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Abstract

Motivation: Anti-cancer therapeutics of the highest calibre currently focus on combinatorial target-

ing of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral

heterogeneity which serves as substrate variation during evolution of resistance to therapeutic

regimens.

Results: The present review advocates single-cell systems biology as the optimal level of analysis

for remediation of clinical relapse. Graph theory approaches to understanding decision-making in

single cells may be abstracted one level further, to the geometry of decision-making in outlier cells,

in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with

omics data are invited to consider phase portrait analysis as a mediator between graph theory and

deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer

patients may depend upon the adoption of higher level mathematical abstractions of cancer

biology.

Contact: lianne.abrahams@protonmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Cancer outliers

The USA overall cancer mortality rate decreased 25% over an

equivalent number of years (Siegel et al., 2017). Owing to the out-

standing known-unknowns, recalibration of public expectation

towards containment of cancer, has been suggested as a cultural

norm (Tiwari et al., 2012). An alternative perspective reasons that

utilization of a different conceptual approach will result in a differ-

ent rate of mortality reduction.

Current conceptual paradigms underpinning clinical practice

centre on combination regimens of targeted molecular therapeutics

(Aebersold et al., 2009; Gotwals et al., 2017). Drug combinations

are superior to monotherapies (Jia et al., 2009) in reducing host tox-

icity, since dosages of drug combinations are typically lower when

compared with dosages of single agents (O’Neil et al., 2016).

However, drug combination effects can be adverse and even lead to

shorter progression-free survival of cancer patients (Hecht et al.,

2009; Preuer et al., 2018; Tol et al., 2009). Preuer et al. (2018) have

applied deep learning techniques to pharmaco-synergy prediction in

order to improve the efficacy of anticancer treatments. Relapse rates

remain high (Milojkovic and Apperley, 2009) due to clonal

evolution of resistance across targeted therapies (Aebersold et al.,

2009; Dagogo-Jack and Shaw, 2018; Kalmanti et al., 2015; Tiwari

et al., 2012). Variation, upon which natural selection acts to drive

the evolution of chemotherapeutic resistance, manifests as hetero-

geneity between individual cells (Dagogo-Jack and Shaw, 2018).

However, whole-cell population studies are blind to clinically rele-

vant intercellular heterogeneity (Wang and Bodovitz, 2010). In con-

trast to whole-cell population studies, single-cell biology provides

the requisite lens to untangle the evolution of chemotherapeutic re-

sistance. Indeed, the single cell represents the highest resolution bio-

logical unit (Lubeck, 2016) that retains the capacity to manifest all

six hallmarks of cancer (Hanahan and Weinberg, 2011).

In tandem, systems biology integrates the phenomenological

approach of physiology with the mechanistic (Fig. 1) approach of

molecular biology (Bhalla and Iyengar, 1999, Wist et al., 2009).

Systems analysis transcends the reductionism inherent in most

biological research approaches (Bhalla and Iyengar, 1999; Ehsani,

2018) rendering explicable the emergence of properties that effect

cell fate decision-making (Aebersold et al., 2009; Weng, 1999).

As such, systems biologists have the visionary insight to recognize
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systems as the optimal level of biological abstraction (Patange et al.,

2018). Unification of two inquiry fields into single-cell systems ana-

lysis grants the possibility to comprehend the rarest cells of greatest

malign that reverse clinical success.

For the purposes of the present review, outlier cells are defined

as single cells that are: (i) neither entirely physiologically normal nor

expressing macroscopic hallmarks of cancer; or, (ii) transformed

cells that are significantly different to the majority cell populations

within the tumour. Outlier cells are understood to be transitional or

intermediate cell states, as expounded by MacLean (2018), that exist

on the edge of transformation or resistance and which manifest

aberrations at the level of information processing. Herein, the reader

will receive a new way of defining outlier cells, and will understand

the rationale for utilizing 6D-phase portrait analysis in preference to

expression analysis.

The clinical urgency to correctly identify outlier cells is corrobo-

rated by a number of studies that have achieved this feat. Four rare

tumor cells, absent in the major tumour subpopulations, exhibited

50-fold amplification of the KRAS locus (Fearon and Vogelstein,

1990; Navin, 2014) and most malignant populations in a tumour

are likely to be the rarest (Navin, 2014). A tumour of mass one

gram contains approximately 1�109 cells (Del Monte, 2009); every

conceivable subclonal mutation could exist in at least one cell in

the tumour (Schmitt et al., 2016). Further, single-cell sequencing

evidence implies most human tumours originate from single cells in

the normal tissue (Navin, 2014). Furthermore, rare disease-specific

subpopulations of microglia have been identified exclusively via

single-cell systems analysis (Keren-Shaul et al., 2017). More than a

decade of population-based assays, including cell sorting using spe-

cific cell-surface markers and bulk RNA sequencing, failed to flag

these cells (Keren-Shaul et al., 2017).

Single cells display considerable intercellular variation in expres-

sion levels of individual biomolecules (Prakadan et al., 2017), here-

by referred to as vertices, with respect to their functional role in

regulatory networks. The central difficulty with identifying outlier

cells is the requirement to distinguish cells on the basis of behaviour-

al patterns. Cancer cells archetypally manifest six distinct hallmark

behaviours: (i) sustaining proliferative signalling, (ii) evading growth

suppressors, (iii) resisting cell death, (iv) enabling replicative immor-

tality, (v) inducing angiogeneis; and, (vi) activating invasion and

metastasis (Hanahan and Weinberg, 2011). Hallmarks of cancer are

the outcome of cellular decisions to transition between binary states:

(i) constitutive versus non-constitutive growth factor signalling, (ii)

passage versus non-passage of G1 checkpoint, (iii) cell survival ver-

sus cell death, (iv) immortality versus senescence, (v) erection versus

absence of vasculature; and, (vi) extravasation versus immobility.

Two novel approaches to capturing single cells or subpopulations

on the basis of macroscopic behaviours have been advanced recent-

ly. One approach captures single cells from a heterogeneous cell cul-

ture on the basis of motility behaviour (Desjardins-Lecavalier et al.,

2020). The second approach captures chemo-resistant subclones

from heterogeneous cancers via CRISPR barcoding of >1 million

cells (Zhang et al., 2019). The latter work is of great interest and

would solve the core problem posed herein. However, the work is

preliminary and as yet only available as an abstract. Moreover,

CRISPR technology is invasive and not currently suitable for clinical

use. As such, the current review aims to make available to the reader

a greater selection of arguments within the marketplace of ideas.

Harnessing correlations between binary states and whole-cell

population based averages of vertex expression levels, vertices

morphed into proxies of behavioural patterns. Notwithstanding,

any given single cell that appears to be an outlier in terms of static

Fig. 1. Single-cell systems biology liaises reductionism, inherent in study of the highest resolution biological unit capable of manifesting all six hallmarks of can-

cer, with the holism characteristic of systems level analysis. Upper panel: descending the hierarchy of biological organization is a mainstream strategy for reduc-

ing complexity, although the co-efficient of variation is self-similar at all levels of biological hierarchy (Sapolsky and Balt, 1996), suggesting that the decision code

may ultimately be fractal in nature. Lower panel: ascending the hierarchy of biological analysis from study of single components to whole systems
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expression levels of vertices may not be functionally an outlier; dis-

tinct connectivity patterns can elicit the same functionality

(Buchbinder et al., 2018; Miller, 2016). Problematically, conven-

tional approaches are predicated on the axiom that distinct expres-

sion patterns invariably indicate distinct functionalities. As noted by

Giladi and Amit (2017), assumptions about cellular states may be

shed, in order to rebuild representations of cellular networks (Giladi

and Amit, 2017).

2 Vertices to subgraphs

2.1 Decision fragility on subgraph negation
Graph theory offers the means to supplant assumptions relating to

cellular states (Giladi and Amit, 2017) and to re-imagine the nature

of behavioural patterns in outliers. Single cells, as self-contained

units of decentralized self-organising behaviour, prompt questions

regarding the level at which decisions are made within the hierarchy

of network topology.

Subgraphs are a leading candidate as the optimal unit of analysis

in network topology (Berger and Iyengar, 2009; Ma’ayan et al.,

2005); scale-free networks are anti-fragile to removal of individual

vertices while being fragile to disruption of hubs (Callaway et al.,

2000). Perturbation analysis is typically utilized to pinpoint bio-

logical entities for which removal renders the functionality of a sys-

tem fragile (Keenan et al., 2018). Fragility of biological networks to

removal of hubs, contrasted with robustness to removal of individ-

ual vertices, implies functionally significant decision-making logic is

encrypted at the level of subgraphs. Subgraphs significantly associ-

ated with survival have been found, containing vertices previously

reported to be important for cancer prognosis, in which no single

vertex is associated with survival when considered in isolation

(Hansen and Vandin, 2016). Synergy may explain the competitive

edge of subgraph analysis over the orthodox consideration of indi-

vidual vertices or whole graphs (Erten et al., 2012; Hansen and

Vandin, 2016). Indeed, subgraph analyses are capable of informing

cancer diagnosis, clinical staging, prognosis and biomarker identifi-

cation as summarized in Supplementary Table S1. Despite the em-

pirical importance of subgraphs in determining cell fate decisions,

subgraph analyses currently have predictive accuracy in the range of

65-91% (ST2). As an exemplar, arguably the most comprehensive

and well-annotated whole cell computational model in existence

(Karr et al., 2012), modelled on 1900 parameters derived from 900

research publications, has a predictive accuracy gap of 33%. Almost

invariably, the foregone conclusion is that any gap in predictive effi-

cacy must be causally related to deficiencies in the scope and depth

of parameterization within the model. Alternatively, the predictabil-

ity gap may reflect requirement for further mathematical

idealization.

Subgraph identification is a young field of biological analysis;

while there are leading exemplars in the literature (Bartlett et al.,

2017; Choobdar et al., 2019) discovery potential remains high.

In addition, currently available literature on subgraph analysis

invariably converge on regulatory enzyme expression data

(Supplementary Information S11) rather than regulatory enzyme ac-

tivity data, meaning that any subgraph activation is inferred rather

than explicitly proven. As such, the niche area of subgraph activity

assay has high discovery potential. It is proposed that the nature of

behavioural patterns in outliers be investigated initially by means of

analysis of all possible combinations of subgraph activation ratios,

derived from absolute values of subgraph firing in single cells, within

discrete time intervals. In particular, creation of an index or metric

derived from subgraph activity data, would compress into a useable

form information relating to the relative ratio of 6 hallmark behav-

ioural patterns. Kim et al. (2017) provide proof-of-concept for this

type of metric, although Kim et al. (2017) focus specifically on three

hallmarks (proliferation, EMT and stemness) whereas the current

ambition seeks a fully comprehensive metric.

Definition of subgraphs may be apriori or aposteriori

(Supplementary Information S1; Kim et al., 2017); the former utiliz-

ing the substantial body of knowledge already available in the litera-

ture and the latter leveraging unsupervised deep-learning (Vandin

et al., 2012). Parallel pursuit of each approach with critical compari-

son of predictive efficacy may elicit maximal value.

2.2 Subgraph activation ratios
A comprehensive overview of single-cell techniques is beyond the

scope of the current review and interested readers are referred to

Stuart and Satija (2019). In Supplementary Table S3 and

Supplementary Information, we briefly consider current prospects in

relation to laboratory technologies, in order to allow readers to de-

cide on a preferred means of investigating subgraph activation in

their own laboratories (Supplementary Information S2). The next

section discusses fractal decision-making and outlines how subgraph

activation may be translated into phase portraits in order to assay

the holistic state of a single-cell system.

3 Subgraphs to phase portraits

3.1 Dynamical systems
A leading known-unknown in the field of single-cell systems analysis

is the precise degree to which decision-making architecture is sensi-

tive to initial conditions. Delineation of sensitivity to initial condi-

tions has critical implications for the extent to which cell fate

decisions are predictable and, therefore, the extent to which scientif-

ic forecasting of cell fate decisions is feasible. The conventional ar-

gument, taken to its logical conclusion, posits that the absolute copy

number of each of the >2.0�109 (Milo, 2013) vertices in an individ-

ual cell effects cellular behaviour in a reasonably deterministic

manner.

In essence, predictability depends upon the extent to which the

system is ordered or disordered. Fully ordered systems are determin-

istic whereas fully disordered systems are entropic. Deterministic

systems are predictable whereas entropic systems are unpredictable.

Cancer cells are entropic (West et al., 2012) relative to untrans-

formed cells; Berretta and Moscato (2010) advocate normalised

Shannon Entropy measures as a unifying hallmark of cancer.

Information Theory approach to identifying outlier cells is intrigu-

ing for two reasons. Firstly, the entropy hallmark is upstream of all

six Weinbergian hallmarks of cancer, meaning that the entropy hall-

mark will capture all of the transformed cells exhibiting macroscop-

ically disordered phenotypes. Secondly, the entropy hallmark flags

transitional outlier cells exhibiting disordered patterns of behaviour

at the level of information processing. Conventional screening on

the basis of the six macroscopic hallmarks of cancer would overlook

transitional outlier cells; one source of chemotherapeutic resistance.

3.2 Fractal decision-making
Since the lethality of cancer may be explained at the thermodynamic

level as an unfurling of systemic disorder, normal physiological cell

systems may intuitively be expected to be highly ordered. In actual-

ity, normal physiological cells are not entirely deterministic; non-

transformed cells are non-linear dynamical systems observed to
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transition between states of equilibrium, periodicity (Mullassery

et al., 2008), quasi-periodicity and deterministic chaos (Miller,

2016; Sharma, 2009). Plasticity to transition between highly ordered

and highly flexible states may prove to be an evolutionarily stable

strategy, conferred upon cells by natural selection, in order to syn-

chronize decisions simultaneously across multiple levels of biologic-

al organization and multiple timescales. Decisions made at the

organismal, organ system, organ and tissue level impact the fate of

single cells; likewise, decisions made at the single-cell level impact

the fate of tissues, organs, organ systems and organisms. Decisions

made across chronic time scales impact acute cell fate; likewise,

acute decisions impact longitudinal cell fate. As an exemplar, spiral

arrhythmia in the heart appears random at the cellular level, but is

ordered at the level of the whole organ (Kharchenko et al., 2014).

Interestingly, biological systems manifest self-similarity across mul-

tiple scales of organization; a fractal property (Fig. 2).

For example, biological networks typically feature a minority of

very highly connected vertices while the vast majority of vertices

have low connectivity; the degree distribution follows the power law

(Ma’ayan et al., 2005; Sapolsky and Balt, 1996; Sharma, 2009).

Graphing of the degree distribution yields a long-tailed distribution.

Of particular interest, honing in on the minority of highly connected

vertices and investigating their degree distribution as a separate sam-

ple of vertices, results in a self-similar long-tailed distribution.

Degree distributions in biological networks are independent of scale

and, therefore, scale-free; a fractal property. Moreover, Sapolsky

and Balt (1996) conducted a meta-analysis to test the ubiquitous as-

sumption that increasingly reductionist approaches to biological

study result in decreasingly noisy data. Investigating the particular

question of testosterone-driven impact on behaviour, Sapolsky and

Balt (1996) approached the biological question at increasingly re-

ductionist levels, beginning with anthropological studies through to

X-ray crystallography studies of individual testosterone receptors.

Meta-analysis suggests that the co-efficient of variation remains con-

stant across multiple levels of biological organization, meaning that

the degree of variability is independent of the scale of observation; a

fractal property.

Single cells, having a decision architecture characterized by frac-

tal properties (Fig. 2), invite consideration of the geometry of

decision-making in outliers. Consider again the prospect of observ-

ing and plotting six hallmark parameters over time, an argument

advanced in the preceding segment of this review. Rather than plot-

ting each parameter separately with time as the independent vari-

able, the geometry of decision-making in outlier cells may be

revealed with clarity by plotting all six parameters on multidimen-

sional axes (Fig. 3), in which each axis corresponds to one of the co-

ordinates required to specify the state of the system. All of the co-

ordinates being thus represented, a point in the multidimensional

phase space would correspond to one state of the system. Geometric

analysis would therefore serve the aforementioned (Giladi and Amit,

2017) meta-purpose of reimagining the states of cellular systems.

3.3 Patterns of behaviour
Tracking the path traced over time by the evolving state of the sys-

tem yields a trajectory. Trajectories are real patterns of behaviour

and therefore fulfil the primary criterion as a means of identifying

transitional outlier cells that confer chemotherapeutic resistance.

Further, plotting multiple single-cell trajectories, each corresponding

Fig. 2. Fractal decision-making. (A) Fractals are observed in the Mandelbrot set; note the appearance of self-similar features (red panel) at multiple scales.

Adapted from Liverpool Mathematical Society. (B) Zooming in on a subset of highly connected vertices within a graph (red panel), the degree distribution of the

selected subset is equivalent to the original, and therefore independent of scale (Mitchell, 2018). (C) Interestingly, the co-efficient of variation is self-similar at all

levels of biological organization (Sapolsky, 2016), which suggests the decision-making code may be inherently fractal. Note that the bar chart data are illustrative

rather than data as exactly reported; original data are available in Sapolsky and Balt. Adapted from Sapolsky and Balt (1996)
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to one set of initial conditions internal to a single cell, in the same

phase plane will produce a phase portrait. Phase portraits capture

the systems physiognomy of single cells and are amenable to effi-

cient identification of rogue trajectories (Fig. 3). Moreover, phase

portrait analysis reveals the existence of any attractors present in the

system. Attractors are stable, low entropy states of a dynamical sys-

tem, towards which a particular set of points in phase space evolve

over time (Bornholdt, 2008; Hirsh et al., 2012; Sharma, 2009;

Wuensche, 1994).

Normal cells and cancer cells alike harbour attractor landscapes

(Fig. 3) and the process of cellular transformation can be concep-

tualized as the process of normal cells sliding irreversibly into stable

cancer attractor states (Kim et al., 2017; Koseska and Bastiaens,

2017; Maetschke and Ragan, 2014). Kim et al. (2017) developed a

sophisticated scoring system for the attractor landscape, derived

from a combinatorial state of 8 marker vertices, in order to distin-

guish normal attractors from cancer attractors. Three synergistic

vertex pairs are identified as a result of the node perturbation ana-

lysis which may inform combinatorial pharmacological targeting.

However, the utility of combinatorial targeting is threatened by the

development of multidrug resistance. Moreover, an equivalent iden-

tification of synergistic vertex pairs may be obtained by investiga-

tion on the basis of macroscopic hallmarks of cancer, without

recourse to attractor analysis. In lieu of this particular application of

attractor landscape analysis, it is proposed that the strength of Kim

et al.’s (2017) scoring system be first enhanced by expanding the

hallmark selection to include all six Weinbergian hallmarks.

Secondly, the current review proposes that in order to maximize the

utility of attractor landscape analysis, the approach be applied to

the endeavour of identifying transitional outlier cells implicated in

the evolution of chemotherapeutic resistance. Attractor landscape

analysis, in the context of outlier cells, is necessary and impossible

to supersede with study of macroscopic hallmarks of cancer.

Transitional outlier cells do not yet exhibit macroscopic hallmarks

of cancer and their identification is wholly contingent upon detec-

tion of patterns of behaviour in information processing.

Returning to the topic of information processing, cellular

decision-making has been likened to a cognition (Koseska and

Bastiaens, 2017) and patterns of habitual responding in cellular

decision-making may reflect a deep attractor basin analogous to the

deep attractor basin of neural networks (Hirsh et al., 2012). In the

next and penultimate section of this review, single cells are

appraised as naturally intelligent and autonomous arbiters; the na-

ture of single cells as deep learning information processors has im-

portant ramifications for designing evolution-resistant therapies, as

delineated in the final analysis.

4 Deep learning: single cells

4.1 Single cells as intelligent entities
Intelligence of single cells has been commended by multiple scien-

tists (Albrecht-Buehler, 1985; Ford, 2009; 2017; Gerrard et al.,

2014; Ghosh, 2018; Tero et al., 2010) on the basis of their ability

to: (i) solve the Travelling Salesman Problem (Tero et al., 2010), (ii)

construct external shells as an extended phenotype (Ford, 2009,

2017), (iii) perform cellular memory (Ford, 2009, 2017), (iv) exe-

cute autonomous decision-making (Ford, 2009, 2017; Ghosh, 2018;

Tero et al., 2010); and, (v) manifest computational properties in cell

Fig. 3. Subgraphs to phase portrait analysis. (A) Analysis of subgraph activation ratios, along six dimensions of behaviour, can be plotted on multidimensional

axes (B) with the aid of dimensionality reduction approaches. Imagining a 2D plane of subgraph activation, viewing of the time series straight down the time axis

yields a trajectory (green). In this example, the trajectory intersects one or more stable attractor states. (A) Adapted from Fard and Ragan (2017). (B) Adapted

from Koseska and Bastiaens (2017)
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signalling (Gerrard et al., 2014; Ghosh, 2018; Tero et al., 2010).

Re-estimation of single cells as naturally intelligent and autonomous

agents may catalyse understanding of the nature of cell fate

decision-making (Supplementary Information S3). In many respects,

cellular decision architecture is structurally and functionally analo-

gous to neural networks. Neural circuits and cell decision circuits

alike are non-linear dynamical systems that can be described by

coupled differential equations (Miller, 2016). To take the example

of artificial neural networks that recognize handwritten digits, the

task of decision-making (selecting correct digit between 0 and 9) is

facilitated by multiple hidden layers of neurones flanked by input

and output layers of neurons. By way of analogy, biological cells are

tasked with decision-making (selecting correct cell fate along 6

Weinbergian axes) that is facilitated by multilayer networks.

Interestingly, decision-making architecture in single cells may read-

ily be represented as a series of temporally connected heatmaps

(Fig. 4) in which each pixel of the heatmap is informed by non-

binary subgraph activation ratios at distinct time points. In this scen-

ario, single cells are modelled as if equivalent to individual convolu-

tional neural networks, each with 6 decision outputs.

Digit recognition neural networks have 96% accuracy while the

gold standard within artificial neural networks is 99.79%. Given

that the fidelity of decision-making in single cells is estimated to out-

compete the fidelity of decision-making in neural networks

(Supplementary Information S4), single cells may reasonably be

interpreted as having comparable intelligence to multilayer

perceptrons.

4.2 Deep learning on phase portraits
Rather than attempting the impossibly labyrinthine task of utilizing

precision medicine on every individual outlier cell (Supplementary

Information S5), this review advances the case for in vivo targeting

of transitional outlier cells on the basis of one universal

(Supplementary Information S6) and evolution-proof flag: the 6-di-

mensional phase portrait. As aforementioned, the 6-dimensional

phase portrait, a visualization of global patterns of decision-making

behaviour, captures the systems physiognomy of outlier cells.

Outlier cells have a distinct phase portrait; decision-making patterns

of behaviour are dysregulated relative to both untransformed and

chemo-sensitive cells. Moreover, of the conventional targets utilized

in cancer that fail, the majority fail due to clonal evolution of a non-

transformed biomarker expression profile; cells evade detection via

masking. Unlike conventional targets, 6-dimensional phase portraits

capture global patterns of decision-making behaviour in single cells,

in a manner that is robust to up- or down-regulation of one or a few

vertices, and is therefore robust against clinical oversight of cells on

the edge of transformation. As a target, 6-dimensional phase por-

traits are resilient to evolution of the masking phenomenon. If out-

lier cells were to evolve a non-dysregulated phase portrait mask in

response to selective pressures, essentially the global patterns of

decision-making behaviour in single outlier cells would revert to

normal, and the reserves of chemotherapeutic resistance-bearing

outlier cells would diminish (Supplementary Information S7).

4.3 Unsupervised feature extraction
Pragmatically, an adjuvant therapeutic agent designed to identify

subpopulations of single outlier cells at high risk of conferring che-

motherapeutic resistance, will necessitate dimensionality reduction

(Fig. 5) in order to extrapolate backwards and extract signature fea-

tures from phase portraits. While the overall mission may seem

tautological on first inspection—constructing a global portrait of be-

haviour in order to subsequently deconstruct in pursuit of a minority

of defining outlier features—three core arguments justify the

construction-deconstruction rationale.

Firstly, transitional outlier cells do not necessarily manifest the

macroscopic hallmarks signatory of transformed cells, although in-

formation processing through decision-making apparatus is typically

aberrant. Therefore, attempting to extrapolate backwards from sin-

gle cells that display macroscopic hallmarks of cancer will fail.

Secondly, single outlier cells by definition are highly heteroge-

neous—displaying high variability even within the subset of outlier

cells—in terms of expression and activity of individual vertices.

Therefore, any expedition to extract features without reference to

universal phase portrait analysis, would require that a therapeutic

agent be targeted against multiple different targets and be capable of

detecting cellular profiles on an individual basis, in vivo and in real

time. Universal phase portrait analysis overcomes the high-

heterogeneity paradox. Thirdly, universal phase portrait analysis

illuminates emergent patterns of behaviour, not immediately appar-

ent at more reductionist levels of analysis. Therefore, it is more effi-

cient to extrapolate backwards from a subpopulation of single cells

that manifest a universal phase portrait, than it is to extrapolate for-

ward from highly heterogeneous profiles of vertex expression.

Deep learning can assist with both construction and deconstruc-

tion phases, although principally in silico learning is anticipated to

be of maximal value in the latter phase. As noted by Coudray et al.

Fig. 4. Critical comparison of the decision architecture in artificially and naturally intelligent systems. Upper panel: artificial neural networks make a 1-in-9 deci-

sion on the basis of over 3000 differentially weighted and biased connections between neurons. Lower panel: representing the subgraph activation status of a sin-

gle cell as a heatmap to be decoded, in a similar manner to the handwritten digit image, may expedite understanding of decision-making in single cells. Adapted

from Nielsen (2019)
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(2018), identification of cancer cells can be challenging and time-

consuming, even for the expert eye. Deep learning architectures in

general, and convolutional neural networks in particular, have pro-

ven capacity to outperform (ST4) decades-trained pathologists with-

in the remit of cancer histopathological image classification

(Supplementary Information S8).

Potentiality of deep learning is not limited to assessment of clin-

ical images and has been leveraged for automated recognition and

labelling of interior cell features, extending to identification of cell

features to which the in silico system was formerly naı̈ve (Ounkomol

et al., 2018; Supplementary Information S9). Indeed, as an exem-

plary market disruptor, Deep Variant translates genomic informa-

tion into image-like representations which are then amenable to

analysis as images. Deep Variant represents a wider principle; the

methodological approach of applying deep-learning algorithms to

visual abstractions represents a viable competitor to conventional

approaches. Ultimately, deep learning offers the opportunity to out-

pace evolution of resistance to combinatorial targeted therapies,

delineated in the concluding section of this review.

5 Outpacing resistance

Computational biology approaches facilitate formulation of non-

intuitive predictions from visually intractable data. Non-intuitive

predictions are usually ominous of emergent systemic behaviours—

including bistability, ultrasensitivity and robustness—that are ex-

plicable in terms of interactomics (Aebersold et al., 2009; Bhalla and

Iyengar, 1999). In unrelated areas of inquiry, artificial intelligence

has proven capable of eliciting non-intuitive pattern recognition

from high volume data (Gebru et al., 2017). Therefore, deep learn-

ing architectures are the leading candidate in elucidating non-

intuitive feature prediction in the subpopulation of chemoresistance-

bearing outlier cells.

For the benefit of readers seeking to apply 6D phase portrait ana-

lysis, recapitulation of the methodology detailed in Kim et al. (2017)

is recommended as a pragmatic starting point. Since Kim et al.

(2017) focus on three dimensions of carcinogenesis, the method-

ology will need to be adapted to 6 dimensions, and ultimately

applied to single cells. By necessity, the intended output at this stage

is basic research applications of identifying resistance-bearing outlier

cells. Advances in technological capacity and philosophical re-

imagination of cancer will hopefully convert basic research findings

into clinical adjuvants (Supplementary Information S10).
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