
Sequence analysis

Bit-parallel sequence-to-graph alignment

Mikko Rautiainen1,2,3,*, Veli Mäkinen4 and Tobias Marschall1,2,*

1Center for Bioinformatics, Saarland University, Saarland Informatics Campus E2.1, 66123 Saarbrücken, Germany,
2Max Planck Institute for Informatics, Saarland Informatics Campus E1.4, 66123 Saarbrücken, Germany,
3Saarbrücken Graduate School of Computer Science, Saarland University, Saarland Informatics Campus E1.3,

66123 Saarbrücken, Germany and 4Department of Computer Science, University of Helsinki, Helsinki, Finland

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on October 23, 2018; revised on January 19, 2019; editorial decision on February 28, 2019; accepted on March 7, 2019

Abstract

Motivation: Graphs are commonly used to represent sets of sequences. Either edges or nodes can

be labeled by sequences, so that each path in the graph spells a concatenated sequence. Examples

include graphs to represent genome assemblies, such as string graphs and de Bruijn graphs, and

graphs to represent a pan-genome and hence the genetic variation present in a population. Being

able to align sequencing reads to such graphs is a key step for many analyses and its

applications include genome assembly, read error correction and variant calling with respect to a

variation graph.

Results: We generalize two linear sequence-to-sequence algorithms to graphs: the Shift-And algo-

rithm for exact matching and Myers’ bitvector algorithm for semi-global alignment. These linear

algorithms are both based on processing w sequence characters with a constant number of opera-

tions, where w is the word size of the machine (commonly 64), and achieve a speedup of up to w

over naive algorithms. For a graph with jV j nodes and jE j edges and a sequence of length m, our

bitvector-based graph alignment algorithm reaches a worst case runtime of O jV j þ dmwejE j log w
� �

for acyclic graphs and OðjV j þmjE j log wÞ for arbitrary cyclic graphs. We apply it to five different

types of graphs and observe a speedup between 3-fold and 20-fold compared with a previous

(asymptotically optimal) alignment algorithm.

Availability and implementation: https://github.com/maickrau/GraphAligner

Contact: mrautiai@mpi-inf.mpg.de or t.marschall@mpi-inf.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Aligning two sequences is a classic problem in bioinformatics. The

standard dynamic programming (DP) algorithm, introduced by

Needleman and Wunsch (1970), aligns two sequences of length n in

Oðn2Þ time. Countless variants of this classic DP algorithm exist, in

particular its generalization to local alignment (Smith and

Waterman, 1981), where the alignment can be between any sub-

strings of the two sequences, and semi-global alignment (Sellers,

1980) where one sequence (query) is entirely aligned to a substring

of the other (reference).

Recent projects such as the 1000 Genomes Project (1000

Genomes Project Consortium et al., 2015) have provided genetic

variants for many individuals. Currently, we witness a strong interest

in pan-genomic methods for representing and analyzing the variations

between individual genomes in a manner that avoids duplicate work

in the shared genomic areas (Computational Pan-Genomics

Consortium, 2018; Danek et al., 2014; Rahn et al., 2014). One such

method is to use a graph as the reference, which provides a simple

way of representing both shared and unique areas, and can represent

complex variations as well (Garrison et al., 2018; Paten et al., 2017).

In addition to representing genomic diversity, graphs whose nodes or

edges are labeled by characters are commonly used in many other

applications in bioinformatics, for instance genome assembly

(Compeau et al., 2011; Miller et al., 2010) and multiple sequence

VC The Author(s) 2019. Published by Oxford University Press. 3599

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(19), 2019, 3599–3607

doi: 10.1093/bioinformatics/btz162

Advance Access Publication Date: 9 March 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

https://github.com/maickrau/GraphAligner
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz162#supplementary-data
Deleted Text: analysing
Deleted Text: ; Danek <italic>et<?A3B2 show $146#?>al.</italic>, 2014
Deleted Text: ; Garrison <italic>et<?A3B2 show $146#?>al.</italic>, 2018
Deleted Text: Miller <italic>et<?A3B2 show $146#?>al.</italic>, 2010;
https://academic.oup.com/

alignment (Kehr et al., 2014). With an increasing usage of graphs,

algorithms for aligning reads to graphs are also of growing interest

and have already been applied successfully for purposes such as gen-

ome assembly (Antipov et al., 2016) and error correction (Salmela

and Rivals, 2014). So far, however, algorithms to align sequences to

graphs while exploiting bit-parallelism have been lacking.

In this article, we study the semi-global sequence-to-graph align-

ment problem. That is, we seek to find a path in a directed, node-

labeled graph that has minimum edit distance to the query sequence.

We use the edit distance formulation by Levenshtein (1966), with

unit costs for mismatches and indels.

Related work. Already in 1989, an algorithm for approximate

regular expression matching was discovered (Myers and Miller,

1989). It represented the regular expression as a graph and

achieved a runtime of OðjVj þmjEjÞ for aligning a sequence to it,

where jVj is the number of nodes, jEj is the number of edges and

m is the lengths of the query sequence. In 2000, an OðjVj þmjEjÞ
algorithm for aligning a sequence to an arbitrary graph was dis-

covered in the context of hypertext searching (Navarro, 2000).

The algorithm is a generalization of the Needleman–Wunsch al-

gorithm. It proceeds row-wise with two sweeps per row: on the

first sweep, calculating the recurrence from the values in the pre-

vious row, and on the second sweep, propagating the recurrence

term for the values in the same row with a depth first search.

Other algorithms for sequence-to-graph alignment have been

discovered in the context of bioinformatics; however, although

published later than the OðjVj þmjEjÞ algorithms, they either ob-

tain worse runtimes, do not apply to arbitrary graphs, or do not

produce the optimal alignment. We list these results below for

completeness. Partial order alignment (Lee et al., 2002) (POA)

extends standard DP to directed acyclic graphs (DAG) in OðjVj þ
mjEjÞ time but does not handle cyclic graphs. The variation graph

tool vg (Garrison et al., 2018) aligns to cyclic graphs by ‘unrolling’

the graph into a DAG, and then uses POA. However, unrolling the

graph can produce a drastically larger DAG (Vaddadi et al.,

2017). V-align (Vaddadi et al., 2017) aligns to arbitrary graphs

with OððjV 0j þ 1ÞmjEjÞ runtime where jV 0j is the size of the graph’s

minimum feedback vertex set. Limasset et al. (2016) align reads to

de Bruijn graphs, but in a heuristic manner without guaranteeing

optimal alignment. The genome assembler hybridSPAdes (Antipov

et al., 2016) re-phrases sequence-to-graph alignment as a shortest

path problem and uses Dijkstra’s algorithm, leading to OðjEjmþ
jVjm logðjVjmÞÞ runtime. Dilthey et al. (2015, 2016) align reads to

a population reference graph, which does not allow cycles.

Contributions. In this article, we introduce techniques for bit-

parallel semi-global sequence-to-graph alignment. To illustrate some

of the central ideas, we first discuss the simpler question of general-

izing the Shift-And algorithm (Baeza-Yates and Gonnet, 1992;

Dömölki, 1964, 1968) for exact string matching to graphs. We ob-

tain an algorithm with an O jVj þ dmwejEj
� �

runtime in acyclic

graphs, matching the Shift-And algorithm for linear sequences, and

OðjVj þmjEjÞ runtime in arbitrary cyclic graphs. We then general-

ize Myers’ bitvector alignment algorithm (Myers, 1999) to graphs,

which proceeds along the same lines as the Shift-And algorithm, but

requires some further algorithmic insights to handle nodes with an

in-degree greater than one. We arrive at an algorithm with a runtime

of O jVj þ dmwejEj log w
� �

for acyclic graphs and OðjVj þmjEj log wÞ
for arbitrary cyclic graphs. Moreover, we perform experiments

showing that despite the higher time complexity in cyclic graphs, the

bitvector algorithm is empirically faster than the OðjVj þmjEjÞ al-

gorithm for hypertext searching (Navarro, 2000) by a factor of 3 to

20, depending on the input graph.

2 Problem definition

DEFINITION 1 (Sequence graph). We define a sequence graph as a tuple

G ¼ ðV;E; rÞ, where V ¼ fv1; . . . ; vng is a finite set of nodes, E � V � V

is a set of directed edges and r : V ! R assigns one character from the

alphabet R to each node. We refer to the sets of indices of in-neighbors

and out-neighbors of node vi as din
i :¼ fi0 2 f1; . . . ; ng j ðvi0 ; viÞ 2 Eg

and dout
i :¼ fi0 2 f1; . . . ;ng j ðvi; vi0 Þ 2 Eg, respectively.

DEFINITION 2 (Path sequence). Let p ¼ ðp1; . . . ; pkÞ be a path in the se-

quence graph G ¼ ðV;E; rÞ; that is, pi 2 V for i 2 f1; . . . ; kg and

ðpi; piþ1Þ 2 E for i 2 f1; . . . ; k� 1g. Then, the path sequence of p, writ-

ten rðpÞ, is given by rðp1Þrðp2Þ � � � rðpkÞ.

We note that this definition of paths and path sequences includes

the possibility of repeated vertices: paths are allowed to visit the

same vertex multiple times. In this article, we study two related

graph problems: finding exact matches between a sequence and a

path in a graph, termed sequence-to-graph matching (SGM) and the

semi-global sequence-to-graph alignment (SGA) problem.

PROBLEM 1 (Sequence-to-Graph Matching, SGM). Let a string s 2 R�

and a sequence graph G ¼ ðV;E;rÞ be given. Find all paths p ¼
ðp1; . . . ; pkÞ in G such that the path label rðpÞ is equal to the string s,

or report that such a path does not exist.

PROBLEM 2 (Unit Cost Semi-Global Sequence-to-Graph Alignment,

SGA). Let a string s 2 R� and a sequence graph G ¼ ðV;E;rÞ be

given. Find a path p ¼ ðp1; . . . ; pkÞ in G such that the edit distance

dðrðpÞ; sÞ is minimized and report a corresponding alignment of

rðpÞ and s.

We assume a constant alphabet R. In the remainder of this

article, we assume an arbitrary but fixed string s 2 R� with jsj ¼ m

and sequence graph G ¼ ðV;E;rÞ to be given. Without loss of gen-

erality, we assume that jVj � 2jEj þ jRj. This can be assumed be-

cause, if jVj > 2jEj, then there are nodes which are not connected to

any other nodes. In this case, we can merge the disconnected nodes

with the same label, producing a graph with at most 2jEj þ jRj
nodes.

3 Extending Shift-And to graphs

The Shift-And algorithm (Baeza-Yates and Gonnet, 1992; Baeza-

Yates and Navarro, 1996; Dömölki, 1964, 1968) finds exact

matches between a pattern string s of size m and a text string t of

size n, with m<n, in O dmwen
� �

time where w is the word size of the

machine (usually 64 on modern computers). The Shift-And algo-

rithm works by simulating a nondeterministic finite automaton

(NFA) that matches the pattern, and then feeding the text to it. The

state of the automaton is kept in a m-sized bitvector, consisting of

dmwe w-bit words, and the state is updated by shifting the vector by

one and bitwise AND-ing the state with a precomputed character

bitvector. The invariant of the algorithm is that the i’th bit in the

NFA’s state is set after processing the j’th character in the text if and

only if there is an exact match between the pattern prefix s0::i and

the text substring tj�i::j (corresponding to a suffix of the text that has

been processed so far). In this section, we generalize the Shift-And

algorithm to graphs, starting with the simpler case of DAGs and

then proceeding to general graph that may contain cycles. That is,

we extend the Shift-And algorithm to solve SGM (Problem 1), which

illustrates some of the concepts we later use in Section 4 to solve

SGA (Problem 2).

3600 M.Rautiainen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

Deleted Text: ; Dilthey <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: paper
Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: paper
Deleted Text: ; <xref ref-type=
Deleted Text: paper
Deleted Text: paper
Deleted Text: <xref ref-type=
Deleted Text: directed acyclic graphs (
Deleted Text:)

3.1 Directed acyclic graphs
In DAGs, we process the nodes in topological order. If a node has an

in-degree of 1, then the update proceeds in the same way as in the

classical Shift-And algorithm: We use the previous automaton state

(i.e. the state after processing the in-neighbor) and update it accord-

ing to the label of the present node. However, some nodes have an

in-degree of more than 1. For handling such nodes, we first propa-

gate the NFA state from each in-neighbor separately. That is, we

compute the updated state as if this node was the only in-neighbor.

We then need to merge the resulting states such that any exact match

from any in-neighbor translates to a match in the node. Here, the in-

variant to be maintained is that bit i in the bitvector representation

of the NFA’s state is set after processing a given node if and only if

there is a path of length i ending in this node and matching a length-

i prefix of the pattern. Since the matching path can come from any

of the in-neighbors, and a valid path from any of the in-neighbors

translates to a valid path in the node, this invariant can be accom-

modated by merging the ‘incoming states’ using a bitwise OR oper-

ation. Since the merging is a O dmwe
� �

-time operation, the overall time

complexity is unchanged.

3.2 Cyclic graphs
The strategy for cyclic regions is similar to the previous one, except

that, in the absence of a topological sorting, we process the nodes in

an arbitrary order. The main idea to still arrive at correct values con-

sists in storing a separate NFA state bit-vector for each graph node

and to update them repeatedly until no more changes are necessary.

Algorithm 1 shows our algorithm as pseudocode. We keep a list

of calculable nodes. All nodes are inserted into the calculable list at

the start. Whenever a node is popped from the list, its state is propa-

gated to its out-neighbors, and all out-neighbors whose state has

changed are added to the list. A state change may set a bit but can-

not unset a bit. Therefore, a node’s state may change up to m times,

so each node may get added to, and popped from, the list up to m

times. Each pop requires Oðjdout
x jÞ time. The worst case runtime is

therefore OðjVj þmRx2V jdout
x jÞ ¼ OðjVj þmjEjÞ. Correctness can

be verified by observing that the above invariant must hold for all

nodes once the calculable list is empty. Algorithm 1 can be simpli-

fied to the O jVj þ dmwejEj
� �

algorithm for DAGs by sorting L topo-

logically, popping the nodes in order at Line 7, and removing the IF

block starting from Line 11. For the DAG algorithm, we also do not

need to keep the entire array S, but just a ‘frontier’ consisting of

nodes whose out-neighbors have not been processed yet.

4 Extending Myers’ bitvector alignment to
graphs

We approach SGA (Problem 2) by generalizing the standard DP al-

gorithm for edit distance calculation. In our case, the DP matrix has

one column per node vi 2 V and one row per character sj from

s 2 R�. We seek to compute values Ci;j for i 2 f1; . . . ; jVjg and j 2
f1; . . . ; jsjg such that Ci;j is the minimum edit distance dðp; s½1::j�Þ
over all paths p ending in node vi.

DEFINITION 3 (Recurrence for SGA). Define

Ci;j ¼ min
Ck;j�1 þ Di;j; for k 2 din

i

Ck;j þ 1; for k 2 din
i

Ci;j�1 þ 1

8><
>:

(1)

with the boundary condition Ci;1 ¼ Di;1 for all i 2 f1; . . . ; jVjg, where

Di;j is the mismatch penalty between node character rðviÞ and sequence

character sj, which is 0 for a match and 1 for a mismatch,

We refer to the individual terms in Recurrence (1) as the ‘diagonal’

(topmost), ‘horizontal’ (middle) and ‘vertical’ (bottom) terms, due to

their relative positions in the DP matrix. Despite cyclic dependencies in

Recurrence (1), the problem has a unique solution for any graph and se-

quence; see the Supplementary Material for a proof. Recurrence (1) can

be solved in OðjVj þmjEjÞ time (Navarro, 2000) in a cell-by-cell man-

ner, where each operation calculates one individual cell. This is in con-

trast to Myers’ bitvector algorithm for sequence-to-sequence alignment

which calculates multiple cells in a constant time operation (Myers,

1999).

In linear sequence-to-sequence alignment, the recurrence implies the

vertical property (Ukkonen, 1985), meaning that the score difference be-

tween two vertically neighboring cells is in the range f�1; 0; 1g, which is

necessary for representing them using two bitvectors (Myers, 1999). To

generalize Myers’ algorithm, we first establish that the vertical property

also holds for graphs.

THEOREM 1 (Vertical property for sequence-to-graph alignment). The

score difference between any two vertically adjacent cells Ci;j and Ci;j�1

is at most one, that is, Ci;j � Ci;j�1 2 f�1; 0; 1g for all i 2 f1; . . . ; jVjg
and j 2 f2; . . . ; jsjg.

The vertical property for graphs was implicitly proven by Navarro

(2000) but not explicitly mentioned. The implicit proof assumes that the

scores are first correctly calculated. However, in the bitvector algorithm

the vertical property is a prerequisite to calculating the scores.

Therefore, we give an alternate proof in the Supplementary Material

which does not rely on this assumption.

4.1 Terminology
Figure 1 shows the relation between the concepts described here.

The DP matrix is oriented with graph characters as columns and se-

quence characters as rows. A column in the DP matrix consists of m

cells and corresponds to one node in the graph. We use the terms

column and node interchangeably, depending on whether we are

emphasizing the DP matrix or the graph topology. We use the term

calculating a column/node to refer to the operation of using

Recurrence (1) to process an edge and calculate the score of the

edge’s destination column based on the edge’s source column and a

character (the label of the destination node/column). The minimum

changed score between two columns Cold and Cnew is the minimum

score of the new column at rows where the new column is smaller,

that is, minChangedðCold;CnewÞ ¼ minj2½0;mÞ:Cnew;j <Cold;j
ðCnew;jÞ.

If Cnew;j 	 Cold;j at every j, we say that the minimum changed score

Algorithm 1 Shift-And for cyclic graphs

1: Input: a sequence graph ðV;E; rÞ and a string s

2: Output: Vector S containing the NFA states of V

3: P precomputed pattern bitvectors for 8c 2 R based on s

4: L a list initialized with V

5: S jVj-sized array of integers initialized with 0

6: while jLj > 0 do

7: v L:popðÞ
8: for y 2 dout

v do

9: old S½y�
10: S½y� S½y� OR ðððS½v�
 1Þ þ 1Þ AND PrðyÞÞ
11: if S½y� 6¼ old then

12: L:pushðyÞ

Bit-parallel sequence-to-graph alignment 3601

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

Deleted Text: DAG
Deleted Text: directed acyclic graphs (
Deleted Text:)
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: M
Deleted Text: dynamic programming (
Deleted Text:)
Deleted Text: <italic>&hx201C;</italic>
Deleted Text: <italic>&hx201D;</italic>
Deleted Text: <italic>&hx201C;</italic>
Deleted Text: <italic>&hx201D;</italic>
Deleted Text: <italic>&hx201C;</italic>
Deleted Text: <italic>&hx201D;</italic>
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz162#supplementary-data
Deleted Text:

is infinite. The minimum changed score is used to distinguish cells

which are relevant in cyclic areas; when recalculating a column,

only those cells whose scores changed can propagate the scores

onward.

We refer to the current DP table column we consider as S.

Column S is stored in bitvector representation (Myers, 1999), con-

sisting of a score Send attained in that column at the bottom row, a

positive bitvector VPS and a negative bitvector VNS, as illustrated in

Figure 1 (blue box). The word size w is the number of bits in a com-

puter word (usually 64). The positive and negative bitvectors consist

of m bits and are implemented with dmwe machine words. For a col-

umn S, the score at index j is Sj ¼ popcountðVPS
0::jÞ�

popcountðVNS
0::jÞ, where popcount refers to the number of set bits in

a bitvector. Note that Send ¼ Sm�1.

4.2 Directed acyclic graphs
For DAGs, we use a similar strategy to the Shift-And algorithm.

First we order the nodes topologically, and then we process the col-

umns in order. However, Recurrence (1) now has terms for multiple

in-neighbors. For handling nodes with an in-degree more than 1, we

first calculate the incoming edge from each in-neighbor, that is, as if

there was only one in-neighbor. Then, we merge the columns such

that the cells of the resulting column have the minimum of each in-

coming column in that row: For two input columns SA and SB, we

compute an output column SO such that SO
i ¼ minðSA

i ; S
B
i Þ for all in-

dices i. Figure 2 shows an example of merging two columns. We

defer the details of merging columns to Section 5, where we devise

an algorithm to do this in O dmwe log w
� �

time. The operation must be

applied at most E times. The runtime is therefore

O V þ dmweE log w
� �

.

4.3 Cyclic regions
Cell-by-cell algorithms for sequence-to-graph alignment (Myers and

Miller, 1989; Navarro, 2000) handle cyclic dependencies in a row-

wise manner: For each row, in a first sweep the ‘vertical’ and ‘diago-

nal’ terms of Recurrence (1) are calculated and, in a second sweep,

the ‘horizontal’ terms are applied. However, this approach cannot

be applied in a column-wise manner that is inherent to Myers’ bit-

vector algorithm. To deal with cyclic dependencies, we rely on two

key ideas: First, we process the nodes in a specific order and, second,

we recalculate scores of nodes until they have ‘converged’ (similar to

our approach for the Shift-And algorithm).

To define this order, we keep a priority queue of calculable

nodes and their priorities. We define the operation push(p, v) for the

priority queue: if the node v is not in the priority queue, v is inserted

into the queue with the priority p; or if v is in the queue and p is

smaller than v’s current priority, v’s priority is set to p; otherwise do

nothing. Initially, all nodes are inserted into the queue with priority

0. All columns are initialized with a bitvector VP ¼ 1m;VN ¼ 0m,

corresponding to increasing scores. Then, nodes are picked from the

queue in priority order (lowest first), and the out-neighbor columns

are calculated based on the source column. For each out-neighbor y,

the new column is merged with the existing column and the merged

column is stored at y. Then, if the minimum changed value between

the existing and the new column is not infinite, y is added to the cal-

culable queue with the minimum changed value as the priority.

Pseudocode is given in Algorithm 2. We use the symbol � to mark

the column merging operation (see Section 5.2). We use the F to de-

note the column calculation operation from a predecessor column

and a character match bitvector. This operation proceeds exactly

like in Myers’ original bitvector algorithm and involves computing

intermediate bitvectors for horizontal and diagonal differences. We

do not discuss these details here and refer the reader to the original

paper by Myers (1999) or to the textbook by Mäkinen et al. (2015).

In the following, we will establish correctness and runtime of

Algorithm 2.

We use the term present scores to refer to the scores assigned to

the cells at some point during the calculation, as opposed to the cor-

rect scores which correspond to the unique scores that satisfy

Recurrence (1). We say that a cell has converged when its present

score is equal to its correct score.

THEOREM 2. In Algorithm 2, if the minimum priority of the calculable

queue is x, then all cells whose correct scores are Ci;j < x have

converged.

PROOF. We show this by induction. For the initial case, there are no cells

whose correct scores are negative, so the statement holds when x¼ 0.

Next, we will assume that the minimum priority of the calculable queue

is x and that all cells whose correct scores are Ci;j < x� 1 have con-

verged, and show that all cells whose correct scores are Ci;j ¼ x� 1 have

Algorithm 2 Bitvector alignment algorithm for cyclic graphs

1: Input: a sequence graph (V, E) and a string s

2: Output: Vector S containing the column states of V

3: P precomputed pattern bitvectors for 8c 2 R based on s

4: L a priority queue initialized with ð0; vÞ; 8v 2 V

5: S jVj-sized array of bitvectors initialized with

VP ¼ 1m;VN ¼ 0m; Send ¼ m

6: while jLj > 0 do

7: ð ; vÞ L:popðÞ
8: for y 2 dv

out do

9: old S½y�
10: . �: merge operation, F: bitvector step from Myers

(1999)

11: S½y� S½y� � FðS½v�;PrðyÞÞ
12: if changedMinðold; S½y�Þ 6¼ 1 then

13: L:pushðchangedMinðold; S½y�Þ; yÞ

Fig. 1. Dynamic programming matrix for aligning the sequence TATTA to the

shown graph. Gray arrows indicate which predecessor cell(s) gave rise to the

minimum value in Recurrence (1). Black bold arrows show the optimal path.

As an example, the column highlighted in red is given in its bitvector repre-

sentation (blue)

3602 M.Rautiainen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

Deleted Text: ; <xref ref-type=
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:

converged. Assume that there is a cell whose correct score is x � 1.

There are four cases for how the cell’s correct score is defined: (i) the ver-

tical term, (ii) the horizontal term, (iii) the diagonal term with a mis-

match, (iv) the diagonal term with a match.

Case (i). The cell has a vertical neighbor Ci;j�1 whose correct score is x �
2. By assumption cells with correct score Ci0 ;j0 < x� 1 have converged,

so the vertical neighbor’s present score is x � 2. The bitvector represen-

tation allows a vertical score difference of up to 1, so the cell’s present

score is at most x � 1 and the cell has converged.

Case (ii). The cell has a horizontal neighbor Ci0 ;j whose correct score is

x � 2. The neighbor cell has converged by assumption. After the last

time the neighbor column was calculated, the neighbor cell had its cor-

rect score. Since there is a cell with a present score x � 2 in the neighbor-

ing column, the node i0 was added to the calculable queue with a priority

of x � 2 (or less). Therefore, the edge ði0; iÞ was processed at some point

earlier in the calculation, and at that point Recurrence (1) was applied to

the cell Ci;j, producing the correct score.

Case (iii). Analogous to Case (ii).

Case (iv). The cell has a diagonal neighbor Ci0 ;j0 whose correct score is x

� 1. If the diagonal neighbor has converged, then the node i0 will have

been added to the calculable queue with a priority of x � 1 (or less), and

the argument from Case (ii) applies. Next we need to prove that the diag-

onal neighbor has converged. The diagonal neighbor cell’s correct score

is again defined by the same cases (i)–(iv). For cases (i)–(iii), the diagonal

neighbor has converged. For Case (iv), we look at the diagonal neighbor

cell’s diagonal neighbor cell, and keep traversing by diagonal connec-

tions until we reach a cell for whom one of cases (i)–(iii) applies. Since

the diagonal neighbors cannot form cycles, this will eventually happen,

proving that the entire chain has converged.

From Theorem 2, it follows that once the minimum priority of the cal-

culable queue is mþ 1, all cells have converged to their correct scores, so

the algorithm will eventually reach the correct solution in cyclic areas.

Next we will establish an upper bound on the time until convergence.

COROLLARY 1. If all cells whose correct scores are Ci;j < x have con-

verged, then all cells whose present scores are Ci;j � x have converged.

PROOF. We assumed that all cells whose correct scores are Ci;j < x have

converged. Therefore, there are no cells whose present score is x but

whose correct score is Ci;j < x. A cell’s present score cannot be lower

than its correct score since the present scores are initialized at the highest

possible value and applying Recurrence (1) cannot lower them under the

correct score. Therefore, if a cell’s present score is x, it must also be its

correct score.

THEOREM 3. A node cannot be popped from the calculable queue more

than m times.

PROOF. If a node v is popped from the calculable queue with a priority x,

it was added to the queue with a priority x at some point. This implies

that there is at least one cell Cv;j in the column with a present score of x.

By Theorem 2 all cells with correct scores below x have converged and

consequently Cv;j has converged by Corollary 1. Therefore, each pop of

a node v must be preceded by an update to node v’s state that causes at

least one cell to converge. Since a cell can converge only once, and a col-

umn has m cells, this can happen at most m times per node.

From Theorem 3, the outer loop starting in Line 6 runs at most mjVj
times. Since the inner loop in Line 8 is processed jdout

v j times per outer

loop iteration, the inner loop runs at most mRv2V jdout
v j ¼ mjEj times.

This provides a bound of mjEj inner loop iterations, meaning that in the

worst case, the cyclic bitvector algorithm behaves like a cell-by-cell

algorithm.

Algorithm 2 uses a priority queue to store the calculable nodes. Since

the maximum score a cell can have is m, the priority queue can be imple-

mented as m arrays, one for each priority, plus a jVj-sized array for the

node’s current position in the queue for the push operation. In this case,

inserting and retrieving n values can be done in OðjVj þmþ nÞ time.

Since jVj � n � mjVj, this reduces to O(n) and the calculable queue

has amortized constant time retrieval and insertion.

In summary, the inner loop in Line 8 runs OðmjEjÞ times, while the

runtime of each iteration depends on the implementation details, which

we discuss below.

5 Bitvector implementation

The scores of each column are represented with a bitvector consist-

ing of a positive bitvector VP, negative bitvector VN and score at

end Send. For a sequence of length m, the bitvectors consist of m bits,

implemented as dmwe machine words. We use the term elementary op-

eration to refer to arithmetic and bitwise operations (e.g. addition,

subtraction, AND, OR) on all bits in parallel. For m-bit bitvectors,

the elementary operations use O dmwe
� �

time. We use the term column

operation to refer to higher level operations such as merging two bit-

vectors (�) and computing the minimum changed score

(changedMin).

5.1 Slice-by-slice processing
As outlined above, Algorithm 2 is designed to update one column at

a time through bit-parallel column operations. Alternatively, it is

possible to ‘slice’ the DP table into pieces of w rows each, as illus-

trated in Figure 3. If we slice the bitvector into w-bit slices, elemen-

tary operations can be performed in O(1) time within a slice. The

idea is to apply Algorithm 2 separately to each of the dmwe slices, pro-

ceeding from top to bottom. To accommodate this, we need to carry

over the bottom most values in a slice into the next slice. To this

end, we add an extra variable score before start Sbefore to each bit-

vector, which is 0 for the topmost slice and equal to the above slice’s

S0end for other slices. While it does not change the results, this sliced

processing will allow us to speed up the total runtime.

5.2 Bitvector merging algorithm
When merging two columns (operation �), we are given two input

columns SA and SB, represented in memory through

(VPA;VNA; SA
before; S

A
end) and (VPB;VNB; SB

before; S
B
end). As output, we

seek to compute (VPO;VNO; SO
before; S

O
end), the bitvector representa-

tion of a column SO such that its values are the minimum of the two

Fig. 2. Handling nodes with an in-degree higher than one in the bitvector

framework. Left: The node C has two in-neighbors, A and B. Middle: Each in-

neighbor column is separately calculated to get the scores of Recurrence (1).

The circled cells are the minimum of each row. Right: The resulting columns

are merged, taking the minimum of the two scores for each row. The arrows

show the possible backtraces for each cell

Bit-parallel sequence-to-graph alignment 3603

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text: &hx2013;
Deleted Text:)-(
Deleted Text: -
Deleted Text: -
Deleted Text: \\\\\\\\\\
Deleted Text: &hx201C;
Deleted Text: &hx201D;

columns represented by the input bitvectors, that is, SO
i ¼

minðSA
i ; S

B
i Þ for all i 2 f0; 1; . . . ;m� 1g.

The overall concept of our merging algorithm is illustrated in

Figure 4, while we present pseudo code, a detailed example and an

extended discussion of implementation details in the Supplementary

Material. The key idea consists in computing the difference between

entries in SA and SB in parallel as follows: We define a variable D

split in chunks of log 2mþ 2 bits, where each chunk represents the

score difference SA � SB at a certain index, as illustrated by the green

lines in Figure 4. Updating D such that each chunk now represents a

difference value for the next row can then be done in constant time,

processing all chunks in parallel. In this way, we consecutively com-

pute entries in two difference bit masks MA>B and MB>A, which in-

dicate rows where the score of A is higher than B and vice versa,

respectively. Once MA>B and MB>A have been computed, we can,

again in parallel, compute a picking mask Mp, which essentially tells

us which values have to be picked from ðVPA;VNAÞ and which have

to be picked from ðVPB;VNBÞ to compute the final output bitvec-

tors ðVPO;VNOÞ.
We need Oðlog mÞ iterations to compute MA>B and MB>A, each

of which uses a constant number of elementary operations.

Computing Mp as well as the final merging also take a constant

number of elementary operations, each of which takes O dmwe
� �

time

(see above). Therefore, we need a total of O dmwe log m
� �

time to

merge two bitvectors.

5.3 Changed minimum value algorithm
The changed minimum value of two bitvectors old and new is the

minimum value at indices where the new bitvector has a smaller value

than the old, that is, changedMinðold;newÞ ¼ mini:Snew
i

< Sold
i
ðSnew

i Þ.
The changed minimum value can be calculated in Oðlog wÞ time by

splitting the bitvector into chunks and calculating the value at each

log w’th position in parallel, similarly to the difference mask algo-

rithm. However, in practice it is faster to calculate the difference

mask Mnew<old and find all local minima where Snew
i < Sold

i by using

the VP; VN and Mnew<old vectors. An index is a local minimum if

VP is set to its left (more significant bits) and VN is set either to

its right (less significant bits) or at the index. Then, each

local minimum is processed one at a time. The score at the

index is calculated using the definition of the implied scores

Si ¼ popcountðVP0::iÞ � popcountðVN0::iÞ. This takes O(w) time but

in practice there are very few local minima, leading to a speedup over

the Oðlog wÞ algorithm.

5.4 Asymptotic runtime
Algorithm 2 executes its inner loop (Line 8) to update a column

OðmjEjÞ times (see Section 4.3). The two column operations of

merging two bitvectors and computing the minimum changed score

use Oðlog kÞ elementary operations for a bitvector of k bits. When

processing a whole column (i.e. k¼m), then this leads to a runtime

of O dmwe log m
� �

for each column operation and to

O jVj þmjEjdmwe log m
� �

in total. When processing the DP table in

slices (Fig. 3), we need to run Algorithm 2 once for each slice, that

is, dmwe times. Processing each slice will lead to OðwjEjÞ update oper-

ations in Line 8, each of which takes Oðlog wÞ time. In total, we can

hence compute the full DP matrix in OðjVj þmjEj log wÞ time. Like

the Shift-And algorithm, the cyclic algorithm can also be simplified

for DAGs by ordering L topologically in Line 4 and removing the

IF-block starting at Line 12, producing an O jVj þ dmwejEj log w
� �

algorithm.

6 Experiments

We implemented the sequence-to-graph bitvector algorithm

described here and the cell-by-cell algorithm by Navarro (2000). We

performed several experiments on the algorithms: the bitvector

performance experiment, comparing our approach to existing well-

optimized implementations of Myers’ algorithm on a linear

sequence; the graph topology experiment, comparing the effect of

different graph topologies; the HLA experiment, measuring the

speedup on a more realistic use case; and finally, the Escherichia coli

experiment aligning reads to a graph resulting from genome assem-

bly. The source code of the experiments is available at https://

github.com/maickrau/GraphAligner/tree/PaperExperiments.

A B

Fig. 3. The DP table for aligning a sequence to a graph (shown on top) is rep-

resented by a set of columns (vertical bars), each corresponding to one graph

node. The table can be filled in different orders: (A) each update operation

(from blue to red) proceeds on a complete column. (B) Update operations

commence on ‘slices’ of w bits; only after the final values in a slice (i.e. for all

columns) have been computed, we proceed to the next slice

Fig. 4. Conceptual idea of bit-vector merging. Red bars represent bit-vectors,

which are stored in memory. Gray bars represent input/output columns,

which are never stored explicitly, but represented implicitly by the respective

bit-vectors. The variable D is split into chunks of size Oðlog mÞ, where the bits

in each chunk encode the difference between a particular row in SA and SB,

as indicated by green lines. The values in each chunk are used to compute

the respective bits in MA>B and MB>A . In each iteration, the chunks are

updated to represent a difference of SA and SB one row further down, indi-

cated by down arrows. Once MA>B and MB>A have been computed, the ‘pick-

ing mask’ Mp is computed in parallel (horizonal arrows) and used in the final

merging step (blue box)

3604 M.Rautiainen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

Deleted Text: supplement
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz162#supplementary-data
Deleted Text: ie.
Deleted Text: Figure
Deleted Text: <italic>E.</italic>
https://github.com/maickrau/GraphAligner/tree/PaperExperiments
https://github.com/maickrau/GraphAligner/tree/PaperExperiments

6.1 Bitvector performance
The sliced processing (Fig. 3) adds extra overhead compared with

the whole-column processing used in the classical Myers’ algorithm.

The reference sequence must be accessed multiple times, and mem-

ory use is not cache-efficient, since a large memory range is written

and read a few times per address instead of a small range updated

many times per address. To measure the overhead added by this, we

ran the bitvector algorithm on a graph consisting of a linear chain of

nodes with 200 000 bp in total and a 100 000 bp query. This linear

graph mimicks sequence-to-sequence alignment and we compared

our performance with optimized implementations of Myers’ algo-

rithm from BGSA (Zhang et al., 2018) and Seqan (Döring et al.,

2008) on the same sequences. We also tested whole-column process-

ing for the linear graph to see how much of the difference is due to

code optimization and how much is due to the different processing

methods. Note that BGSA is particularly designed to be fast in the

case when multiple reads are aligned in parallel. To facilitate a

meaningful comparison, we used BGSA in a mode resembling

Myers’ bitvector algorithm, that is, we aligned one read on one CPU

without using vector instructions.

Table 1 shows the results. The sliced processing method is noti-

cably slower than the optimized implementations or the whole-

column method. The whole-column method’s performance is close

to the optimized implementations, which indicates that our imple-

mentation does not incur significant overheads. Unfortunately, the

whole-column method is slow in graphs with nodes with in-degree

two or more due to the merge operation’s performance. The over-

head of the sliced processing method therefore seems to be inherent

to processing non-trivial graphs. In the remaining experiments we

use the sliced processing method.

6.2 Graph topology experiment
For the graph topology experiment, we created four kinds of graphs

(Fig. 5), representing increasing levels of difficulty, based on the

E.coli reference genome’s 10 000 first base pairs.

The first graph, the linear graph, is a linear chain of nodes.

Aligning to this graph is equivalent to sequence-to-sequence align-

ment. The second graph, the SNP graph, is a linear chain of nodes

with randomly inserted bubbles representing single nucleotide poly-

morphisms (SNPs). The SNPs are distributed at an average of one

SNP per 10 base pairs. The third graph, the twopath graph, is an

artificial worst case graph for the bitvector algorithm. Each node

has two in-neighbors, which means that the Oðlog wÞ bitvector

merging algorithm has to run for each node. For the first three

graphs, neither algorithm’s runtime depends on the matched se-

quence, so the additionally inserted nodes were given random labels.

The fourth graph, the tangle graph, is based on a de Bruijn graph of

the reference sequence with k¼11. We chose k to be so small specif-

ically to make the graph very cyclic and tangled.

For the tangle graph, the non-branching areas are merged to uni-

tigs, and overlaps between the nodes are removed by deleting the

last k � 1 characters of each non-tip node, producing a directed

node-labeled graph with the same topology and same paths as the

original de Bruijn graph. For each graph, we also included the

reverse-complement strand to map reads simulated from the

backwards strand, doubling the graph size and effectively mimicking

a bidirectional graph. The graph sizes in Figure 5 refer to this

doubled bidirectional size.

We simulated reads with 20� coverage (total 200 000 bp) from

the reference using PBSIM (Ono et al., 2013), which produced 65

reads with an average length of 3 kbp. In addition, we took a high

coverage Illumina dataset (https://www.ebi.ac.uk/ena/data/view/

ERX008638), filtered the reads by using minimap2 (Li, 2018) to se-

lect reads which align to the first 10 000 bp of the reference, and

then randomly sampled a 50.5� coverage subset (5050 reads,

505 000 bp). Then, we aligned both the simulated long reads and

the real short reads to the graphs using both our bitvector algorithm

and the cell-by-cell approach.

6.3 HLA-A experiment
To assess the algorithm’s performance on a more realistic scenario,

we built a graph of the human HLA-A gene and aligned real

sequencing data to it. We took the 4637 alleles of the human HLA-

A gene available from the IMGT/HLA database (Robinson et al.,

2015), and computed a multiple sequence alignment between them

by using Clustal Omega (Sievers et al., 2011) version 1.2.4 with the

command ‘clustalo -i sequences.fasta –outfmt clustal > aln.clustal’.

Then we used vg (Garrison et al., 2018) version 1.9.0 to build a vari-

ation graph from the multiple sequence alignment with the com-

mand ‘vg construct -M aln.clustal -F clustal -m 32 > msa.vg’.

For the sequence data, we used Illumina and PacBio reads from

NA19240 (Chaisson et al., 2018). To filter the Illumina reads, we

used minimap2 (Li, 2018) to align the reads to the known alleles,

producing 2829 Illumina reads (355 981 bp) with an alignment,

which we considered to be from the HLA-A region. For the PacBio

reads, we selected those whose alignment to the reference genome

overlaps with HLA-A’s location, producing 102 reads (405 415 bp).

Both the Illumina and PacBio reads were then aligned to the graph

using the bitvector and cell-by-cell algorithms.

6.4 Escherichia coli experiment
For the E.coli experiment, we used sequencing data of E.coli strain

K-12 substrain MG1655. We took 670� coverage Illumina reads

from the European Nucleotide Archive (https://www.ebi.ac.uk/ena/

data/view/ERX008638) and 144� coverage PacBio reads from the

NCBI sequence archive (https://trace.ncbi.nlm.nih.gov/Traces/sra/?

run¼SRR1284073). We built a de Bruijn graph of the Illumina data-

set using BCalm (Chikhi et al., 2016), with k¼31 and k-mer solidity

threshold 7. We applied the same postprocessing of the graph as

described above for the tangle graph. Then we selected PacBio reads

longer than 1000 base pairs and randomly sampled a subset of them

corresponding to 1.5� average genome coverage, and aligned them

to the graph with the bitvector and cell-by-cell algorithms.

6.5 Results
Table 2 shows a summary of the results. The first eight rows corres-

pond to the graph topology experiment and the last three to the

HLA-A and E.coli experiments. Each number is an average over 10

runs, showing the total time to align all reads on one CPU core of an

Intel Xeon E7-8857 v2 CPU running at 3GHz. The bitvector ap-

proach is faster than the cell-by-cell approach in each graph. As

expected from the time complexity analysis, the difference is greater

in the acyclic graphs. For the acyclic graphs, the bitvector algorithm

achieves between 10-fold and 20-fold speed improvement. For the

cyclic graph, the speedup is between 3-fold and 5-fold, suggesting

that cycles are recalculated on average only a few times (linear

Table 1. Sliced versus whole-column processing on a linear graph

BGSA Seqan Our method (whole-column) Our method (sliced)

1.3s 1.2s 1.5s 5.5s

Bit-parallel sequence-to-graph alignment 3605

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

Deleted Text: to
Deleted Text: 200
Deleted Text: 100
Deleted Text: i.e.
Deleted Text: T
Deleted Text: E
Deleted Text: Figure
Deleted Text:
Deleted Text: 10
Deleted Text: &hx2212;
Deleted Text: x
Deleted Text: 200
https://www.ebi.ac.uk/ena/data/view/ERX008638
https://www.ebi.ac.uk/ena/data/view/ERX008638
Deleted Text: ¹
Deleted Text: 10
Deleted Text: x
Deleted Text:
Deleted Text: 505
Deleted Text: E
Deleted Text: &hx201C;
Deleted Text: &hx201D;.
Deleted Text: &hx201C;
Deleted Text: &hx00BF;
Deleted Text: &hx201D;.
Deleted Text: 355
Deleted Text: 405
Deleted Text: <italic>E.</italic>
Deleted Text: E
Deleted Text:
Deleted Text: <italic>Escherichia</italic>
Deleted Text: x
https://www.ebi.ac.uk/ena/data/view/ERX008638
https://www.ebi.ac.uk/ena/data/view/ERX008638
Deleted Text: ²
Deleted Text: x
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1284073
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1284073
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1284073
Deleted Text: ³
Deleted Text: <italic>Coli</italic>
Deleted Text: ten
Deleted Text: twentyfold
Deleted Text: three
Deleted Text: fivefold

speedup divided by cyclic speedup) instead of the theoretical worst

case of w times. The HLA-A and E.coli experiments show that the

results generalize to more realistic scenarios as well. Note that in

our experiments, we compute the complete DP matrix, and there-

fore, the long absolute time for the E.coli experiment are not sur-

prising. In fact, this shows the feasibility of computing optimal

alignments for bacterial genomes.

7 Discussion

In this article, we generalized two sequence-to-sequence algorithms to

sequence-to-graph algorithms. For the Shift-And algorithm, the run-

time for acyclic graphs matches the runtime of the linear version, and

the runtime for cyclic graphs matches cell-by-cell comparison algo-

rithms for graphs. For the bitvector alignment algorithm, the runtime

includes an extra log w term due to the complexity of merging bitvec-

tors and finding the changed minimum value. Despite the graph-based

bitvector alignment algorithm’s higher worst case time complexity

compared with previous cell-by-cell alignment algorithms, it still

achieves a 3-fold to 20-fold speedup over cell-by-cell algorithms de-

pending on the shape of the graph. Should an algorithm for merging

bitvectors and finding the changed minimum score in O(1) time exist,

that would lead to the bitvector graph algorithm being asymptotically

faster than cell-by-cell algorithms as well.

Our algorithm is defined with unit costs for mismatches and

indels. Other approaches have extended bit-parallelism to general-

ized integer costs (Loving et al., 2014; Zhang et al., 2018). Using

generalized integer costs with our graph-based approach would re-

quire extending the column merge and changed minimum value

operations to the different score representation used by the general-

ized integer cost algorithms. The time complexity of the algorithm

might also change due to the priority queue if the scores are not

bounded by a reasonably small number.

Affine gap penalties (Gotoh, 1982) are commonly used in linear

sequence alignment. This is implemented by adding two extra matri-

ces, one for insertions and another for deletions. The same method

can be used for cell-by-cell graph alignment by including two extra

copies of the graph (Rautiainen and Marschall, 2017). We believe

that this can also be applied to the bit-parallel version of graph

alignment. This would require extending the scoring method to gen-

eralized integer costs, as otherwise the gap open and gap extend

parameters would be one, defeating the whole point of using affine

gap penalties. The extra subgraphs would also require more conver-

gence analysis to determine the effect on runtime.

The bitvector algorithm described here provides a basis for prac-

tical algorithms for fast sequence-to-graph alignment. We believe

that it can be scaled to mammalian genome sizes when combined

with strategies for banded alignment.

Acknowledgements

We thank Gonzalo Navarro for fruitful discussions on pattern matching

on graphs, in particular on Shift-And extension. We are grateful for

Dagstuhl Seminar 16351 on ‘Next Generation Sequencing—Algorithms,

and Software For Biomedical Applications’, which sparked the idea to pur-

sue this topic.

Conflict of Interest: none declared.

References

Antipov,D. et al. (2016) hybridSPAdes: an algorithm for hybrid assembly of

short and long reads. Bioinformatics, 32, 1009–1015.

Baeza-Yates,R. and Gonnet,G.H. (1992) A new approach to text searching.

Commun. ACM, 35, 74–82.

Baeza-Yates,R. and Navarro,G. (1996) A faster algorithm for approximate

string matching. In: Hirschberg,D. and Myers,G. (eds.) Combinatorial

Pattern Matching. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–23.

A B C D

Fig. 5. Overview of the graphs used in the graph topology experiment. (A) Linear graph, (B) SNP graph, (C) twopath graph, (D) tangle graph [visualized with

Bandage (Wick et al., 2015)]

Table 2. Experimental results

Graph Reads Nodes Edges Bitvector Cellwise Speedup

Linear PBSIM 20 000 19 998 1.2s 23.5s 19.6�
Linear Illumina 20 000 19 998 5.5s 62.5s 11.4�
SNP PBSIM 22 030 24 058 2.3s 41.8s 18.5�
SNP Illumina 22 030 24 058 9.0s 106s 11.8�
Twopath PBSIM 40 004 80 000 13.0s 168s 12.9�
Twopath Illumina 40 004 80 000 42.1s 446s 10.6�
Tangle PBSIM 19 814 20 398 8.1s 39.4s 4.8�
Tangle Illumina 19 814 20 398 33.8s 102s 3.0�
HLA-A PacBio 5864 9668 2.4s 51.0s 21.3�
HLA-A Illumina 5864 9668 3.7s 44.5s 12.1�
Escherichia coli PacBio 10 510 252 10 540 270 156 000s 1 860 000s 11.9�

3606 M.Rautiainen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

Deleted Text: <italic>Coli</italic>
Deleted Text:
Deleted Text: paper
Deleted Text: to
Deleted Text: three
Deleted Text: twenty

Chaisson,M.J. et al. (2018) Multi-platform discovery of haplotype-resolved

structural variation in human genomes. doi: 10.1101/193144.

Chikhi,R. et al. (2016) Compacting de Bruijn graphs from sequencing data

quickly and in low memory. Bioinformatics, 32, i201–i208.

Compeau,P.E. et al. (2011) How to apply de Bruijn graphs to genome assem-

bly. Nat. Biotechnol., 29, 987–991.

Computational Pan-Genomics Consortium (2018) Computational pan-genomics:

status, promises and challenges. Brief. Bioinform., 19, 118–135.

Danek,A. et al. (2014) Indexes of large genome collections on a PC. PLoS

One, 9, e109384.

Dilthey,A. et al. (2015) Improved genome inference in the MHC using a popu-

lation reference graph. Nat. Genet., 47, 682.

Dilthey,A.T. et al. (2016) High-accuracy HLA type inference from

whole-genome sequencing data using population reference graphs. PLoS

Comput. Biol., 12, 1–16.

Dömölki,B. (1964) An algorithm for syntactical analysis. Comput. Linguist.,

3, 151.

Dömölki,B. (1968) A universal compiler system based on production rules.

BIT Numer. Math., 8, 262–275.

Döring,A. et al. (2008) Seqan an efficient, generic cþþ library for sequence

analysis. BMC Bioinformatics, 9, 11.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by

representing genetic variation in the reference. Nat. Biotechnol., 36,

875–879.

1000 Genomes Project Consortium et al. (2015) A global reference for human

genetic variation. Nature, 526, 68.

Gotoh,O. (1982) An improved algorithm for matching biological sequences.

J. Mol. Biol., 162, 705–708.

Kehr,B. et al. (2014) Genome alignment with graph data structures: a com-

parison. BMC Bioinformatics, 15, 99.

Lee,C. et al. (2002) Multiple sequence alignment using partial order graphs.

Bioinformatics, 18, 452–464.

Levenshtein,V.I. (1966) Binary codes capable of correcting deletions, insertions,

and reversals. In: Vladimir,E.F. (ed.) Soviet Physics Doklady, Springer, Vol. 10.

pp. 707–710.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics, 1, 7.

Limasset,A. et al. (2016) Read mapping on de bruijn graphs. BMC

Bioinformatics, 17, 237.

Loving,J. et al. (2014) Bitpal: a bit-parallel, general integer-scoring sequence

alignment algorithm. Bioinformatics, 30, 3166–3173.

Mäkinen,V. et al. (2015) Genome-Scale Algorithm Design. Cambridge

University Press, Cambridge, UK.

Miller,J.R. et al. (2010) Assembly algorithms for next-generation sequencing

data. Genomics, 95, 315–327.

Myers,G. (1999) A fast bit-vector algorithm for approximate string matching

based on dynamic programming. J. ACM, 46, 395–415.

Myers,E.W. and Miller,W. (1989) Approximate matching of regular expres-

sions. Bull. Math. Biol., 51, 5–37.

Navarro,G. (2000) Improved approximate pattern matching on hypertext.

Theor. Comput. Sci., 237, 455–463.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Ono,Y. et al. (2013) PBSIM: PacBio reads simulator—toward accurate gen-

ome assembly. Bioinformatics, 29, 119–121.

Paten,B. et al. (2017) Genome graphs and the evolution of genome inference.

Genome Res., 27, 665–676.

Rahn,R. et al. (2014) Journaled string tree a scalable data structure for analyz-

ing thousands of similar genomes on your laptop. Bioinformatics, 30,

3499–3505.

Rautiainen,M. and Marschall,T. (2017) Aligning sequences to general graphs

in O(VþmE) time. doi: 10.1101/124941.

Robinson,J. et al. (2015) The IPD and IMGT/HLA database: allele variant

databases. Nucleic Acids Res., 43, D423–D431.

Salmela,L. and Rivals,E. (2014) Lordec: accurate and efficient long read error

correction. Bioinformatics, 30, 3506–3514.

Sellers,P.H. (1980) The theory and computation of evolutionary distances:

pattern recognition. J. Algorithm Comput. Technol., 1, 359–373.

Sievers,F. et al. (2011) Fast, scalable generation of high-quality protein mul-

tiple sequence alignments using clustal omega. Mol. Syst. Biol., 7, 539.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

Ukkonen,E. (1985) Finding approximate patterns in strings. J. Algorithms, 6,

132–137.

Vaddadi,K. et al. (2017) Sequence alignment on directed graphs. doi:

10.1101/216127.

Wick,R.R. et al. (2015) Bandage: interactive visualization of de novo genome

assemblies. Bioinformatics, 31, 3350–3352.

Zhang,J. et al. (2018) BGSA: A bit-parallel global sequence alignment

toolkit for multi-core and many-core architectures. Bioinformatics,

bty930.

Bit-parallel sequence-to-graph alignment 3607

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3599/5372677 by U
B Leipzig user on 01 D

ecem
ber 2021

