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A3T-GCN: Attention Temporal Graph
Convolutional Network for Traffic Forecasting

Jiawei Zhu, Yujiao Song, Lin Zhao and Haifeng Li*

Abstract—Accurate real-time traffic forecasting is a core technological problem against the implementation of the intelligent
transportation system. However, it remains challenging considering the complex spatial and temporal dependencies among traffic
flows. In the spatial dimension, due to the connectivity of the road network, the traffic flows between linked roads are closely related. In
terms of the temporal factor, although there exists a tendency among adjacent time points in general, the importance of distant past
points is not necessarily smaller than that of recent past points since traffic flows are also affected by external factors. In this study, an
attention temporal graph convolutional network (A3T-GCN) traffic forecasting method was proposed to simultaneously capture global
temporal dynamics and spatial correlations. The A3T-GCN model learns the short-time trend in time series by using the gated recurrent
units and learns the spatial dependence based on the topology of the road network through the graph convolutional network. Moreover,
the attention mechanism was introduced to adjust the importance of different time points and assemble global temporal information to
improve prediction accuracy. Experimental results in real-world datasets demonstrate the effectiveness and robustness of proposed
A3T-GCN. The source code can be visited at https://github.com/lehaifeng/T-GCN/A3T.

Index Terms—traffic forecasting, attention temporal graph convolutional network, spatial dependence, temporal dependence
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1 INTRODUCTION

T RAFFIC forecasting is an important component of in-
telligent transportation systems and a vital part of

transportation planning and management and traffic con-
trol [12, 15–17]. Accurate real-time traffic forecasting has
been a great challenge because of complex spatiotemporal
dependencies. Temporal dependence means that traffic state
changes with time, which is manifested by periodicity and
tendency. Spatial dependence means that changes in traffic
state are subject to the structural topology of road networks,
which is manifested by the transmission of upstream traffic
state to downstream sections and the retrospective effects
of downstream traffic state on the upstream section[10].
Hence, considering the complex temporal features and the
topological characteristics of the road network is essential in
realizing the traffic forecasting task.

Existing traffic forecasting models can be divided into
parametric and non-parametric models. Common paramet-
ric models include historical average, time series [1, 14],
linear regression [27], and Kalman filtering models[23].
Although traditional parametric models use simple algo-
rithms, they depend on stationary hypothesis. These models
can neither reflect nonlinearity and uncertainty of traffic
states nor overcome the interference of random events, such
as traffic accidents. Non-parametric models can solve these
problems well because they can learn the statistical laws
of data automatically with adequate historical data. Com-
mon non-parametric models include k-nearest [2], support
vector regression (SVR) [11, 30], fuzzy logic [34], Bayesian
network[28], and neural network models.

Recently, deep neural network models have attracted
wide attention from scholars because of the rapid develop-
ment of deep learning [22, 26]. Recurrent neural networks
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(RNNs), long short-term memory (LSTM) [13], and gated
recurrent units (GRUs)[7] have been successfully utilized
in traffic forecasting because they can use self-circulation
mechanism and model temporal dependence [20, 25]. How-
ever, these models only consider the temporal variation of
traffic state and neglect spatial dependence. Many scholars
have introduced convolutional neural networks (CNNs) in
their models to characterize spatial dependence remarkably.
Wu et al. [31] designed a feature fusion framework for short-
term traffic flow forecasting by combining a CNN with
LSTM. The framework captured the spatial characteristics of
traffic flow through a one-dimensional CNN and explored
short-term variations and periodicity of traffic flow with
two LSTMs. Cao et al. [6] proposed an end-to-end model
called ITRCN, which transformed the interactive network
flow to images and captured network flows using a CNN.
ITRCN also extracted temporal features by using GRU. An
experiment proved that the forecasting error of this method
was 14.3% and 13.0% higher than those of GRU and CNN,
respectively. Yu et al. [36] captured spatial correlation and
temporal dynamics by using DCNN and LSTM, respec-
tively. They also proved the superiority of SRCN based on
the investigation on the traffic network data in Beijing.

Although CNN is actually applicable to Euclidean data
[9], such as image and grids, it still has limitations in
traffic networks, which possess non-Euclidean structures.
In recent years, graph convolutional network (GCN) [18],
which can overcome the abovementioned limitations and
capture structural characteristics of networks, has rapidly
developed [19, 35, 37]. In addition, RNNs and their vari-
ants use sequential processing over time and more apt to
remember the latest information, thus are suitable to capture
evolving short-term tendencies. While The importance of
different time points cannot be distinguished only by the
proximity of time. Mechanisms that are capable of learning
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global correlations are needed.
For this reason, an attention temporal GCN (A3T-GCN)

was proposed for traffic forecasting task. The A3T-GCN
combines GCNs and GRUs and introduces an attention
mechanism[29, 33]. It not only can capture spatiotemporal
dependencies but also ajust and assemble global variation
information. The A3T-GCN is used for traffic forecasting on
the basis of urban road networks.

2 A3T-GCN
2.1 Definition of problems
In this study, traffic forecasting is performed to predict
future traffic state according to historical traffic states on
urban roads. Generally, traffic state can refer to traffic flow,
speed, and density. In this study, traffic state only refers to
traffic speed.

Definition 1. Road network G: The topological structure
of urban road network is described as G = (V,E),where
V = {v1, v2, · · · , vN} is the set of road section, and N is
the number of road sections. E is the set of edges, which
reflects the connections between road sections. The whole
connectivity information is stored in the adjacent matrix
A ∈ RN×N , where rows and columns are indexed by road
sections, and the value of each entry indicates the connectiv-
ity between corresponding road sections. The entry value is
0 if there is no existed link between roads and 1 (unweighted
graph) or non-negative (weighted graph) if otherwise.

Definition 2. Feature matrix XN×P : Traffic speed on a
road section is viewed as the attribute of network nodes,
and it is expressed by the feature matrix X ∈ RN×P , where
P is the number of node attribute features, that is, the length
of historical time series. Xi denotes the traffic speed in all
sections at time i.

Therefore, the traffic forecasting modelling temporal and
spatial dependencies can be viewed as learning a mapping
function f on the basis of the road network G and feature
matrix X of the road network. Traffic speeds of future T
moments are calculated as follows:

[Xt+1, · · · , Xt+T ] = f (G; (Xt−n, · · · , Xt−1, Xt)) (1)

where n is the length of a given historical time series, and T
is the length of time series that needs to be forecasted.

2.2 GCN model
GCNs are semi-supervised models that can process graph
structures. They are an advancement of CNNs in graph
fields. GCNs have achieved many progresses in many
applications, such as image classification [5], document
classification [9], and unsupervised learning [18]. Convolu-
tional mode in GCNs includes spectrum and spatial domain
convolutions [5]. The former was applied in this study.
Spectrum convolution can be defined as the product of
signal x on the graph and figure filter gθ(L),which is con-
structed in the Fourier domain:gθ(L) ∗ x = Ugθ(U

Tx),
where θ is a model parameter, L is the graph Laplacian
matrix, U is the eigenvector of normalized Laplacian matrix
L = IN − D− 1

2AD− 1
2 = UλUT , and UTx is the graph

Fourier transformation of x. x can also be promoted to
X ∈ RN×C , where C refers to the number of features.

Given the characteristic matrix X and adjacent matrix A,
GCNs can replace the convolutional operation in anterior
CNNs by performing the spectrum convolutional operation
with consideration to the graph node and first-order adja-
cent domains of nodes to capture the spatial characteristics
of graph. Moreover, hierarchical propagation rule is applied
to superpose multiple networks. A multilayer GCN model
can be expressed as:

H(l+1) = σ
(
D̃− 1

2 Â D̃− 1
2 H(l) θ(l)

)
(2)

where Ã = A + IN is an adjacent matrix with self-
connection structures, IN is an identity matrix, D̃ is a degree
matrix, D̃ii =

∑
j Ãij , H

(l) ∈ RN×l is the output of layer
l, θ(l) is the parameter of layer l, and σ(·) is an activation
function used for nonlinear modeling.

Generally, a two-layer GCN model [18] can be expressed
as:

f (X,A) = σ
(
ÂReLU

(
ÂX W0

)
W1

)
(3)

where X is a feature matrix; A is the adjacent matrix;
and Â = D̃− 1

2 Ã D̃− 1
2 is a preprocessing step, where Ã =

A+IN is the adjacent matrix of graph G with self-connection
structure. W0 ∈ RP×H is the weight matrix from the input
layer to the hidden unit layer, where P is the length of time,
and H is the number of hidden units. W1 ∈ RH×T is the
weight matrix from the hidden layer to the output layer.
f (X,A) ∈ RN×T denotes the output with a forecasting
length of T , and ReLU()is a common nonlinear activation
function.

GCNs can encode the topological structures of road net-
works and the attributes of road sections simultaneously by
determining the topological relationship between the central
road section and the surrounding road sections. Spatial
dependence can be captured on this basis. In a word, this
study learned spatial dependence through the GCN model
[18].

2.3 GRU model

Temporal dependence of traffic state is another key problem
that hinders traffic forecasting. RNNs are neural network
models that process sequential data. However, limitations
in long-term forecasting are observed in traditional RNNs
because of disadvantages in gradient disappearance and
explosion [4]. LSTM [13] and GRUs [7] are variants of RNNs
that mediate the problems effectively. LSTM and GRUs ba-
sically have the same fundamental principles. Both models
use gated mechanisms to maintain long-term information
and perform similarly in various tasks [8]. However, LSTM
is more complicated, and it takes longer training time than
GRUs, whereas GRU has a relatively simpler structure,
fewer parameters, and faster training ability compared with
LSTM.

In the present model, temporal dependence was cap-
tured by a GRU model. The calculation process is intro-
duced as follows, where ht−1 is the hidden state at t-1, xt is
the traffic speed at the current moment, and rt is the reset
gate to control the degree of neglecting the state information
at the previous moment. Information unrelated with fore-
casting can be abandoned. If the reset gate outputs 0, then
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the traffic information at the previous moment is neglected.
If the reset gate outputs 1, then the traffic information
at the previous moment is brought into the next moment
completely. ut is the update gate and is used to control the
state information quantity at the previous moment that is
brought into the current state. Meanwhile, ct is the memory
content stored at the current moment, and ht is the output
state at the current moment.

ut = σ(Wu ∗ [Xt, ht−1] + bu) (4)

rt = σ(Wr ∗ [Xt, ht−1] + br) (5)

ct = tanh(Wc [Xt, (rt ∗ ht−1)] + bc) (6)

ht = ut ∗ ht−1 + (1− ut) ∗ ct (7)

GRUs determine traffic state at the current moment by
using hidden state at previous moment and traffic informa-
tion at current moment as input. GRUs retain the variation
trends of historical traffic information when capturing traffic
information at current moment because of the gated mech-
anism. Hence, this model can capture dynamic temporal
variation features from the traffic data, that is, this study
has applied a GRU model to learn the temporal variation
trends of the traffic state.

2.4 Attention model

Attention model is realized on the basis of encoderdecoder
model. This model is initially used in neural machine
translation tasks[3]. Nowadays, attention models are widely
applied in image caption generation [33], recommenda-
tion system [32], and document classification [24]. With
the rapid development of such models, existing attention
models can be divided into multiple types, such as soft and
hard attention[3], global and local attention[21], and self-
attention[29]. In the current study, a soft attention model
was used to learn the importance of traffic information at
every moment, and then a context vector that could express
the global variation trends of traffic state was calculated for
future traffic forecasting tasks.

Suppose that a time series xi(i = 1, 2, · · · , n),where
n is the time series length, is introduced. The design
process of soft attention models is introduced as follows.
First, the hidden states hi(i = 1, 2, · · · , n) at different
moments are calculated using CNNs (and their variants)
or RNNs (and their variant), and they are expressed as
H = {h1, h2, · · · , hn}.Second, a scoring function is designed
to calculate the score/weight of each hidden state. Third, an
attention function is designed to calculate the context vector
(Ct) that can describe global traffic variation information.
Finally, the final output results are obtained using the con-
text vector. In the present study, these steps were followed in
the design process, but a multilayer perception was applied
as the scoring function instead.

Particularly, the characteristics (hi) at each moment were
used as input when calculating the weight of each hidden
state based on f. The corresponding outputs could be gained
through two hidden layers. The weights of each charac-
teristic (αi) are calculated by a Softmax normalized index
function (eq. (8)), where w(1) and b(1) are the weight and

deviation of the first layer and w(2) and b(2) are the weight
and deviation of the second layer, respectively.

ei = w(2)(w(1)H + b(1)) + b(2) (8)

αi =
exp(ei)∑n
k=1 exp(ek)

(9)

Finally, the attention function was designed. The calcu-
lation process of the context vector (Ct) that covers global
traffic variation information is shown in Equation (10).

Ct =

n∑
i=1

αi ∗ hi (10)

2.5 A3T-GCN model
The A3t-GCN is a improvement of our previous work
named T-GCN[37]. The attention mechanism was intro-
duced to re-weight the influence of historical traffic states
and thus to capture the global variation trends of traffic
state. The model structure is shown in Fig. 2.5.

A temporal GCN (T-GCN) model was constructed by
combining GCN and GRU. n historical time series traf-
fic data were inputted into the T-GCN model to ob-
tain n hidden states (h) that covered spatiotemporal
characteristics:{ht−n, · · · , ht−1, ht}.The calculation of the T-
GCN is shown in eq. (11), where ht−1 is the output at t-1. GC
is the graph convolutional process. ut and rt are the update
and reset gates at t, respectively. ct is the stored content at
the current moment. ht is the output state at moment t, and
W and b are the weight and the deviation in the training
process, respectively.

ut = σ(Wu ∗ [GC(A,Xt), ht−1] + bu) (11)

rt = σ(Wr ∗ [GC(A,Xt), ht−1] + br) (12)

ct = tanh(Wc ∗ [GC(A,Xt), (rt ∗ ht−1)] + bc) (13)

ht = ut ∗ ht−1 + (1− ut) ∗ ct) (14)

Then, the hidden states were inputted into the atten-
tion model to determine the context vector that covers the
global traffic variation information. Particularly, the weight
of each h was calculated by Softmax using a multilayer
perception:{at−n, · · · , at−1, at}.The context vector that cov-
ers global traffic variation information is calculated by the
weighted sum. Finally, forecasting results were outputted
using the fully connected layer.

In sum, we proposed the A3T-GCN to realize traffic
forecasting. The urban road network was constructed into
a graph network, and the traffic state on different sections
was described as node attributes. The topological charac-
teristics of the road network were captured by a GCN to
obtain spatial dependence. The dynamic variation of node
attributes was captured by a GRU to obtain the local tempo-
ral tendency of traffic state. The global variation trend of the
traffic state was then captured by the attention model, which
was conducive in realizing accurate traffic forecasting.
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Fig. 1. A3T-GCN framework.

2.6 Loss function
Training aims to minimize errors between real and predicted
speed in the road network . Real and predicted speed on
different sections at t are expressed by Y and Ŷ , respectively.
Therefore, the objective function of A3T-GCN is shown as
follows. The first term aims to minimize the error between
real and predicted speed. The second term Lreg is a normal-
ization term, which is conducive to avoid overfitting. λ is a
hyper-parameter.

loss =‖ Yt − Ŷt ‖ +λLreg (15)

3 EXPERIMENTS

3.1 Data Description
Two real-world traffic datasets, namely, taxi trajectory
dataset (SZ taxi) in Shenzhen City and loop detector dataset
(Los loop) in Los Angeles, were used. Both datasets are
related with traffic speed. Hence, traffic speed is viewed as
the traffic information in the experiments. SZ taxi dataset is
the taxi trajectory of Shenzhen from Jan. 1 to Jan. 31, 2015.
In the present study, 156 major roads of Luohu District were
selected as the study area. Los loop dataset is collected in
the highway of Los Angeles County in real time by loop
detectors. A total of 207 sensors along with their traffic
speed from Mar. 1 to Mar. 7, 2012 were selected.

3.2 Evaluation Metrics
To evaluate the prediction performance of the model, the
error between real traffic speed and predicted results is
evaluated on the basis of the following metrics:

(1) Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

MN

M∑
j=1

N∑
i=1

(yji − ŷ
j
i )

2 (16)

(2) Mean Absolute Error (MAE):

MAE =
1

MN

M∑
j=1

N∑
i=1

∣∣∣yji − ŷji ∣∣∣ (17)

(3) Accuracy:

Accuracy = 1− ‖ Y − Ŷ ‖F
‖ Y ‖F

(18)

(4) Coefficient of Determination (R2):

R2 = 1−
∑M
j=1

∑N
i=1(yji − ŷ

j
i )

2∑M
j=1

∑N
i=1(yji − Ȳ )2

(19)

(5) Explained Variance Score (var):

var = 1−
V ar

{
Y − Ŷ

}
V ar {Y }

(20)

where yji and ŷji are the real and predicted traffic infor-
mation of temporal sample j on road i, respectively. N is
the number of nodes on road. M is the number of temporal

samples. Y and Ŷ are the set of yji and ŷji respectively, and
Ȳ is the mean of Y .

Particularly, RMSE and MAE are used to measure pre-
diction error. Small RMSE and MASE values reflect high
prediction precision. Accuracy is used to measure forecast-
ing precision, and high accuracy value is preferred. R2 and
var calculate the correlation coefficient, which measures the
ability of the prediction result to represent the actual data:
the larger the value is, the better the prediction effect is.

3.3 Experimental result analysis
The hyper-parameters of A3T-GCN include learning rate,
epoch, and number of hidden units. In the experiment,
learning rate and epoch were manually set on the basis of
experiences as 0.001 and 5000 for both datasets. As for the
number of hidden units, we set it to 64 and 100 for SZ taxi
and Los loop, respectively.

In the present study, 80% of the traffic data are used as
the training set, and the remaining 20% of the data are used
as the test set. The traffic information in the next 15, 30,
45, and 60 min is predicted. The predicted results are com-
pared with results from the historical average model (HA),
auto-regressive integrated moving average model (ARIMA),
SVR, GCN model, and GRU model. The A3T-GCN is ana-
lyzed from perspectives of precision, spatiotemporal predic-
tion capabilities, long-term prediction capability, and global
feature capturing capability.

(1) High prediction precision. Table 1 shows the com-
parisons of different models and two real datasets in terms
of the prediction precision of various traffic speed lengths.
The prediction precision of neural network models (e.g.,
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TABLE 1
The prediction results of the T-GCN model and other baseline methods on SZ-taxi and Los-loop datasets.

T Metric
SZ-taxi Los-loop

HA ARIMA SVR GCN GRU AT-GCN HA ARIMA SVR GCN GRU AT-GCN

15min

RMSE 4.2951 7.2406 4.1455 5.6596 3.9994 3.8989 7.4427 10.0439 6.0084 7.7922 5.2182 5.0904
MAE 2.7815 4.9824 2.6233 4.2367 2.5955 2.6840 4.0145 7.6832 3.7285 5.3525 3.0602 3.1365

Accuracy 0.7008 0.4463 0.7112 0.6107 0.7249 0.7318 0.8733 0.8275 0.8977 0.8673 0.9109 0.9133
R2 0.8307 ∗ 0.8423 0.6654 0.8329 0.8512 0.7121 0.0025 0.8123 0.6843 0.8576 0.8653
var 0.8307 0.0035 0.8424 0.6655 0.8329 0.8512 0.7121 ∗ 0.8146 0.6844 0.8577 0.8653

30min

RMSE 4.2951 6.7899 4.1628 5.6918 4.0942 3.9228 7.4427 9.3450 6.9588 8.3353 6.2802 5.9974
MAE 2.7815 4.6765 2.6875 4.2647 2.6906 2.7038 4.0145 7.6891 3.7248 5.6118 3.6505 3.6610

Accuracy 0.7008 0.3845 0.7100 0.6085 0.7184 0.7302 0.8733 0.8275 0.8815 0.8581 0.8931 0.8979
R2 0.8307 ∗ 0.8410 0.6616 0.8249 0.8493 0.7121 0.0031 0.7492 0.6402 0.7957 0.8137
var 0.8307 0.0081 0.8413 0.6617 0.8250 0.8493 0.7121 ∗ 0.7523 0.6404 0.7958 0.8137

45min

RMSE 4.2951 6.7852 4.1885 5.7142 4.1534 3.9461 7.4427 10.0508 7.7504 8.8036 7.0343 6.6840
MAE 2.7815 4.6734 2.7359 4.2844 2.7743 2.7261 4.0145 7.6924 4.1288 5.9534 4.0915 4.1712

Accuracy 0.7008 0.3847 0.7082 0.6069 0.7143 0.7286 0.8733 0.8273 0.8680 0.8500 0.8801 0.8861
R2 0.8307 ∗ 0.8391 0.6589 0.8198 0.8474 0.7121 ∗ 0.6899 0.5999 0.7446 0.7694
var 0.8307 0.0087 0.8397 0.6590 0.8199 0.8474 0.7121 0.0035 0.6947 0.6001 0.7451 0.7705

60min

RMSE 4.2951 6.7708 4.2156 5.7361 4.0747 3.9707 7.4427 10.0538 8.4388 9.2657 7.6621 7.0990
MAE 2.7815 4.6655 2.7751 4.3034 2.7712 2.7391 4.0145 7.6952 4.5036 6.2892 4.5186 4.2343

Accuracy 0.7008 0.3851 0.7063 0.6054 0.7197 0.7269 0.8733 0.8273 0.8562 0.8421 0.8694 0.8790
R2 0.8307 ∗ 0.8370 0.6564 0.8266 0.8454 0.7121 ∗ 0.6336 0.5583 0.6980 0.7407
var 0.8307 0.0111 0.8379 0.6564 0.8267 0.8454 0.7121 0.0036 0.5593 0.5593 0.6984 0.7415

A3T-GCN and GRU) is higher than those of other models
(e.g., HA, ARIMA, and SVR). With respect to 15-minute
time series, the RMSE and accuracy of HA are approxi-
mately 9.22% higher and 4.24% lower than those of A3T-
GCN, respectively. The RMSE and accuracy of ARIMA are
approximately 46.15% higher and 39.01% lower than those
of A3T-GCN, respectively. The RMSE and accuracy of SVR
are approximately 5.95% higher and 2.81% lower than those
of A3T-GCN, respectively. Compared with GRU, The RMSE
and accuracy of HA is approximately 6.88% higher and
3.32% lower than those of GRU, respectively. The RMSE
and accuracy of ARIMA are approximately 44.76% and
38.07%, respectively. The RMSE and accuracy of SVAR are
approximately 3.52% and 1.87%, respectively. These results
are mainly caused by the poor nonlinear fitting abilities
of HA, ARIMA, and SVAR to complicated changing traffic
data. Processing long-term non-stationary data is difficult
when ARIMA is used. Moreover, ARIMA is gained by
averaging the errors of different sections. The data of some
sections might greatly fluctuate to increase the final error.
Hence, ARIMA shows the lowest forecasting accuracy.

Similar conclusions could be drawn for Los loop. In a
word, A3T-GCN model can obtain the optimal prediction
performance of all metrics in two real datasets, thereby
proving the validity and superiority of A3T-GCN model in
spatiotemporal traffic forecasting tasks.

(2) Effectiveness of modelling both spatial and temporal
dependencies. To test the benefits brought by depicting the
spatiotemporal characteristics of traffic data simultaneously
in A3T-GCN, the model is compared with GCN and GRU.

Fig. 2 shows the results based on SZ taxi. Compared
with GCN (considering spatial characteristics only), A3T-
GCN achieves approximately 31.11%, 31.08%, 30.94%, and
30.78% lower RMSEs in 15, 30, 45, and 60 minutes of traffic
forecasting time series, respectively. In sum, the prediction
error of A3T-GCN is kept lower than that of GCN in 15,
30, 45, and 60 minutes of traffic forecasting. Therefore, the

Fig. 2. SZ-taxi: Spatiotemporal prediction capabilities.

Fig. 3. Los-loop: Spatiotemporal prediction capabilities.

A3T-GCN can capture spatial characteristics.
Compared with GRU (considering temporal character-

istics only), A3T-GCN achieves approximately 2.51% lower
RMSE in 15 minutes traffic forecasting, approximately 4.19%
lower RMSE in 30 minutes traffic forecasting, approximately
4.99% lower RMSE in 45 minutes time series, and approx-
imately 2.55% lower RMSE in 60 minutes time series. In
sum, the prediction error of A3T-GCN is kept lower than
that of GRU in 15, 30, 45, and 60 minutes traffic forecasting.
Therefore, the A3T-GCN can capture temporal dependence.

Results based on Los loop, which are similar with those
based on SZ taxi, are shown in Fig. 3. In short, the A3T-GCN
has good spatiotemporal prediction capabilities. In other
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Fig. 4. SZ-taxi: Long-term prediction capability.

Fig. 5. Los-loop: Long-term prediction capability.

words, A3T-GCN model can capture the spatial topological
characteristics of urban road networks and the temporal
variation characteristics of traffic state simultaneously.

(3) Long-term prediction capability. Long-term predic-
tion capability of A3T-GCN was tested by traffic speed
forecasting in 15, 30, 45, and 60 minutes prediction horizon.
Forecasting results based on SZ-taxi are shown in Fig. 4.
The RMSE comparison of different models under different
lengths of time series is shown in Fig. 4(a). The RMSE
of the A3T-GCN is the lowest under all lengths of time
series. The variation trends of RMSE and accuracy, which
reflects prediction error and precision, respectively, of the
A3T-GCN under different lengths of time series are shown
in Fig. 4(b). RMSE increases as the length of time series
increases, whereas accuracy declines slightly and shows
certain stationary.

The forecasting results based on Los loop are shown in
Fig. 5, and consistent laws are found. In sum, A3T-GCN
has good long-term prediction capability. It can obtain high
accuracy by training for 15, 30, 45, and 60 minutes prediction
horizon. Forecasting results of A3T-GCN change slightly
with changes in length of time series, thereby showing
certain stationary. Therefore, the A3T-GCN is applicable to
short-term and long-term traffic forecasting tasks.

(4) Effectiveness of introducing attention to capture
global variation. A3T-GCN and T-GCN were compared to
test the superiority of capturing global variation. Results
are shown in Table 2. A3T-GCN model shows approxi-
mately 0.86% lower RMSE and approximately 0.32% higher
accuracy than T-GCN model under 15 minutes time se-
ries, approximately 1.31% lower RMSE and approximately
0.48% higher accuracy under 30 minutes time series, ap-
proximately 1.14% lower RMSE and approximately 0.43%
higher accuracy under 45 minutes traffic forecasting, and
approximately 0.99% lower RMSE and approximately 0.37%
higher accuracy under 60 minutes time series.

Hence, the prediction error of A3T-GCN is lower than
that of T-GCN, but the accuracy of the former is higher

TABLE 2
Comparison of forecasting results between A3T-GCN and T-GCN under

different lengths of time series based on SZ-taxi and Los-loop.

T Metric SZ-taxi Los-loop
T-GCN AT-GCN T-GCN AT-GCN

15min

RMSE 3.9325 3.8989 5.1264 5.0904
MAE 2.7145 2.6840 3.1802 3.1365

Accuracy 0.7295 0.7318 0.9127 0.9133
R2 0.8539 0.8512 0.8634 0.8653
var 0.8539 0.8512 0.8634 0.8653

30min

RMSE 3.9740 3.9228 6.0598 5.9974
MAE 2.7522 2.7038 3.7466 3.6610

Accuracy 0.7267 0.7302 0.8968 0.8979
R2 0.8451 0.8493 0.8098 0.8137
var 0.8451 0.8493 0.8100 0.8137

45min

RMSE 3.9910 3.9461 6.7065 6.684
MAE 2.7645 2.7261 4.1158 4.1712

Accuracy 0.7255 0.7286 0.8857 0.8861
R2 0.8436 0.8474 0.7679 0.7694
var 0.8436 0.8474 0.7684 0.7705

60min

RMSE 4.0099 3.9707 7.2677 7.099
MAE 2.7860 2.7391 4.6021 4.2343

Accuracy 0.7242 0.7269 0.8762 0.8790
R2 0.8421 0.8454 0.7283 0.7407
var 0.8421 0.8454 0.7290 0.7415

under different horizons of traffic forecasting, thereby prov-
ing the global feature capturing capability of the A3T-GCN
model.

3.4 Perturbation analysis

Noise is inevitable in real-world datasets. Therefore, pertur-
bation analysis is conducted to test the robustness of A3T-
GCN. In this experiment, two types of random noises are
added to the traffic data. Random noise obeys Gaussian
distribution N ∈ (0, σ2), where σ ∈ (0.2, 0.4, 0.8, 1, 2), and
Poisson distribution P (λ) where λ ∈ (1, 2, 4, 8, 16). The
noise matrix values are normalized to [0,1].

Fig. 6. SZ-taxi: perturbation analysis.

Fig. 7. Los-loop: perturbation analysis.

The experimental results based on SZ taxi are shown in
Fig. 6. The results of adding Gaussian noise are shown in
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(a) 15 minutes

(b) 30 minutes

(c) 45 minutes

(d) 60 minutes

Fig. 8. The visualization results for prediction horizon of 15, 30, 45, 60
minutes (SZ-taxi).

Fig. 6(a), where the x- and y-axes show the changes in σ
and in different evaluation metrics, respectively. Different
colors represent various metrics. Similarly, the results of
adding Poisson noise are shown in Fig. 6(b). The values
of different evaluation metrics remain basically the same
regardless of the changes in σ/λ. Hence, the proposed
model can remarkably resist noise and process strong noise
problems.

The experimental results based on Los loop are consis-
tent with experimental results based on SZ taxi (Fig. 7).
Therefore, the A3T-GCN model can remarkably resist noise
and still obtain stable forecasting results under Gaussian
and Poisson perturbations.

3.5 Visualized analysis
The forecasting results of A3T-GCN model based on two
real datasets are visualized for a good explanation of the
model.

(1) SZ-taxi: We visualize the result of one road on January
27, 2015. Visualization results in 15, 30, 45, and 60 minutes
of time series are shown in Fig. 8.

(a) 15 minutes

(b) 30 minutes

(c) 45 minutes

(d) 60 minutes

Fig. 9. The visualization results for prediction horizon of 15, 30, 45, 60
minutes (Los-loop).

(2) Los-loop: Similarly, we visualize one loop detector
data in Los-loop dataset. Visualization results in 15, 30, 45,
and 60 minutes are shown in Fig. 9.

In sum, the predicted traffic speed shows similar vari-
ation trend with actual traffic speed under different time
series lengths, which suggest that the A3T-GCN model is
competent in the traffic forecasting task. This model can also
capture the variation trends of traffic speed and recognize
the start and end points of rush hours. The A3T-GCN model
forecasts traffic jam accurately, thereby proving its validity
in real-time traffic forecasting.

4 CONCLUSIONS

A traffic forecasting method called A3T-GCN is proposed to
capture global temporal dynamics and spatial correlations
simultaneously and facilitates traffic forecasting. The urban
road network is constructed into a graph, and the traffic
speed on roads is described as attributes of nodes on the
graph. In the proposed method, the spatial dependencies
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are captured by GCN based on the topological character-
istics of the road network. Meanwhile, the dynamic vari-
ation of the sequential historical traffic speeds is captured
by GRU. Moreover, the global temporal variation trend
is captured and assembled by the attention mechanism.
Finally, the proposed A3T-GCN model is tested in the urban
road network-based traffic forecasting task using two real
datasets, namely, SZ-taxi and Los-loop. The results show
that the A3T-GCN model is superior to HA, ARIMA, SVR,
GCN, GRU, and T-GCN in terms of prediction precision un-
der different lengths of prediction horizon, thereby proving
its validity in real-time traffic forecasting.
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