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Abstract

Understanding how global brain networks are affected in epilepsy may elucidate the pathogenesis of seizures and
its accompanying neurobehavioral comorbidities. We investigated functional changes within neural networks in
temporal lobe epilepsy (TLE) using graph theory analysis of resting-state connectivity. Twenty-seven TLE pre-
surgical patients (age 41.0 – 12.3 years) and 85 age, gender, and handedness equivalent healthy controls (HCs;
age 39.7 – 16.9 years) were enrolled. Eyes-closed resting-state functional magnetic resonance image scans were
analyzed to compare network properties and functional connectivity (FC) changes. TLE subjects showed signif-
icantly higher global efficiency, lower clustering coefficient ratio, and lower shortest path lengths ratio than HCs,
as an indication of a more synchronized, yet less segregated network. A trend of functional reorganization with a
shift of network hubs to the contralateral hemisphere was noted in TLE subjects. Support vector machine (SVM)
with linear kernel was trained to separate between neural networks in TLE and HC subjects based on graph mea-
surements. SVM analysis allowed separation between TLE and HC networks with 80.66% accuracy using eight
features of graph measurements. Support vector regression (SVR) was used to predict neurocognitive perfor-
mance from graph metrics. An SVR linear predictor showed discriminative prediction accuracy for four key neu-
rocognitive variables in TLE (absolute R value range: 0.61–0.75). Despite TLE, our results showed both local
and global network topology differences that reflect widespread alterations in FC in TLE. Network differences
are discriminative between TLE and HCs using data-driven analysis and predicted severity of neurocognitive
sequelae in our cohort.
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Introduction

Long-term seizure freedom after surgical treatment of
temporal lobe onset epilepsy (TLE) is <50% at 10 years

(Spencer and Huh, 2008). A common reason for surgical fail-
ure is the inability to identify and resect epileptogenic neural
connections that extend beyond the electrographic seizure
onset zone (Harroud et al., 2012). Although hippocampal
sclerosis is most commonly observed in TLE, magnetic res-
onance image (MRI)-based structural analysis has indicated
widespread gray and white matter abnormalities that extend
to temporolimbic and frontocentral regions, and to the con-
tralateral side (Bernhardt et al., 2008; Concha et al., 2005;

Keller et al., 2015; Seidenberg et al., 2005). These structural
changes may negatively impact seizure outcomes (Keller
et al., 2015) and also form the basis of cognitive impairment
across multiple domains (Dabbs et al., 2009). Yet, we have
an incomplete understanding of how focal neurotransmission
abnormalities within the ictal onset zone impact global net-
work topology and cognitive dysfunction, which have dis-
tributive network representation. Hence, there is a need to
evaluate functional abnormalities within large-scale brain or-
ganization and identify system-wide changes in brain con-
nectivity (Bernhardt et al., 2008; Concha et al., 2005) that
extend beyond the seizure-onset zone as defined by semiol-
ogy and electrographic features.
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Neuroimaging the temporal covariance of blood-oxygen-
level-dependent imaging (BOLD) signals in different brain
regions, under resting conditions, can identify and character-
ize functional connectivity (FC) networks (Bullmore and
Sporns, 2009; Guye et al., 2010). This approach provides
an analytical framework for determining the potential role
of neural network properties in the pathogenesis of epilepsy
at ictal onset, during seizure propagation (He et al., 2009),
and for prognostication of seizure outcomes (Bernhardt
et al., 2010; Doucet et al., 2015; He et al., 2017; Munsell
et al., 2015). Characterizing these aberrant network connec-
tivity patterns could address current limitations in under-
standing disease heterogeneity between patients and
longitudinal changes in the natural history of epilepsy.

Previous studies have utilized graph theory analysis of struc-
tural MRI-based features to identify network alterations (Bern-
hardt et al., 2011) and prognosticate surgical outcomes
(Munsell et al., 2015) in epilepsy. Widespread alterations in
neural network topology have also been evidenced in a right
TLE cohort utilizing resting-state connectivity studies (Liao
et al., 2010). However, there is limited understanding regarding
the biological implications of the functional network connec-
tivity dynamics observed in TLE. The role of network markers
in discriminating epileptogenic from nonepileptogenic net-
works and improving detection of seizure onset zone remains
to be investigated and validated in clinical cohorts.

Our study aim was to evaluate the extent of functional ab-
normalities, in whole-brain neural organization in TLE,
using graph theory analysis of functional network properties
derived from resting-state functional MRI (rs-fMRI) studies.
Our study hypothesis was that epileptic activity is an emer-
gent property of abnormal neural transmission within distrib-
uted neural networks, which extends from the seizure onset
zone and involves distant brain regions. We further hypoth-
esized that the distributive neural representation of the range
of neurocognitive dysfunction, frequently observed in TLE,
is indicative of a widespread FC disorder rather than a
focal impairment of neural networks within the epileptogenic
temporal lobe. We, therefore, focused on the application of
functional network features in examining connectivity
changes in temporal onset epileptic networks and prediction
of neurocognitive dysfunction, a pervasive clinical feature in
TLE.

Materials and Methods

Subject selection

We utilized an institutional database for adult (age >18
years) TLE subjects, diagnosed through standard clinical,

neurophysiological, and imaging diagnostic criteria between
the years 2011 and 2018. Twenty-seven TLE subjects with
presurgical rs-fMRI scans were identified for the study co-
hort. Of these, 18 subjects had left-sided onset TLE
(LTLE) and 9 had right-sided onset TLE (RTLE), demon-
strated by continuous video electroencephalogram (EEG)
monitoring of spontaneous seizures. Exclusion criteria
included patients with a symptomatic etiology for seizures
including prior traumatic brain injury, infections, suspected
or confirmed autoimmune or inflammatory conditions, and
concurrent neurodegenerative or neurological disorders. An
institutional database of age, gender, and handedness-
matched healthy controls (HCs; n = 85, 48 female) was
used for statistical comparison. Study approval was obtained
from the Health Sciences Institutional Review Board. Sub-
ject demographics are summarized in Table 1.

Neuropsychological assessment

Standardized neuropsychological tests were used for ob-
jective comparison between TLE and HCs, focusing on cog-
nitive deficits in memory. The California Verbal Learning
Test assessed rote verbal learning ability and delayed free re-
call. The dependent measures of interest were (1) verbal
learning ability, defined as the total number of words recalled
across trials 1–5, California Verbal Learning Test (CVLT)
TT standard score (SS) and (2) long delayed free recall de-
fined as the total number of words recalled after a 20-min
delay, long delayed free recall CVLT standard score
(CVLT LDFR SS) (Hermann et al., 1992). The Brief Visuo-
spatial Memory Test—Revised (BVMT-R) was used to eval-
uate visuospatial memory. The BVMT-R learning total
across trials 1–3 BVMT standard score (BVMT TT SS),
and the 25-min delayed recall trial, BVMT delayed recall
SS, were used as measures of visuospatial learning and mem-
ory, respectively.

MRI acquisition, data preprocessing,
and network construction

T1-weighted structural imaging along with eyes closed 5-
min rs-fMRI data was collected from all participants. MRI
data were collected on 3 Tesla GE MR750 scanners equipped
with high-speed gradients (Sigma GE Healthcare, Milwau-
kee, Wisconsin) using an eight-channel head coil. Five-
minute rs-fMRI data were collected using a T2*-weighted
gradient-echo planar imaging (EPI) pulse sequence sensitive
to BOLD contrast. Technical parameters used to acquire
these EPI scans were as follows: field of view 224 mm, ma-
trix 64 · 64, TR 2600 ms, TE 22 ms, flip angle 60�, and 40

Table 1. Clinical and Demographic Data for the Study Cohort

Sample group RTLE (n = 9) LTLE (n = 18) Healthy controls (n = 85) F/t/v2 p

Age, mean – SD, years 39.1 – 12.4 42.0 – 12.0 39.7 – 16.9 0.342 0.71
Gender (M/F), n 3/6 8/10 37/48 0.364 0.84
Age at epilepsy onset, mean – SD, years 21.0 – 11.4 20.1 – 13.0 NA 0.042 0.85
Duration of epilepsy onset, mean – SD, years 15.0 – 8.2 21.0 – 14.5 NA 1.544 0.23

For age and epilepsy duration, single factor analysis of variance was carried out and gender comparison between groups was carried out by
chi-square test.

F, female; LTLE, left-sided onset temporal lobe epilepsy; M, male; NA, not applicable; RTLE, right-sided onset temporal lobe epilepsy;
SD, standard deviation.
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axial plane slices of 3.5 mm thickness with 3.5 mm spacing
between slices. A T1-weighted high-resolution anatomical
image was also obtained for each subject using a BRAVO
FSPGR pulse sequence. Technical parameters used to ac-
quire these scans are as follows: field of view 256 mm, ma-
trix 256 · 256, TR 8.16 ms, TE 3.18 ms, flip angle 12�, and
156 axial plane slices of 1 mm thickness with 1 mm spacing
between slices.

rs-fMRI data were processed using the AFNI package
(Cox, 1996). Images were despiked, slice time corrected,
motion corrected, aligned with the anatomical scan, normal-
ized to Montreal Neurological Institute (MNI) space,
resampled to 3.5 mm, and spatially smoothed with a 4 mm
full width half maximum Gaussian kernel. Motion censoring
(per TR motion >1 mm or 1�), nuisance regression, and band-
pass filtering (0.009–0.08 Hz) were performed simulta-
neously in one regression model. Nuisance signals that
were regressed out included six motion estimates and their
temporal derivatives, the voxel-wise locally averaged white
matter signal, and the cerebrospinal fluid signal. Finally, mo-
tion censoring of two groups was compared with each other
to see whether two groups differ significantly in motion and
motion censoring. First the Euclidean norm value of motion
derivatives (first difference) in all directions for each TR
time-point was averaged across all time-points for each pa-
tient within groups as the average motion censoring of
each patient. These average motion censorings were then
tested between two groups by two-sample t-test with null hy-
pothesis that these values are equal between two groups with
p value = 0.1178.

Graph theory analysis

Supplementary Figure S1 illustrates the algorithm for
graph theory analysis applied to the fMRI data (Achard
and Bullmore, 2007; Bernhardt et al., 2011; Bullmore and
Sporns, 2009; Song et al., 2014; van Wijk et al., 2010).
Regions of interest (ROI) within the network were first iden-
tified through automated anatomical labeling (AAL) percola-
tions. AAL was originally designed with 90 ROIs that did not
include the cerebellum. We included the cerebellum using a
total of 100 ROIs as nodes for our network analysis (Supple-
mentary Table S1) (Tzourio-Mazoyer et al., 2002). FC matri-
ces between these ROIs were determined using temporal
correlations among all ROIs’ rs-fMRI time series. The abso-
lute values (by converting negative FCs to positive) of these
matrices were used as a representation of FC strength between
different regions.

Next, graph thresholding was used to identify network
edges. A minimum spanning tree (MST) method was first ap-
plied as a backbone network that connected all 100 nodes with
99 edges, to make all network completed and connected for
each participant (Alexander-Bloch et al., 2010; Iyer et al.,
2018; Song et al., 2014). Proportional thresholding was then
applied to exclude weak or irrelevant FCs from graph analysis.
These edges acquired from the proportional thresholding step
were then added to MST of each patient, resulting in a series
of connected networks with connection density (also known as
network sparsity) ranging from 2% to 50% in increments of
2% at the whole-network level from which network topolog-
ical properties were evaluated (Alexander-Bloch et al., 2010;
Song et al., 2014), to allow a proper estimation of global pa-

rameters while minimizing the number of spurious edges in
each network (He et al., 2017; Rutter et al., 2013; Vaessen
et al., 2014). A threshold value (or network sparsity) in the
context of proportional thresholding was defined as the num-
ber of correlations that were considered as connections in the
final graph, divided by the number of all possible correlations
within the correlation matrix (Achard et al., 2012). Finally,
these matrices were binarized (i.e., each nonzero entry in
the matrix was set to be 1) to get undirected binary matrices
that represent a sparse, connected, and biologically meaning-
ful graph for each patient. This thresholding approach would
ensure that networks in all groups had the same number of
edges, or wiring cost, and that the between-group differences
reflected alterations in topological organization rather than
differences in low-level correlations (Bernhardt et al., 2011).

For each connection density, four global property mea-
surements were estimated: (1) global efficiency; (2) average
shortest path length (L), to explore graph integration at the
whole-brain level (Rubinov and Sporns, 2010); (3) global
clustering (C), as a measure of graph segregation that reflects
the degree to which nodes tend to cluster together (Watts and
Strogatz, 1998); and (4) small-worldness (r), to test cluster-
ing of neural networks in comparison with a random net-
work. The clustering coefficient (C) is a measure of the
degree to which nodes in a graph tend to cluster together
(Watts and Strogatz, 1998). The characteristic path length
(L) reflects the level of global integration in the network. A
shortest path between two nodes A and B is the path between
A and B with the smallest number of edges.

Global efficiency is a measure of network’s capacity for
parallel information transfer and integrated processing, (Bull-
more and Sporns, 2012) and was calculated at each range of
thresholds, as described earlier (Bernhardt et al., 2011).

Compared with random networks, small-world networks
have similar characteristic path lengths, but higher character-
istic clustering, that is c = C/Crand >1, while k = L/Lrand <1
(Watts and Strogatz, 1998). The small-world index r = c/k
is thus >1 in small-world networks (Humphries and Gurney,
2008). Crand and Lrand were defined as the mean clustering
coefficient across 1000 randomly generated networks that
had the same number of nodes, edges, and degree distribu-
tion as the real network (Sporns and Zwi, 2004).

Local metrics also evaluated for each group include mea-
sures of hubness: (1) degree centrality (DC; richness of con-
nections); (2) betweenness centrality (BC; importance for
mediating information between other nodes) (Rubinov and
Sporns, 2010). A mapping of hub regions within each
group was also performed. Hub regions were defined as
those with a nodal BC that was 1 standard deviation above
the mean nodal BC of all cortical regions.

DC is a measure of the number of neighbors of each node.
Nodes with higher DC would have more functional connec-
tions with other parts of the network and is, therefore,
assessed to be more involved in network communication.
BC is an index for the nodal influence over information
flow between all other nodes within the network. It is deter-
mined by counting the number of times that a shortest path-
way between each two nodes in the network passes that node
(Girvan and Newman, 2002). BC of each node was normal-
ized by dividing it by the mean BC across all nodes. Brain
Network Connective toolbox in MATLAB was used to cal-
culate all these measurements.
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Local metrics were calculated for each regional node—to
identify the most important nodes during graph analysis
(Brandes, 2001)—at a connection density of 17%. This
threshold value is the lowest density that guaranteed the ex-
istence of all significant connections within the graphs of all
TLE and HC patients (Bernhardt et al., 2011; He et al.,
2007). For this step, statistical significance (a = 0.05) was de-
termined after correction for multiple comparison for each
patient’s FC matrix using false discovery rate (FDR) (Benja-
mini and Hochberg, 1995), thus minimizing the number of
false positive paths (Achard et al., 2012).

Classification analysis

We investigated whether the overall FC changes observed
in our study cohort can be used to discriminate between ep-

ileptiform networks in TLE subjects from normal networks
in HCs. A support vector machine (SVM) with a linear ker-
nel classifier was utilized to test the predictive value of the
connectome profile in discriminating between epileptiform
networks in TLE subjects and baseline networks in HCs.
Multivariate features consisting of clinical variables and re-
gional and global connectivity characteristics were extracted
from HCs and TLE subjects. The SVM was then trained
using feature vectors consisting of (1) regional centrality
measures of regional nodes, (2) global measurements of
the whole network (global efficiency, clustering coefficient,
and shortest path length), and (3) clinical variables (age, gen-
der, handedness, and left/right hemispheric seizure onset;
HC subjects were classified as none). To match the number
of subjects in each group, 27 control patients were randomly
chosen from the total HC cohort (n = 85). The model was

FIG. 1. Comparison of
global network properties
between TLE subjects and
HCs in (A) clustering coeffi-
cient, (B) average shortest
path length, and (C) global
efficiency as a function of
network sparsity. Blue circle
line shows difference be-
tween mean TLE and HCs for
each measurement at each
specific network sparsity.
Although D = 0 indicates no
difference, D > 0/D < 0 indi-
cates an increase/decrease in
the network density of TLE
subjects relative to HCs. The
blue dash line shows 95%
confidence interval of the null
distribution of number be-
tween group difference
obtained from 100,000 per-
mutation tests at each density
value. Asterisks (red) indi-
cate significant between-
group differences ( p < 0.05).
HCs, healthy controls; TLE,
temporal lobe epilepsy.
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then tested on the study data set. Performance of the SVM-
based network classification was determined using fivefold
cross-validation for accuracy testing (Mohanty et al.,
2018). In brief, the data set is randomly divided into five
groups. The classification model is trained using four folds/
groups and is then validated on the fifth group. This is re-
peated till every group serves as the test set. The mean
score for each round yields the performance metric. The spi-
der toolbox in MATLAB was used for classification analysis.

We also analyzed the predictive ability of neural connec-
tivity patterns in identifying neurocognitive dysfunction. The
same feature vectors that were used for SVM analysis were
used to train support vector regression (SVR) models with
a linear kernel on standardized neurocognitive scores. Indi-
vidual SVR models were used for two verbal (trials 1–5
CVLT standard score [CVLT T1–5 SS] and CVLT LDFR
SS) and two visuospatial (BVMT TT SS and delayed recall
trial, BVMT standard score [BVMT recall SS]) neuropsy-
chological variables, respectively. Associations between
each neurocognitive measure and graph measures were
tested using a linear kernel SVR analysis with nonparametric
permutation tests based on root mean squared error. To test
accuracy of the data-driven model, a fivefold cross-
validation approach was utilized (Mohanty et al., 2018).

Statistical analysis

The single factor analysis of variance was used for age
comparison between groups and gender comparison was car-
ried out by chi-square test. Differences in network parame-
ters global efficiency C, L, c, k, and r as well as local
measurements were assessed separately between each TLE
group (i.e., LTLE and RTLE) and controls using a nonpara-
metric permutation test with 100,000 repetitions (Bullmore
et al., 1999). Significances were thresholded at p < 0.05.
For BC and DC measurements, p values were corrected for
multiple comparison using FDR. Significant tests are marked
with ‘‘*’’ in figures and tables. Tests with p values <0.07
were considered to ‘‘trend toward’’ significance and marked
with ‘‘+’’ in figures and tables.

Results

Clinical and demographic data for the study cohort
(n = 27) are summarized in Table 1. There were no significant
differences in baseline clinical characteristics between LTLE
(n = 18/27) and RTLE (n = 9/27, 33%) subjects with respect
to HCs (n = 85).

Comparison of functional network characteristics

Global network properties. Global network properties did
not differ significantly between LTLE and RTLE subjects
(Supplementary Fig. S2). Hence, these two groups were
combined as TLE and compared with HCs. Shortest path
length and clustering coefficient of functional networks in
TLE subjects were significantly lower than HCs across dif-
ferent ranges of network sparsity ( p < 0.05, Fig. 1A,B).
Global efficiency was significantly higher in TLE subjects
than in HCs (Fig. 1C). Brain networks in both groups fol-
lowed the paradigm of small-world network, with small-
world index, r > 1 (Table 2). However, TLE subjects had
network characteristics closer to the random network para-

digm with a lower shortest path length ( p value = 0.014)
and a less clustered network (lower clustering coefficient,
p value = 0.013, Table 2).

Hub distribution and regional centrality. Regional hub-
ness analysis showed that network hubs (nodes with highest
BC values) in HCs were located in frontal (n = 5) and cere-
bellar (n = 4) regions with bilateral representation within
these regions (Table 3). Overall, nine hubs were found within
the left, and three hubs in right hemisphere. However, net-
work hubs in RTLE were mainly located contralateral to
the epileptic hemisphere (12 of 13 hubs). In comparison, 6
of 15 hubs were located within the contralateral hemisphere
in LTLE. Overall, the mean normalized BC for all hubs in
HCs was significantly higher than LTLE (Wilcoxon rank
sum test, p = 0.0007) and was higher than in RTLE subjects
( p = 0.0203; see Supplementary Fig. S3 for brain diagram
representation of network hub distribution).

Network hubs were localized to the left hemisphere in 75%
of HC subjects. In comparison, 92% of the network hubs in
RTLE subjects were localized to the contralateral left side.
For LTLE subjects, 38% of the network hubs were localized
to the contralateral right side. To examine the relative contri-
butions of various brain regions toward global neural net-
works, group comparisons were made between TLE and HC
subjects through regional centrality analysis using degree
and BC measures. Regional network comparison of LTLE
with HCs (Fig. 2A) showed increased DC in the contralateral
middle frontal, mesial temporal (hippocampus, parahippo-
campus, and amygdala), caudate and thalamus, and bilateral
putamen regions. Significantly lower DC was noted in ipsilat-
eral frontal and temporal and contralateral paracentral regions.
BC analysis showed a similar pattern with increased BC in ip-
silateral temporal and trends toward significance in contralat-
eral insular and mesial temporal regions (Fig. 2B). Decreased
BC was observed within ipsilateral frontal regions.

Regional network comparison for RTLE was relatively
consistent with LTLE (Fig. 3A,B). In comparison with
HCs, a trend toward significant increase in DC was observed
in the bilateral parahippocampus ( p = 0.05) and cerebellar

Table 2. Comparison of Global Properties

and Small-Worldness Index Between Temporal

Lobe Epilepsy and Healthy Control Subjects

Parameter
Average
control

Average
TLE p

Shortest path length, L 1.71 1.52 0.014*
Characteristic path lengths, k 1.09 1.07 0.051+

Clustering coefficient, C 0.48 0.43 0.013*
Characteristic clustering

coefficient, c
1.65 1.69 0.052+

Small-world coefficient, r 1.51 1.57 0.075

Results reported at 17% network density (the minimal threshold at
which all functional connections were significant after correction for
multiple comparison).

L, shortest path length; C, clustering coefficient; k, c, and r are
small-world parameters. Note that c > 1, k & 1, and r > 1 in the
small-world network.

*Statistical significance.
+p value <0.07 trends toward significance.
TLE, temporal lobe epilepsy.
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( p = 0.056) regions. A trend toward a significant decrease
was observed in bilateral paracentral regions ( p = 0.065). A
trend toward a significant increase for BC for contralateral
midtemporal and ipsilateral amygdala was also observed.

Classification analysis

We next investigated whether FC patterns can be used to
discriminate between epileptiform networks in TLE and
baseline networks in control subjects. We utilized a classifi-
cation approach based on SVM analysis. A classifier was first
estimated utilizing multivariate features including clinical
demographics and rs-FMRI–based FC indices. SVM-based

network prediction was able to discriminate between neural
networks in TLE and HCs with an accuracy of 80.66% (tun-
ing parameters C = 0.02 and epsilon = 1; sensitivity = 82.50%
and specificity = 81.67%), using eight feature vectors. Seiz-
ure laterality was not significant for discriminating neural
networks between TLE and HC cohorts.

Prediction of clinical variables

To investigate clinical implications of the composite FC
changes observed in TLE, an SVR linear predictor was ap-
plied to predict four key neurocognitive variables (Fig. 4).
Highest prediction accuracy was reached utilizing 11 dis-
criminating graph measurements for total verbal learning
(CVLT T1–5 SS; Pearson correlation coefficient
R =�0.61; normalized mean square error [NMSE] =�0.62);
and 10 graph measurements for delayed verbal memory
(CVLT LDFR SS; R =�0.61; NMSE =�0.62). Highest pre-
diction accuracy for visuospatial memory measures was
reached utilizing 5 graph measurements for total visual
learning (BVMT TT SS; R = 0.75; NMSE = 0.23) and 10
graph measurements for delayed visual recall (BVMT recall
SS; R =�0.64; NMSE =�0.42). In comparison with null hy-
pothesis of no correlation between SVR linear predictor and
neurocognitive measures, the SVR prediction accuracy was
significant for all neurocognitive variables, with R values
ranging from 0.624 to 0.761 (Fig. 4; see Supplementary
Fig. S4 for brain diagram representation of ROI distribution).

Table 4 lists features identified in all five folds of cross-
validation for prediction of neurocognitive variables. Cen-
trality measures for the right paracentral lobule and right
calcarine gyrus correlated with verbal memory performance
(CVLT) in the SVR model. Similarly, visual–spatial memory
performance (BVMT) showed correlation with FC indices
within the left paracentral lobule, right angular gyrus, and
right basal frontal regions.

Discussion

Our study investigated organization of functional neural
networks at the global and regional level in TLE through
graph theory analysis of rs-FC, using a network model.
Study results demonstrate (1) widespread differences in
global topological properties, notably decreased segregation
and hub reorganization, and the ability of FC metrics to (2)
discriminate between epileptiform networks from HCs, and
(3) predict clinical variables like neurocognitive perfor-
mance for epilepsy subjects. The observed alterations in
macroscopic whole brain network organization in TLE sup-
port our central hypothesis that epilepsy is a neural network
disorder, defined by altered network organization and con-
nectivity, which extends beyond the traditionally defined sei-
zure onset zone, based on semiology and electrographic
characteristics. Our results demonstrate the contribution of
FC features in assessment of neurocognitive performance
for TLE subjects. Data-driven analysis using a classification
approach with neuroimaging indices suggests a role for in-
corporating neural network features in diagnosis and stratifi-
cation of disease variables and outcomes.

Graph theory analysis of neural networks in TLE

Our neural network analysis in TLE indicated that the
characteristic shortest path length (k) was significantly

Table 3. Distribution of Hub Regions in All Groups

Group Brain region Mean BC Mean DC

Control
L_Olfact 5.034 48.753
L_Amyg 3.327 24.729
L_Hesch 3.109 44.753
L_Cereb1 2.379 10.329
L_Pallid 2.328 22.518
R_Cereb1 2.296 8.965
L_SupOrbF 2.230 38.941
L_Cereb6 2.191 7.588
R_Olfact 2.119 32.494
L_Precent 2.044 41.729
R_Parac 1.872 39.765
L_Cereb7 1.803 5.282

RTLE
L_Olfact 3.814 45.111
L_Amyg 2.704 23.222
L_Cereb6 2.478 13.444
L_Precent 2.463 37.778
L_SMA 2.275 39.333
L_Rectal 2.088 34.556
L_PoleT 1.898 19.000
L_Hesch 1.802 35.444
L_SupOrbF 1.663 32.111
L_MidCing 1.654 38.333
L_ParsOp 1.650 31.667
R_Olfact 1.590 33.667
L_Parahhip 1.583 16.556

LTLE
L_SupOrbF 2.844 36.222
L_Olfact 2.735 36.722
L_Amyg 1.964 18.222
R_Fusif 1.963 27.000
L_Hesch 1.811 32.167
R_Cereb2 1.768 10.222
L_MidT 1.745 29.389
L_Precent 1.743 35.111
R_Parahipp 1.682 9.222
R_PoleT 1.677 20.000
R_Cereb5 1.561 11.556
L_Cereb5 1.561 12.444
L_MedOrbF 1.542 28.222
L_Pallid 1.495 16.056
R_MidCing 1.491 29.556
L_Rectal 1.479 31.556

List of nodes and their abbreviation can be found in Supplemen-
tary Table S1.

Hub regions were defined as those with a nodal BC that was 1 SD
above the mean nodal BC of all cortical regions.

BC, betweenness centrality; DC, degree centrality.
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decreased at most thresholds (K). Reduced shortest path
lengths may allow faster and more efficient transmission be-
tween different brain regions (Achard et al., 2012; Asadi-
Pooya et al., 2016; Iyer et al., 2018; van Wijk et al., 2010).
The resultant rapid information flow within neural networks
may be the pathogenic basis for sustaining pathological net-
works responsible for seizure propagation from the epilepsy
onset zone in TLE. For most thresholds, the absolute cluster-
ing coefficients (Cnet) were significantly lower in TLE, imply-
ing relatively sparse local connectedness and a less segregated
network structure. Similar local connectivity changes have
been observed in random networks (Alexander-Bloch et al.,
2010). A combination of decreased path length and clustering
has been shown in mesial TLE (Liao et al., 2010). These ran-
dom network characteristics may, therefore, have an adverse
effect on directed synchronized information flow and process-
ing in TLE, which may, in turn, impact cognitive functions.

Reorganization of network hubs

Basal FC in HCs was asymmetrically organized with left
predominance—network hubs were localized to the left
hemisphere in 75% of HCs. This is consistent with previous
demonstration of asymmetric fiber density within the left
temporal lobe and may underlie the basis of language later-
alization (Nucifora et al., 2005).

In our RTLE cohort, network hubs were predominantly
(92%) located with the contralateral left hemisphere, spared
by seizures. This may reflect a functional compensatory
mechanism for limiting the detrimental effect of seizures
on neurological function.

In contrast, distribution of networks hubs to the contralat-
eral unaffected right hemisphere was 62% in LTLE subjects.
This observation may be explained by the baseline asymmet-
ric fiber density and increased baseline connectivity within
the left hemisphere (as seen in HCs) that may conversely
limit the contralateral shift of network function in left hemi-
sphere onset TLE.

These results indicate that (1) functional network connec-
tivity changes in TLE may reflect compensatory mechanisms
of increased contralateral shift in network hubs and (2) a sei-
zure laterality-specific susceptibility of neural networks to
undergo these functional changes.

Regional centrality comparison identifies the relative con-
tributions of individual brain regions toward global neural
networks. The contralateral (right-sided) regions with high
DC thus identified in the LTLE cohort were located within
the mesial temporal, frontal, and basal ganglia (caudate
and putamen). Whether these network differences are com-
pensatory as a consequence of aberrant network organization
or a reflection of a more pervasive network disorder remains
to be determined.

FIG. 2. Group differences between LTLE and HC cohorts for (A) DC and (B) BC. Blue dots represent the difference be-
tween the mean LTLE and mean HC measurement value at each specific network sparsity. Although D = 0 indicates no dif-
ference, D > 0/D < 0 indicates an increase/decrease in the network property for LTLE subjects relative to HCs. Red lines
represent 95% confidence intervals for the null distribution of no between-group differences obtained from 100,000 permu-
tation tests at each density value. Asterisk (*) symbols indicate significant between-group differences ( p < 0.05). Plus (+)
symbols indicate trend toward significance for between-group differences ( p < 0.07). Corrected for multiple comparisons
using FDR. BC, betweenness centrality; DC, degree centrality; FDR, false discovery rate; LTLE, left-sided onset TLE.
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Cerebellar hubs were also demonstrable in TLE subjects
(Figs. 2 and 3). Through synaptic relays via the thalamus
(Bostan et al., 2010), the cerebellum has been hypothesized
to affect the wider cortical and subcortical networks that
may be pervasively disrupted or reorganized in TLE. The
cerebellar inhibitory output has also been postulated to influ-
ence seizure propagation and control (Englot et al., 2016).

Our graph theory analysis, therefore, identified alter-
ations in topological features that provide insight into the
functional architecture of neural networks in TLE. These
network alterations suggest a mechanism for altered excit-
ability that may impact the pathogenesis and progression
of epilepsy. Reorganization of neural information transfer
may have potential clinical implications for seizure treat-
ment by informing improved target selection for treatments
like neuromodulation.

Classification analysis of neural networks in TLE

Standard clinical workflows in epilepsy lack a practical
framework for incorporating neural network features in clin-
ical decision-making. An important unanswered question in
connectome analysis is the identification of connectivity
changes that are significantly associated with epileptiform
networks (as in TLE) versus baseline FC changes in healthy
subjects. We, therefore, investigated whether rs-fMRI–based

FC patterns can be used to discriminate between epileptiform
networks in TLE and baseline networks in control subjects.

We used a machine learning algorithm to assess the role of
neural network features in (1) differentiating connectivity
patterns in epileptogenic TLE networks versus HCs through
classification analysis and (2) prognosticating behavioral
variables using the SVR approach.

Clinical variables and FC indices for network nodes were
incorporated into a classifier model using SVM analysis. The
SVM-based network classification was trained and validated
on the study cohort using fivefold cross-validation. Eight fea-
ture vectors were identified in the model that discriminated
epileptiform TLE networks from nonepileptiform HC net-
works with an accuracy of 80%. Our results, therefore, indi-
cate that fMRI features can be used to identify epileptiform
networks in epilepsy subjects with reasonable accuracy.
The combination of features that were associated with high-
est accuracy varied in each fold of cross-validation. A larger
study cohort with separate training and validation data sets
may allow improved classification accuracy using different
feature combinations. The evolving role of FC indices as
neuroimaging markers may improve the diagnostic yield of
noninvasive evaluations of epilepsy subjects and potentially
reduce the need for invasive diagnostic interventions.

Various methods of classification analysis have been
reported in the literature (Antel et al., 2002). Seed-based

FIG. 3. Group differences between RTLE and HC cohorts for (A) DC and (B) BC. Black dots represent the difference be-
tween the mean RTLE and mean HC measurement value at each specific network sparsity. Although D = 0 indicates no dif-
ference, D > 0/D < 0 indicates an increase/decrease in the network property for RTLE subjects relative to HCs. Red lines
represent 95% confidence intervals for the null distribution of no between-group differences obtained from 100,000 permu-
tation tests at each density value. Asterisk (*) symbols indicate significant between-group differences ( p < 0.05). Plus (+)
symbols indicate trend toward significance for between-group differences ( p < 0.07). Corrected for multiple comparisons
using FDR. RTLE, right-sided onset TLE.
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connectivity analyses require an a priori hypothesis based on
specific ROIs. Results from seed-based FC analyses are,
therefore, prone to selection bias, are specific to selected
seed regions, and do not provide information on whole
brain network topology. An SVM approach is aptly suited
for simultaneous analysis of a large number of features and
yields a prediction model based on significant features that
enable discrimination between two comparison groups.

FC models for prediction of clinical variables

We hypothesized that the range of neurocognitive dys-
function frequently observed in TLE (Lin et al., 2012) has
an underlying distributive neural representation, which is in-
dicative of a widespread FC disorder rather than focal im-
pairment within the epileptogenic temporal lobe. Prior
investigations of the neurobiological substrate of verbal
and visual memory dysfunction in TLE have focused on re-
gional and global structural anomalies or FC changes
(Bonilha et al., 2007; Doucet et al., 2016; Englot et al.,
2016). Memory impairment, a pervasive clinically debilitating
consequence of TLE has been less often examined using rest-
ing state connectivity metrics, particularly by analysis of graph
theory metrics. We, therefore, examined the role of FC in
assessing the secondary impact of epilepsy on neurocognitive

FIG. 4. Predictive ability of neural connectivity patterns in identifying neurocognitive dysfunction. An SVR model with a
linear kernel was trained using neural connectivity-based graph measurements to predict verbal (CVLT T1–5 SS, top left and
CVLT LDFR SS, top right) and visuospatial (BVMT TT SS, bottom left and BVMT recall SS, bottom right) neuropsycho-
logical variables, respectively. Circles indicate each subject’s coordinate of actual (X-axis) and predicted (Y-axis) neurocog-
nitive variable. Solid lines represent the best-fit line as predicted by SVR. Purple lines represent 95% prediction accuracy
intervals. BVMT, Brief Visuospatial Memory Test; BVMT recall SS, delayed recall trial, BVMT standard score; BVMT
TT SS, trials 1–3 BVMT standard score; CVLT, California Verbal Learning Test; CVLT LDFR SS, long delayed free recall
CVLT standard score; CVLT T1–5 SS, trials 1–5 CVLT standard score; SS, standard score; SVR, support vector regression.

Table 4. Graph Features Common in All Five

Folds of Cross-Validation in Training

the Support Vector Regression Model

for Prediction of Neurocognitive Variables

Clinical variable
Region
name

Graph
measurement

Average
weight

of all folds

CVLT T1-5 SS
R_Parac BC 0.3765

CVLT LDFR SS
R_Calcar BC �0.7813

BVMT TT SS
L_Parac DC 0.8313
R_Ang DC 0.7903

BVMT recall SS
R_MidOrbF DC 0.5571
R_SupOrbF BC 0.5283
R_Precent BC �0.7162

CVLT T1–5 SS, The California Verbal Learning Test-II assesses
learning trial 1, CVLT T1–5 SS, and Long Delay Free Recall CVLT
LDFR SS; the Brief Visuospatial Memory Test BVMT TT SS, and
BVMT recall SS. List of nodes and their abbreviations are listed
in Supplementary Table S1.

BVMT, Brief Visuospatial Memory Test; BVMT recall SS,
delayed recall trial, BVMT standard score; BVMT TT SS, trials
1–3 BVMT standard score; SS, standard score.
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functions. A data modeling approach (SVR) was utilized, de-
rived from characteristics of neural network topology, to estab-
lish a predictive model for neurobehavioral end-points. These
end-points focused on verbal and nonverbal memory dysfunc-
tion, a significant component of neuropsychological detriment
associated with TLE (Lin et al., 2012). Discriminative predic-
tion accuracy of SVR for each cognitive outcome was reason-
able with R value ranging from 0.61 to 0.75 (Fig. 4).

Centrality measures for nodal regions within the right
hemisphere correlated with verbal memory performance.
Implication of right hemispheric nodes in verbal memory
may reflect their compensatory involvement in language pro-
cessing more typically associated with the left hemisphere.
These connectivity changes may reflect a broader potentially
adaptive reorganization of neural networks (Bonilha et al.,
2007). Consistent with this, our results also indicated a
trend toward functional reorganization within TLE networks,
with a shift of network hubs to the contralateral hemisphere.
The SVR model also predicted visual–spatial memory per-
formance through FC changes within the right frontal (orbit-
al), angular gyrus, and left paracentral regions. In line with
these results, visual memory tasks have previously been
demonstrated to activate a broad frontal parietal network
along with subcortical regions such as the pulvinar and cer-
ebellum (Pessoa and Ungerleider, 2004). Whether the associ-
ation between memory impairment and FC is causal or
associative remains to be determined. Interestingly, these
broader widespread changes in neural connectivity challenge
our traditional understanding of lateralized temporal lobe
functions with verbal memory impairments in left- and vi-
sual memory impairment in right onset TLE.

Our results, therefore, support the application of neuroi-
maging parameters based on functional neural connectivity
measures, to discriminate epileptiform networks, and prog-
nosticate disease variables and outcomes. We demonstrate
the application of data modeling, derived from characteris-
tics of neural network topology, in clinical decision-making.
As with all mathematical models, the efficacy of the data
model depends upon data sources (network variables and an-
alytical approach) and the model assumptions. Further vali-
dation of classification models with prospective patient
data set studies will aid clinical application.

Study limitations

Our analysis should be interpreted with the following lim-
itations. First, a cross-sectional determination of connectivity
changes does not take into account the dynamic alterations
between regions of the brain that can be significantly modi-
fied from interictal to ictal and postictal states (Guye et al.,
2006). BOLD signal measurements and FC analysis may
be affected by interictal epileptiform discharges that may
be assessed through simultaneous EEG-fMRI recordings
(Bullmore and Sporns, 2009; He et al., 2017; Sporns and
Zwi, 2004; Watts and Strogatz, 1998). Second, physiological
noise in the form of respiratory and cardiac fluctuations may
confound analysis of fMRI time series, by reducing the spec-
ificity of low-frequency fluctuations to functional connected
regions (Bullmore et al., 1999). Third, statistical comparison
of FC was accomplished by using two-sample two-tailed test
with FDR corrected for multiple comparisons, which is a less
stringent approach and can introduce statistical bias. Fourth,

a mixed patient sample with differing durations of epilepsy,
medication burden, and varying natural history was used in
this study. The sample size did not allow for stratification
on all these measures that may have a variant effect on per-
formance and localization of neurocognitive functions
(Bonilha et al., 2006). There is scant consensus in the litera-
ture on the relationship between these clinical factors and the
observed functional and structural connectivity changes.
Alternative functional parcellation approaches may further
elucidate reorganization of functional neural networks and
will be the focus of future work (Schaefer et al., 2018).

We determined feature selection for the SVR prediction
model by optimizing maximum accuracy. Hence, identifica-
tion of significant nodal regions (for neurocognitive score
prediction) can be limited by this computational approach.
A small sample size also precludes interpretation of machine
learning analyses. Finally, whether these changes are a con-
sequence of the underlying epileptiform disorder or an intrin-
sic aberrant network structure that leads to epilepsy cannot
be determined by our study. A longitudinal approach with se-
rial imaging assessments, a focus of our future studies, hopes
to answer this question.

Conclusions

A graph theoretical approach for investigating neural net-
work differences in TLE is presented. Our results showed
both local and global topology changes reflect underlying al-
terations in neural network connectivity in TLE. These
changes in functional network characteristics are discrimina-
tive between epilepsy subjects and HCs. In addition, we
show the utility of data-driven machine learning approaches
to predict the severity of key neurobehavioral variables. Our
study demonstrates that graph properties of the network de-
rived from fMRI data can be used to (1) characterize local
and global neural network differences, (2) differentiate net-
work topology in TLE, and (3) have prognostic potential in
predicting epilepsy-related cognitive comorbidities.
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