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Abstract
Graphs are suitable data structures for expressing the relationship between different 
types of data. With a continuous increase in the graph size, using suitable meth-
ods to divide graphs and parallelize the processing load becomes crucial. Balanced 
graph partitioning has been extensively studied for static and streaming graphs. 
However, for a time-evolving graph (TEG), whose size and structure are periodi-
cally updated, related partitioning methods are lacking. A straightforward approach 
is to capture snapshots of a TEG and adopt the partitioning methods designed for 
static or streaming graphs. Although feasible partitioning quality can be expected, 
the time overhead is high due to frequent repartitioning. This paper proposes two 
TEG partitioning methods, namely seed and similarity, to decrease the partitioning 
time. According to the experimental results, on average, seed and similarity require 
29–39% of the partitioning time required by snapshot. Moreover, the proposed 
methods maintain reasonable partitioning quality.

Keywords Graph partitioning · Time-evolving graph · Vertex-cut partitioning · 
Flink

1 Introduction

With extensive technological advances, including the Internet of things, powerful 
cloud computing platforms, and widespread smart devices, considerable data are 
generated from heterogeneous sources every day. With massive increases in the 
scale of data generation, the storage, processing, analysis, and visualization of big 
data have become crucial issues [1–3]. Different data structures can be selected 
to represent data with variety and potential relevance. A graph, which is mainly 
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composed of vertices and edges, is an effective model for representing collections of 
relationships between entities. Different types of graphs, such as web graphs, social 
networks, road networks, and citation networks, can be easily plotted [3–5]. By 
observing how entities behave and interact with each other, these graphs can provide 
useful information for several applications [1–3].

Since the introduction of the concept of big data, graph processing, which refers 
to performing computations on large graphs to extract the desired knowledge, has 
been gradually receiving increased research attention [3–6]. Graph processing algo-
rithms are usually associated with graph types. For example, PageRank is usually 
applied to a web graph; a single-source shortest path is commonly used in a road net-
work; a connected component and link prediction are useful in a social network; and 
other scientific or biological graphs are often associated with the centrality, graph 
matching, and minimum spanning tree algorithms. Many graph processing engines, 
such as Google Pregel, Apache Giraph, Spark GraphX, Flink Gelly, and CMU Pow-
erGraph, have been designed to process graph-related algorithms efficiently.

Depending on the timing and frequency required to collect and process data, 
graphs can be divided into three types: static graphs, streaming graphs, and time-
evolving graphs (TEGs). A static graph is the most traditional type of graph. With 
complete data collected in advance, this graph can be directly constructed to rep-
resent all entities and their relationships. Moreover, because the structure of a 
static graph remains unchanged after construction, graph processing algorithms are 
applied only once. If the data source is continuously input as a stream, the incoming 
data generate a streaming graph. The authors of [7] defined two streaming models: 
edge and vertex streaming. Edge streaming assumes that the edges of a graph, which 
are indicated by source–destination vertex pairs, arrive in a stream. Vertex streaming 
assumes that the vertices of a graph successively arrive with existing sets of neigh-
boring vertices. On its arrival, an incoming edge or vertex is immediately added 
to the graph. To accommodate the changing structure of streaming graphs, graph 
processing algorithms must be applied multiple times when necessary. A TEG is a 
new graph type that has received relatively low attention [6, 8]. Similar to a stream-
ing graph, a TEG exhibits structural changes over time and its size is expected to 
increase gradually. However, instead of being modified frequently and irregularly 
similar to a streaming graph, a TEG is periodically updated and processed. Thus, a 
time period exists within which all the received update events are added to a TEG 
simultaneously. Moreover, graph processing algorithms can be applied periodically 
when a TEG is updated.

When a data graph becomes too large to be processed efficiently by using a sin-
gle machine, balanced graph partitioning is performed to parallelize the processing 
loads for multiple machines [9]. Traditional graph partitioning methods are only 
suitable for static graphs with a limited size [10]. These methods usually achieve 
the best partitioning quality because the entire information regarding static graphs 
is known in advance. Streaming graph partitioning (SGP) is another type of graph 
partitioning method that has been extensively studied [7]. When an edge or a vertex 
is received, SGP methods must not only assign it to one of the partitions accord-
ing to the partial graph structures but also meet the low-latency requirements. In 
a sense, due to the changing structure of a streaming graph, the streaming order 
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considerably affects the partitioning quality. Currently, partitioning methods for 
TEGs are lacking [6]. A simple and straightforward approach to partition TEGs is to 
adopt directly partitioning methods designed for a static or streaming graph. Thus, 
a snapshot is captured every time a TEG is updated, and this snapshot is treated as 
a new graph to reassign all edges and vertices. By using the aforementioned simple 
solution, suitable partitioning quality is expected to be achieved because the snap-
shot contains complete graph structure information for a certain time. However, the 
frequent repartitioning can be time-consuming and cause some unnecessary execu-
tion overhead.

This paper proposes two TEG partitioning methods, namely seed and similarity, 
to avoid frequent repartitioning. In the seed method, every time a TEG is periodi-
cally updated, seed vertices are extracted from existing partitions to obtain signifi-
cant information. Each update event received during this period is assigned to one of 
the seed vertex sets and then merged with the corresponding previous partitions to 
generate new partitioning results. In the similarity method, update events are parti-
tioned independently without the use of any previous information. These new parti-
tions are then successively merged with the previous partitions, where two parti-
tions with the highest similarity are merged first. Because seed vertices and update 
events are smaller than the entire snapshot, both the seed and similarity methods 
are expected to work efficiently. The current study implemented these two methods 
on the Flink system and evaluated them using real-world graphs. The experimental 
results prove that both the proposed methods are efficient and can achieve reason-
able partitioning quality.

The main contributions of this paper are as follows:
TEGs and their corresponding vertex-cut partitioning problem are defined.

1. Two efficient TEG partitioning methods are used with SGP methods to avoid 
time-consuming repartitioning and maintain suitable partitioning quality.

2. An edge streaming model is proposed to input a real-world example incrementally 
for simulating the behavior of TEGs.

3. Performance comparisons are performed to demonstrate the efficiency and scal-
ability of the proposed methods.

The rest of this paper is organized as follows. Section 2 presents a brief review 
of some related streaming graph and TEG partitioning methods. Section 3 provides 
detailed descriptions of the proposed methods. Section 4 presents the experimental 
results for evaluating the partitioning quality. Finally, Sect.  5 presents the conclu-
sions of this study and recommendations for future research.
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2  Related work

2.1  Vertex‑cut partitioning versus edge‑cut partitioning

Graph partitioning is a traditional NP-complete problem in graph theory [9]. As 
indicated in Fig. 1, two types of partitioning approaches exist: the edge-cut and ver-
tex-cut approaches. The edge-cut approach, which is also called vertex partitioning, 
involves placing vertices in disjoint sets with balanced sizes. The partitioning goal is 
to minimize the number of cutting edges because these edges can result in increased 
communication costs in a distributed computing system. The vertex-cut approach, 
which is also called edge partitioning, involves placing edges in disjoint sets with 
balanced sizes. Vertices are replicated to multiple partitions when necessary, and the 
number of replicated vertices is minimized to reduce the synchronization and stor-
age overheads. Currently, the vertex-cut approach is widely adopted with the edge 
streaming model in graph processing engines, such as PowerGraph, GraphX, and 
GraphChi, because many studies have proven that the vertex-cut method is appropri-
ate for skewed power-law graphs, which account for most real-world graphs.

2.2  Partitioning methods for static graphs

Most traditional partitioning methods for static graphs are edge-cut approaches. 
After loading a graph completely, vertices are divided into disjoint and balanced 
partitions. METIS [10] is a representative and widely used method for partitioning 
static graphs. Despite its extremely high partitioning overhead, METIS can achieve 
a low edge-cutting ratio and is usually set as a baseline for comparison with other 
partitioning methods. As the graph size increases, METIS uses the coarsening, par-
titioning, and uncoarsening phases to reduce the partitioning time.

2.3  Streaming graph partitioning

SGP, edge and vertex streaming models were first introduced in [7]. An edge or ver-
tex is assigned to one of the partitions as soon as being received according to the par-
tial graph structures available at that time. To match the rapidly incoming edges or 

Data graph Edge-cut partitioning Vertex-cut partitioning

Fig. 1  Two types of partitioning approaches
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vertices of a streaming graph, SGP must usually meet the low-latency requirement. 
LDG [7] and Fennel [11] are two well-known and efficient edge-cut SGP methods 
that use simple heuristics to assign vertices. Both these methods can achieve bal-
anced partitioning; however, their cutting-edge ratio is significantly affected by the 
order of the incoming vertices.

Greedy and high-degree replicated first (HDRF) are two vertex-cut approaches 
mainly aimed at achieving less replicated vertices with an average load balance. 
Greedy is a graph partitioning method implemented in PowerGraph [12]. Greedy 
assigns an incoming edge with source and destination vertices on the basis of one 
of the following cases. First, if both the source and destination vertices are new, 
the incoming edge is placed in the partition with the least edges. Second, if both 
the source and destination vertices are already in the same partition, the incoming 
edge is directly assigned to that partition. Third, if one vertex is new and the other 
vertex is already present in some partitions, the incoming edge is assigned to the 
smallest partition that contains the existing vertex. Finally, if both vertices exist in 
multiple partitions but without intersecting, the incoming edge is placed in the parti-
tion containing one vertex and the least number of edges. The last case causes vertex 
replication.

The main concept of HDRF, which is mostly used for the power-law graph, is to 
replicate vertices with a higher degree first [13]. When an incoming edge arrives, 
HDRF shares the same partitioning rules as greedy if one of the aforementioned first 
three cases is satisfied. For the last case, unlike greedy, which simply assigns the 
incoming edge according to the load balance, HDRF considers the degree of verti-
ces in the entire graph. In HDRF, an objective function is used to evaluate the fitness 
of all incoming edge–partition pairs, and the partition with the maximum objective 
value is selected. Partial HDRF (PHDRF) is a vertex-cut SGP method modified 
from HDRF [14]. Because a vertex in the vertex-cut approach is replicated in multi-
ple partitions, the vertex degree in different partitions should be counted separately. 
In PHDRF, an objective function considering the partial vertex degree is defined to 
select the appropriate partition for an incoming edge. By using PHDRF, the number 
of replicated vertices is further reduced and balanced partitioning is maintained.

2.4  Partitioning methods for TEGs

Only a few partitioning methods are suitable for TEGs. The authors of [15] defined 
TEGs and proposed an incremental edge-cut partitioning method for them. Accord-
ing to their definition, when a TEG is updated, all modifications to the graph struc-
ture can be represented as four modification events: add node, delete node, add edge, 
and delete edge. The incremental edge-cut partitioning method comprises partition-
ing strategies used in static and streaming graphs. Suppose that an initial graph has 
been well-partitioned using METIS. Then, all modification events are considered to 
join the partitions sequentially. A new edge or vertex can be placed in the parti-
tion, which results in minimal cutting edges and load balance. In the case of a delete 
event, all corresponding vertices or edges are directly removed. Boundary vertices 
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and edges are allowed to migrate between partitions; however, the migration costs 
are very high.

Although the partitioning methods proposed in [16, 17] are SGP methods, they 
can be roughly extended to partition TEGs due to their window-based design. The 
method presented in [16] is an edge-cut approach with an edge streaming model. 
Incoming edges are first stored in a buffer and reordered before being processed 
when the buffer is full. A condensed spanning tree (CST) is constructed to record 
continuously the graph structure and partitioning result. As the number of incom-
ing edges increases, if the partition sizes become gradually unbalanced, vertices are 
repartitioned according to the graph structure information recorded in the CST as 
long as the migration cost is acceptable. The authors of [17] proposed a vertex-cut 
approach called adaptive window-based streaming edge partitioning (ADWISE). 
Similar to the method presented in [16], incoming edges are temporarily stored in a 
window in ADWISE. Some candidate edges are selected from the window accord-
ing to a window traversal mechanism, which indicates that they have priority to 
be assigned to partitions first. Then, heuristic values are counted for all candidate 
edge–partition pairs, and the pair with the maximal heuristic value is assigned. 
Using a larger window would result in better partitioning quality but longer latency. 
ADWISE also provides a mechanism to adjust the window size to balance the parti-
tioning quality and cost.

3  Methods

In this section, we first define TEGs. Then, a simple and straightforward method 
for TEG partitioning, which is called snapshot, is introduced. Subsequently, the two 
proposed methods, namely seed and similarity, are introduced in detail.

Table 1  Notations used in this paper and their description

Notation Description

Gt = (Vt, Et) Data graph at time step t, with vertex set Vt and edge set Et

Pt Pt = (P1
t, …, Pk

t), Pi
t ∩ Pj

t = ϕ, ∪k

1
 Pk

t = Et

k Number of partitions
Vi

t Vertex set of partition Pi
t

|Vi
t| Number of vertices in partition Pi

t

|Ei
t| Number of edges in partition Pi

t

UEt Update event set received between time step t − 1 and t
Deg(vi, Pj

t) Degree of vertex vi in partition Pj
t

SP SP = (SP1, …, SPk), set of seed vertices
TG = (TV, TE) Temporal graph constructed from edges belonging to a given 

UEt, with vertex set TV and edge set TE
TP TP = (TP1, …, TPk), TPi ∩ TPj = ϕ, ∪k

1
 TPk = TE

TVi Vertex set of partition TPi

M M = (m1, …, mk), a vector to indicate how to pair Pi
t−1 and TPj
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3.1  Definition of TEGs

Table  1 lists the notations used in this paper and their corresponding descrip-
tion. In this paper, the definition of TEGs is extended from that presented in [15]. 
Suppose that Gt = (Vt, Et) is a TEG named G at time step t, where Vt and Et rep-
resent the vertex and edge sets of the graph G at time step t, respectively. An 
update event indicates a step to change the graph structure. We define four types 
of update events: add vertex, add edge, delete vertex, and delete edge. Let UEt 
represent an update event set that arrives between the time steps t − 1 and t. After 
applying all update events in UEt to graph Gt−1, the graph Gt at time step t is 
constructed.

Partition Pt = (P1
t, …, Pk

t) is the partitioning result obtained at time step t. In 
the vertex-cut approach, each Pi

t is essentially an edge set and all Pi
t are dis-

joint. Let |Vt| and |Et| denote the numbers of vertices and edges in partition Pi
t, 

respectively. The notation VC(Pt) represents the total number of vertices in Pt, 
and LB(Pt) is the ratio between the sizes of the largest and smallest partitions in 
Pt. The partitioning goal of the vertex-cut approach is to minimize VC(Pt) under 
the following condition: LB(Pt) < 1 + ε.

3.2  Straightforward method: snapshot

Any SGP method can be simply extended to TEGs by performing repartitioning. 
Hereinafter, we name this straightforward method snapshot because it directly 
obtains and partitions a snapshot of graph Gt at time t.

Figure  2 lists the pseudocode of the snapshot method. The initial graph  G0 
can be partitioned using any static or SGP method to obtain partition P0. When 
UEt is received at time step t, the update events in UEt are merged into Gt−1 to 
construct a graph Gt, which is treated as a new graph and partitioned using any 
selected method to obtain Pt. The snapshot method is expected to provide suitable 

Fig. 2  Pseudocode of the snap-
shot TEG partitioning method Input: Initial data graph G0, update events UEt

Output: Partitioning result Pt

1. Read initial data graph G0

2. P0 ← Partition G0 using any SGP method
3. t ← 1
4. do
5. Receive UEt

6. Gt ← Gt–1 ∪ UEt

7. Pt ← Partition Gt using any SGP method
8. t ← t + 1
9. until all UEt are received
10. Return Pt
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partitioning quality; however, this method is very time-consuming due to the 
periodic repartitioning of the entire graph Gt at each time step t.

3.3  Proposed method: seed

To reduce the partitioning cost, an obvious approach is to avoid repetitive repar-
titions. The authors of [15] proposed an incremental method to process modifica-
tion events successively and assigned incoming vertices or edges by considering the 
structure information of the entire graph. Thus, the aforementioned method is equiv-
alent to the conventional SGP method even though the vertices or edges are assigned 
in batches and not instantly. However, the frequent recording and extraction of the 
structure of an enlarged graph are highly expensive. In addition, the authors of [15] 
proposed an edge-cut approach, which is not the main approach used in current 
graph processing engines.

This paper proposes a vertex-cut TEG partitioning method named seed, which 
focuses on designing a strategy to process the update events in UEt and merge them 
with Pt−1. Hence, the seed method must be used with an SGP method to assign 

Fig. 3  Pseudocode of the seed method
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incoming edges or vertices. In this study, the greedy, HDRF, and PHDRF methods 
were selected for this purpose.

Figure 3 lists the pseudocode of the seed method. Similar to the snapshot method, 
in the seed method, first, the partition P0 of the initial graph  G0 is obtained using any 
SGP method. Next, each time UEt is received, the seed vertices SP = (SP1, …, SPk) 
are extracted from Pt−1 = (P1

t−1, …, Pk
t−1) to obtain significant structure informa-

tion regarding the partition Pt−1. Seed vertices are defined as vertices with the high-
est degree in Pi

t−1, and their number is adjustable. For simplicity, in this paper, all 
update events in UEt are assumed to be edge additions, and the other types of update 
events are reserved for future research. Therefore, UEt can be considered as an edge 
set, and each incoming edge is assigned to the most appropriate SPi by using any 
SGP method. Because the size of SP is considerably smaller than that of Pt−1, the 
partitioning process of seed is expected to be more efficient than that of snapshot. 
Finally, each SPi is united with the corresponding Pi

t−1 to obtain partition Pi
t, and 

the edges in UEt are inserted into Gt−1 to construct a graph Gt. The aforementioned 
steps are conducted periodically until all UEt are received and processed.

3.4  Proposed method: similarity

Although the two proposed partitioning methods use different partitioning strate-
gies, they process the update events in UEt by considering the structure of the recent 
graph Gt−1. The snapshot method directly merges UEt into Gt−1 and repartitions the 
new graph Gt, whereas seed assigns each incoming edge or vertex individually to 
an existing partition Pit−1. This paper proposes the similarity method to partition 
a TEG incrementally. Incoming edges or vertices are independently divided into k 
partitions and then added to an existing partition Pt−1 in appropriate pairs. As is 
the case for the seed method, the similarity method must also be used with an SGP 
method, such as greedy, HDRF, or PHDRF.

Figure 4 lists the pseudocode of similarity. The initial graph  G0 is partitioned into 
P0 by using the selected SGP method. When UEt is received at time step t, a tempo-
rary graph TG = (TV, TE) is constructed according to the incoming edges and ver-
tices. Then, TG is used in any SGP method to obtain TP = (TP1, …, TPk) indepen-
dently without considering the structure information obtained from the recent graph 
Gt−1. Subsequently, each temporary partition TPi is merged with a suitable Pi

t−1. In 
Eq.  (1), SimilarRatio is defined as the ratio of the number of intersecting vertices 
between two partitions:

If the partition pair (TPi, Pj
t−1) has a larger SimilarRatio than other partition pairs 

do, it should be merged first because its elements are more similar than those of 
other pairs. To reduce the partitioning time, not all k × k pairs are validated in the 
similarity method. However, all temporary partitions TPi are validated sequentially 

(1)SimilarRatio =

|||TVi ∩ Vt−1
j

|||
|||V

t−1
j

|||
1 ≤ i, j ≤ k



12345

1 3

Effective partitioning mechanisms for time‑evolving graphs…

to obtain the most similar Pj
t−1 that is not yet matched; thus, a total of k × (k − 1)/2 

pairs are validated. Finally, partition Pt is obtained by pairing TP and Pt−1, and the 
temporary graph TG is merged with Gt−1 to construct a graph Gt. The aforemen-
tioned steps are repeated periodically until all UEt are received and processed.

4  Experimental results

4.1  Evaluation platform

In this study, Apache Flink was selected as the evaluation platform. Apace Flink 
is a distributed streaming-processing framework that enables the execution of 
batch and streaming jobs with the DataSet API and DataStream API, respectively. 
The authors of [18] widely used SGP methods on Flink. We deployed Flink v1.8.0 
with Java8 on a machine with Intel® Core™ i3-8100 CPU @ 3.6 GHz, 32 GB of 
RAM, and Linux OS. Three TEG partitioning methods, namely snapshot, seed, 

Fig. 4  Pseudocode of the similarity method
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and similarity, were implemented with a vertex-cut SGP method (greedy, HDRF, 
or PHDRF) on Flink and evaluated using real-world graphs. Table 2 lists the basic 
characteristics of the wiki-Vote, web-Google, web-Stanford, Amazon0302, soc-
Slashdot0902, and com-DBLP datasets selected from Stanford Network Analysis 
Platform (SNAP) [19] for evaluation.

4.2  Evaluation metrics

The following three evaluation metrics are used in this paper: partitioning time, rep-
lication factor, and load balance. Partitioning time is the execution time required for 
performing the partitioning method. Replication factor, which is defined in Eq. (2), 
indicates the average number of replicas for all vertices. Equation  (3) defines the 
load balance as the ratio between the sizes of partitions with the maximum and least 
number of edges.

To simulate the incoming model of a TEG, a data graph is assumed to be input in 
five batches. For a given dataset, 40% of its edges are randomly selected and input 
in the first batch to construct the initial graph  G0. The remaining edges of the data-
set are incrementally added in the second to fifth batches with the update event sets 
UE1–UE4, where each UEt contains 15% of the incoming edges. In seed, the param-
eter λ is defaulted to 0.1, which means that 10% vertices with highest degree in par-
tition Pi

t−1 are extracted as the seed vertices SPi.

(2)Replication factor =

∑k

1

���V
t
i

���
�Vt�

(3)Load balance =
Max

|||E
t
i

|||
Min

|||E
t
i

|||
1 ≤ i ≤ k

Table 2  Characteristics of the selected datasets

a Average clustering coefficient
b Strongest connected component

Dataset Vertices Edges Type ACC a Vertices in largest 
 SCCb

Edges in largest 
SCC

wiki-Vote 7115 103,689 Social 0.1409 1300 (0.183) 39,456 (0.381)
soc-Slashdot0902 82,168 948,464 Social 0.0603 71,307 (0.868) 912,381 (0.962)
web-Google 875,713 5,105,039 Web 0.5143 434,818 (0.497) 3,419,124 (0.670)
web-Stanford 281,903 2,312,497 Web 0.5976 150,532 (0.534) 1,576,314 (0.682)
Amazon0302 262,111 1,234,877 Product 0.4198 241,761 (0.922) 1,131,217 (0.916)
com-DBLP 317,080 1,049,866 Community 0.6324 317,080 (1.000) 1,049,866 (1.000)
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4.3  Evaluation results

Figure 5 displays the partitioning times required by different methods to process 
individual batches when k = y32. Nine methods, including three TEG partitioning 
methods (i.e., snapshot, seed, and similarity) and three SGP methods (i.e., greedy, 
HDRF, and PHDRF), were used in the experiments. As displayed in Fig. 5, the 
time required to partition the initial graph  G0 is completely determined by the 
SGP method used. Greedy was more efficient than HDRF and PHDRF were for 
all datasets because HDRF and PHDRF require additional time to consider the 
vertex degree. As the update events UE1–UE4 were successively received, the 
partitioning time required for the snapshot method increased, whereas those 
required for seed and similarity remained stable. The main reason for this result 
is that snapshot repeatedly reassigns all edges of the enlarging graph Gt in each 

Fig. 5  Partitioning time of individual batches (k = 32)
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batch, which is expected to be a time-consuming process that is dependent on the 
graph size. Seed and similarity only focus on how to assign new edges received in 
a batch and merge them with the recent partitions. In all experiments, UE1–UE4 
contained 15% of the edges of the entire dataset. Therefore, the partitioning times 
required by seed and similarity to process UE1–UE4 were not only close but also 
lower than those required by seed and similarity to process the initial graph  G0.

Figure  6 presents the time ratios of Seed_Greedy and Similarity_Greedy in 
each batch when the partitioning time of Snapshot_Greedy was set to 100%. For 
processing UE1 in different datasets, Seed_Greedy and Similarity_Greedy spent 
approximately 27–43% and 30–41% of the partitioning time of Snapshot_Greedy, 
respectively. For processing UE4, the partitioning times spent by Seed_Greedy 
and Similarity_Greedy were only 14–19% and 17–23%, respectively, of that 
spent by Snapshot_Greedy. The aforementioned results are expected because 
Snapshot_Greedy repartitions the entire enlarging graph  G1–G4, whereas 
Seed_Greedy and Similarity_Greedy only process UE1–UE4 with the same size. 

Fig. 6  Partitioning time ratios for individual batches (k = 32)
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Similar time ratios to those displayed in Fig. 6 were obtained when replacing greedy 
with HDRF and PHDRF.

Figure  7 displays the accumulative partitioning time of the nine methods for 
different datasets. Every time a TEG was updated, the partitioning time accumu-
lated by snapshot was short. The seed and similarity methods exhibited a flat time 
accumulation trend, and the partitioning time difference between the applied SGP 
methods was relatively small. In the experiments, a dataset was assumed to be input 
with five batches. After processing an entire dataset, the accumulative partitioning 
time spent using seed or similarity was approximately 29–39% of that spent using 
snapshot. According to the experimental results presented in Figs. 5, 6 and 7, the 
partitioning time is considerably lower when using both the proposed methods than 
when using the snapshot method because repartitioning is avoided when using both 
the proposed methods. Greedy was more efficient than HDRF and PHDRF were; 

Fig. 7  Accumulative partitioning times of individual batches (k = 32)
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however, the partitioning time difference was only evident when these methods were 
applied with snapshot.

Figure  8 presents the replication factors of different methods in individual 
batches when k was assumed to be 32. The replication factor refers to the average 
number of replicas a vertex has after partitioning [Eq.  (2)]. Because a higher rep-
lication factor directly causes higher synchronization and storage overhead, almost 
all vertex-cut approaches are designed to reduce the replication factor. Because the 
snapshot method repartitions graph Gt, which contains all the received edges at time 
step t, this method is expected to achieve balanced partitioning results with a suit-
able replication factor. However, when designing seed and similarity, the primary 
goal is to reduce the partitioning time. Therefore, the incoming edges are assigned 
only according to partial graph structure information, which might result in subop-
timal assignment and a high replication factor. As displayed in Fig. 8, for the arriv-
ing update events, the replication factors of seed and similarity were higher than 

Fig. 8  Replication factor of individual batches (k = 32)
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that of snapshot. HDRF and PHDRF usually achieved lower replication factors than 
greedy. In summary, both the proposed TEG partitioning methods, namely seed and 
similarity, can significantly reduce the partitioning time, as expected. Although the 
resulting replication factors are higher than those obtained using the straightforward 
snapshot method, they are still within a reasonable range and acceptable.

Figures  9 and 10 depict the scalability of the nine adopted methods. Figure  9 
illustrates the accumulative partitioning time of the nine methods for different data-
sets when assuming k = 4, 8, 16, or 32. In all cases, for the same reason as that pre-
sented in Fig. 5, the partitioning times of seed and similarity were lower than that of 
snapshot. As the number of partitions increased, the nine methods required a longer 
time to partition TEGs. The time growth trends of seed and similarity were rela-
tively flat, which indicates that these methods are scalable. In our experiments, for 
k = 4, seed and similarity required approximately 32–48% and 30–48%, respectively, 
of the time required by snapshot for processing an entire dataset. For k = 32, seed 

Fig. 9  Accumulative partitioning time for different numbers of partitions
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and similarity required approximately 30–37% and 29–39%, respectively, of the time 
required by snapshot for processing an entire dataset. These values are expected to 
decrease further if k is increased.

The replication factors obtained for different methods when assuming k = 4, 8, 
16, or 32 are displayed in Fig.  10. When a data graph is partitioned using a ver-
tex-cut approach, its vertices are separated into k partitions with necessary replica-
tion. A high-degree vertex usually has replicas in all partitions, which is beneficial 
for obtaining balanced partitioning results. Hence, the overall replication factor is 
expected to increase as the value of k increases because a high-degree vertex is rep-
licated an increasing number of times. As presented in Fig. 10, for all the methods, 
the number of replication factors increased with that of the partitions. When used 
with HDRF or PHDRF, the snapshot method consistently achieved the lowest repli-
cations factors irrespective of the k value; however, the results obtained using other 
methods were still within an acceptable range.

Balanced partitioning is a fundamental requirement that must be satisfied by all 
graph partitioning methods. Because snapshot, seed, and similarity apply the heuris-
tics defined in greedy, HDRF, and PHDRF to assign incoming edges to partitions, 
balanced partitioning is achieved with snapshot, seed, and similarity. In the experi-
ments, the nine adopted methods achieved load balance values of less than 1.004 in 
all the evaluation cases. This result indicates that both seed and similarity are bal-
anced TEG partitioning methods.

5  Conclusions

This paper proposes two vertex-cut TEG partitioning methods, namely seed and 
similarity. The primary goal of both these methods is to avoid repeatedly repartition-
ing snapshots when a TEG is periodically updated, which can effectively reduce the 
partitioning time. The two proposed methods were implemented with the straight-
forward snapshot method on the Flink system and evaluated using real-world data 
graphs. The experimental results indicate that both seed and similarity are more bal-
anced and time-efficient than snapshot is. The replication factors of the proposed 
methods were higher than those of snapshot but still maintained reasonable parti-
tioning quality.
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