories. This method doesn’t need external signals under
the condition that the states of source nodes converge. Recently,
Zanudo et al. [107] thought that the states of source nodes
can affect the trajectories of attractors and brought up a new
structure-based control for complex biological networks. More-
over, as the nonlinear dynamics could be properly approximated
by several parts of linear dynamics in the finite time, each
part can be considered as two-state transition problem. On the
basis of transittability, the nonlinear dynamics can be controlled
if a set of driver nodes to control all state transitions could
be found. Hence, structure-based methods not only require a
small amount of other data but also provide an efficient graph-
theoretic algorithm.

On the other hand, the aforementioned control principles
focus on controlling isolated complex networks, while realistic
networks are coupled together [108, 109]. In biological networks,
the PPI network changes with time forming a temporal network
[110, 111]. The gene regulation and metabolic reaction inter-
act with each other to form an interdependent network [112].
Obviously, control principles for such networks are more com-
plicated than controlling isolated complex networks. However,
some useful concepts in isolated networks can be extended to
the networks interacting with each other.

In the area of temporal networks, Pósfai et al. [113] studied
structural controllability of temporal networks to understand
complex systems and found that the controllability is affected by
the overall activity and the degree distribution. Moreover, Li et al.
[114] found the fundamental advantages of temporal networks
in controllability, including faster control, less control energy and
distinct control trajectories. The advantages are attributed to
the flexibility of edges in temporal networks that can enhance
our power to control them. However, identifying a feasible set
of driver nodes is still a challenge because the minimum set of
feasible driver nodes and the combination of snapshots interact
with each other. Actually, the snapshots of a temporal network
are connected by time series, indicating that the orders of snap-
shots determine the direction of signals from a feasible set of
control signals. Hence, how to balance the two objectives is a
great challenge. Moreover, controlling specific targets in tempo-
ral biological networks needs to assign the orders of snapshots
so that the desired stated can be achieved within the minimum
time.

In the area of multilayer networks, the study of control
focuses on two-layer networks including random duplex
networks [115] and scale-free duplex network [116]. Pósfai
et al. [117] studied the controllability of multilayer networks,
each layer of which can operate at a different time scale, and
utilized structural controllability to determine the minimum

number of driver nodes via graph-theoretic methods so that
the multilayer network is fully controlled. More important, it is
found that controllability is enhanced when the faster layer is
controlled. Observably, multilayer networks could be meaningful
in complex biological networks with the accumulation of
omics data. Each layer in multilayer networks represents a
specific molecular level whose dynamics can be influenced by
the inherent interactions, external interactions and external
signals. Controlling multilayer biological networks should first
define the signal layer and the phenotype layer. For example,
genome editing can be used to regulate genes and change gene
transcription levels. Furthermore, the more the layers are, the
more meaningful controlling multilayer biological networks is.
However, the development of control strategy is still a challenge
with many layers because the coupled relationships are so
complicated.

In summary, general control principles from traditional con-
trol theory can be potentially applied to complex biological net-
works if the data of biological networks are available. Moreover,
the development of new control principles for complex biological
networks should be on the basis of biological meaning.

Key points
• The advantages and disadvantages of structural con-

trollability are discussed in Section Controllability of com-
plex networks.

• Effective control methods are summarized in Section
Effective control for complex biological networks to meet the
requirement of complex biological networks.

• Optimal control based on control energy is introduced
in Section Optimal control for complex biological networks
to find a unique and useful set of driver nodes.
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