
Received May 30, 2019, accepted July 5, 2019, date of publication July 15, 2019, date of current version July 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2928467

Graph Theory-Based Approach to Accomplish
Complete Coverage Path Planning Tasks
for Reconfigurable Robots
KU PING CHENG1, RAJESH ELARA MOHAN 1, NGUYEN HUU KHANH NHAN2,
AND ANH VU LE 1,2
1ROAR Laboratory, Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372
2Optoelectronics Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

Corresponding author: Nguyen Huu Khanh Nhan (nguyenhuukhanhnhan@tdtu.edu.vn)

This work was supported by the National Robotics Program Office (NRPO), Singapore, to the Engineering Product Development at the
Singapore University of Technology and Design under Grant RGAST1702.

ABSTRACT Extensive studies regarding complete coverage problems have been conducted, but a few
tackle scenarios where the mobile robot is equipped with reconfigurable modules. The reconfigurability
of these robots creates opportunities to develop new navigation strategies with higher dexterity; however,
it also simultaneously adds in constraints to the direction of movements. This paper aims to develop a valid
navigation strategy that allows tetromino-based self-reconfigurable robots to perform complete coverage
tasks. To this end, a novel graph theory-based model to simulate the workspace coverage and make use
of dynamic programming technique for optimal path searching and adaptive robot morphology shifting
algorithms is proposed. Moreover, the influence of algorithms starting variables on workspace coverage
outcome is analyzed thoughtfully in this paper. The simulation results showed that the proposed method
is capable of generating navigation paths throughout the workspace, which ensures complete workspace
coverage while minimizing the total number of actions performed by the robot.

INDEX TERMS Complete coverage path planning, self-reconfigurable robots, graph theory, dynamic
programming, Dijkstra algorithm.

I. INTRODUCTION
Complete Coverage Path Planning (CCPP) algorithms focus
on the task of determining a path that passes through every
region in the workspace while avoiding obstacles. These
algorithms have been extensively studied andmany have been
integrated to a wide range of real-world robotic platforms,
such as cleaning robots [1], painter robots [2], demining
robots [3], [4], lawnmowers [5], [6], and so forth.

Based on whether any prior knowledge regarding the
workspace is being stored in the system, coverage path plan-
ning algorithms can be categorized into online (or called
sensor-based) approaches and off-line approaches. Online
approaches rely on data feed from onboard sensors on the
robot to construct environment maps and to direct the cov-
erage operation [7]. These approaches focus on coverage

The associate editor coordinating the review of this manuscript and
approving it for publication was Vivek Kumar Sehgal.

navigation tasks of unknown spaces and decisions of robot
actions are being made at each time instant based on robot
surroundings, making these algorithms powerful dealing with
workspaces with the presence of dynamic obstacles. Never-
theless, due to the limitations of sensor readings in terms of
sensor reach and accuracy, an optimal solution with complete
coverage of the workspace is not always guaranteed [7]. Off-
line approaches, on the other hand, assume that workspaces
are static and fully observable, implying that the path planner
can be executed and the navigation path can be generated in
advance. Generally, off-line approaches yield solutions with
better workspace coverage and more optimized paths, but
the approaches may be unrealistic to be put into practice
if space is unknown. Popular CCPP algorithms that have
been developed previously include spanning-trees [8], [9],
spiral filling paths [10], [11], and neural networks [12]. The
genetic algorithms [13], [14] are powerful meta-heuristic
approaches that excel at searching for the shortest path that

94642
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-6504-1530
https://orcid.org/0000-0002-4804-7540

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

fulfills certain conditions. However, the nature of complete
coverage optimization problems is quite different from the
shortest path optimization. The objective functions in shortest
path optimization problems are usually continuous functions
and will eventually converge to particular optima (whether
it is local or global). However, in complete coverage path
planning problems as presented in this paper, the maximum
coverage is a harsh constraint to the objective functions and
heuristic approaches does not workwell in this situation as the
result of the objective function is easily influenced by single
changes in robot agent action sequence. This is the reason
we have provided an alternative approach to deal with this
particular optimization problem. Under the assumption that
all algorithms can achieve maximum workspace coverage,
the efficiency of a CCPP algorithm can be evaluated by
the time elapsed [15], or by the total power consumption
throughout the navigation process [16].

Space decomposition technique is a crucial element of
many of the CCPP algorithms. Selecting an adequate space
decomposition technique simplifies the construction of the
system model and may significantly reduce the compu-
tational complexity of the algorithms to be implemented.
Among all decomposition techniques, grid-based decompo-
sition is a popular candidate that has been adopted in the
spiral filling path, genetic algorithms, and some heuristic-
based coverage algorithms [17]. Grid-based decomposition
methods represent the free space as a union of smaller regions
called cells, where all cells are identical in size and shape
without any overlapping area between cells. Rectangular cells
are commonly used for most navigation applications, while
triangular cells [18] are sometimes adopted for flexible robot
platforms to operate at higher efficiency. The cell sizes cho-
sen for grid-based methods determine the resolution of the
map. A high-resolution grid map provides a better estima-
tion of workspace and obstacle boarders and yields a higher
workspace coverage as it allows the robot to navigate to
free spaces that could potentially be recognized as obsta-
cle cells in a low-resolution grid map. In most CCPP task
scenarios, the grid size of a cell is approximately equal to
the sweeping width of the robot for better overall workspace
coverage.

Since the early 1980s, reconfigurable robots have received
increasing attention and platforms with a wide variety of
reconfigurable mechanics have been deployed. Reconfig-
urable robot platforms can be categorized into three major
types [19]: intra-reconfigurable, inter-reconfigurable, and
nested reconfigurable. An intra-reconfigurable robot has
the ability to change its internal morphology without the
requirement of external assembly or disassembly. An inter-
reconfigurable robot consists of a congregation of homoge-
neous or heterogeneous robots and is capable of forming a
variety of morphologies through assembly and disassembly
process. A nested reconfigurable robot involves platforms
that are capable of performing inter-reconfigurations with
its individual modules being intra-reconfigurable. The high
dexterity and dynamic flexibility reconfigurable robots allow

them to accomplish a wide variety of tasks under controlled
environments.

Nevertheless, few currently existing reconfigurable robots
are designed to tackle complete area coverage tasks. The
primary concern to develop an intra-reconfigurable platform
suitable to accomplish CCPP tasks is regarding the robustness
of the robot. A large portion of CCPP tasks, such as lawn
mowing, harvesting, and demining, usually involve a larger
workspace with few obstacles. A heavy-duty robot with a
fixed shape is considered a better candidate compared to
reconfigurable robots in those environments. The planned
paths in these scenarios are simple, so implementing recon-
figurability in the robots by trading off robustness for motion
dexterity does not yield better outcome in these scenarios.
On the other hand, CCPP tasks that emphasize area cov-
erage in complicated areas, like indoor cleaning missions,
would require robot platforms with higher dexterity to avoid
obstacles scattered within the environment and to provide
precise motion and direction control. Hinged-tetro (or hTetro)
developed by Prabakaran et al. [20] is an example of a
cleaning robot equipped with the reconfigurability to shape-
shift into several transformations. The team presented a tiling
theory-based algorithm [21] to demonstrate the feasibility
of covering an area by utilizing several morphologies of
a similar reconfigurable robot platform, hTetro. With the
shape-shifting ability, the hTetro robot is capable of access-
ing narrow areas within the workspace. High levels of area
coverage performance can be observed in the experimental
results demonstrated in the aforementioned paper. This paper
expands on the previous work of hTetro and focuses on the
implementation of coverage path planning algorithms of the
platform.

To construct a valid path planning strategy for reconfig-
urable robots, we put the emphasis on graph theory-based
CCPP algorithms. Extensive graph theory-based searching
algorithms have been developed for robot platforms, most
of which focus on shortest path problems and make use of
heuristics like Randomized Search [22], A* Algorithms [23],
D* Lite [24], etc. To achieve maximum area coverage,
however, would require fundamentally different approaches.
A valid strategy is to formulate the problem as the longest
path problem (LPP). Solutions generated by LPP simple path
algorithm can achieve maximum area coverage provided that
every edge in the graph has a positive weight. However, it is
worth mentioning that LPP is an NP-Complete class problem
as it is trivially a generalization of the Hamiltonian path
problem. LPP has been proven to be unsolvable in polynomial
time unless P = NP [25], [26]. Due to the computational
complexity that lies in the nature of LPP problems, it is not
the main concern of this paper to propose an algorithm that
outperforms current existing LPP algorithms while yielding
an optimal solution. Instead, the goal is to propose a rea-
sonable fast path searching approach that can successfully
navigate the robot from the start configuration to the end
configuration while ensuring maximum area coverage of
the space. To achieve this goal, approaches including graph

VOLUME 7, 2019 94643

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

partitioning and dynamic programming are being imple-
mented to simplify the problem and to speed up the compu-
tational time.

Rest of the paper is organized as follows. Section II
describes the reconfigurable robot platform that is beingmod-
eled. Section III develops the graph theory-based model and
formulates the complete coverage problem. In Section IV,
the proposed complete coverage path planning algorithm for
reconfigurable robots is being presented. Section V shows the
simulations and results of the proposed algorithm. Finally,
Section VI presents the conclusions along with a note of
future developments.

II. HINGED-TETRO PLATFORM
This section introduces the robot platform selected for the
system and presents the system model setup of the proposed
complete coverage path planning algorithm.

A. HTETRO ROBOT PLATFORM
The workspaceW ⊂ R2 is the environment in 2-D Cartesian
space where robot agent A navigates. The reference frames
of W and A are denoted as FW and FA [27].

This paper considers hTetro [20] as the selected robot
agent, which is a chain-type modular self-reconfigurable
(MSR) floor cleaning robot that consists of four blocks
connected by three active hinges. The geometries of the
four hTetro blocks are denoted as B1,B2,B3,B4. All hTetro
blocks are in a square shape of width dblock .The hinge relative
connections between hTetro blocks are shown in Figure 1,
which results in the following mechanical movement
constraints:

0 ≤ θB1 − θB2 ≤ π

0 ≤ θB2 − θB3 ≤ π

0 ≤ θB4 − θB3 ≤ π

where θBn (n = 1, . . . , 4) represents the angle rotated
from workspace frame to local frame of Bn, with the
convention of counterclockwise rotation as the positive
direction.

In the proposed model, robot local frame FA is being
attached to the center of the second block in hTetro (B2). Con-
sider all possible angle combinations of θBn that fulfills hinge
constraints of θBn ∈ {0, pi2 , π,

3π
2 } while F

A is fixed, a total
of seven robot shapes can be configured. These shapes form
the seven basic morphologies of hTetro, as shown in Figure 2.
The ability to shape-shift into any of the seven tetromino
morphologies allows the hTetro robot to efficiently navigate
with the ideal shape according to the perceived terrain and
obstacles.

Each hTetro Block is equipped with four omnidirectional
wheels, with a pair of wheels being placed perpendicularly to
the other pair. This mechanical design allows a hTetro block
to instantly change its direction of motion by 90. Differential
wheeled robots, on the other hand, are required to perform
a U-turn to conduct a direction change in robot motion.

FIGURE 1. hTetro system model.

FIGURE 2. 7 basic morphologies of hTetro.

Therefore, instead of controlling the revolutions per minute
(RPM) values of each motor in hTetro blocks, the commands
implemented to control hTetro block linear motions are sim-
ply ’Forward’, ’Backward’, ’Left’, ’Right’. Since a hTetro
robot is composed of four different blocks, the combinations
of the four commands sent to each block allow them to
perform motions with high complexity cooperatively, such as
making pivot turns or performing orientation auto-correction
when a deviation in hTetro block heading is detected.

B. ROBOT CONFIGURATION
Most robots with fixed shapes describe their configura-
tions with three parameters: the x and y coordinates in the
workspace, and a heading angle. Nevertheless, due to the
reconfigurable nature of hTetro robots, this representation
is insufficient to describe shape-shifting motions and the
different morphologies of an hTetro robot in the environment.
Therefore, the revised definition of robot configuration is
being presented as follow.
Definition 1 (Robot Configuration): The configuration q

of a hTetro robot is a six-element array

q = [x, y, θB1 , θB2 , θB3 , θB4]T (1)

94644 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

where:

(x, y) = coordinate of hTetro Block 2 (B2) center in

workspace frame FW

θBk = angle rotation of local frame in Bn(n = 1, . . . , 4)

with respect to the global frame

C. WORKSPACE MODEL
In this paper, the grid-based method is being implemented to
formulate the mathematical system model for our algorithm.
Through approximate cellular decomposition technique pro-
posed by Choset [7], a collection of uniform grid cells in
the workspace can be determined, where each grid contains
variables stating whether space is free or being occupied by
obstacles [28]. This section introduces the construction of the
grid map of the workspace and the variable that stores grid
information.

This work considers a rectangular-shaped workspace W
that could be fully decomposed into square-shaped grids with
grid width dgrid . Let nrow and ncol be the total number of rows
and columns after the cellular decomposition. Grid position
is then defined as follow.
Definition 2 (Grid Position): A grid position represents

the coordinate vector of the grid which locates at i-th row
and j-th column. gWi,j is the grid position with respect to

the workspace frame FW ; whereas gBni,j represents the grid
position with respect to the frame where hTetro block Bn
locates.

gWi,j =
[
xWi,j yWi,j

]T
(2)

gBki,j =
[
xBki,j yBki,j

]T
= R(θBk)T (vBk)gWi,j (3)

where:

R(θ) = a 2-dimensional rotation matrix rotating through

angle θ counterclockwise about the origin.

T (v) = a 2-dimensional translation matrix along vector v.

Since the workspace frame is fixed throughout the experi-
ment, gWi,j will remain constant whereas the value of gBki,j will

constantly be changing.
In the proposed model, obstacles are being introduced in

the workspace W . Through approximate cellular decompo-
sition, all grids with overlapping areas with the interior of
obstacles within the workspace form an obstacle set O.

With the grid model being constructed, a variable is being
introduced to store the grid information at each time instance,
which is called ‘‘grid activity’’. The activity of a grid keeps
track of whether the obstacle is and the coverage of the grid
at each time instance, which is defined as follow.
Definition 3 (Grid Activity): The activity of a grid located

at i-th row and j-th column at time t is represented by ai,j(t).
A grid activity set A consists of all grid activities within the

workspace. The grid activity is updated at each time instance
based on the previous grid activity value, which is defined by:

ai,j(t + 1) =


1 , if ai,j(t) = 1 or ∃gBki,j , k ∈ {1, . . . , 4}

s.t. |xBki,j | ≤
dgrid
2 ∧ |y

Bk
i,j | ≤

dgrid
2

−1 , if gWi,j ∈ O
0 , otherwise

(4)

Based on Definition 3, all grids with obstacle presenting
will have grid activity of −1; whereas the grid activity of
other grids remains 0 until it is being covered by any of the
hTetro blocks. Once a grid is being covered, the grid activity
will be a constant number of 1 throughout the entire naviga-
tion process. The workspace W is considered fully covered
at time t if all grids have a grid activity of 1 or−1, providing
that no unaccessible grids are presented in the workspace.

D. HTETRO ROBOT NAVIGATION STRATEGY
This paper proposes a robot navigation strategy based on
roadmap method. A roadmap R consists of a series of ideal
robot configurations q, which specifies the desired position,
heading, and shape of hTetro robot in a particular sequence
that results in maximum area coverage of the workspace. The
calculation and optimization of the maximum area covered
are achieved by utilizing graph theory-based path planner,
which will be introduced in section III and IV.

Once a roadmap is being constructed, the navigation sys-
tem will estimate the positions and heading angles of each
hTetro block based on onboard sensor readings. A series
of commands which include linear motions in four direc-
tions and adjustments in hinge angles will then be sent
to each hTetro block in order to clear the configurations
assigned to the robot. A configuration is considered cleared
once the robot arrives at the coordinate with exact hTetro
block angles specified. A new configuration will then be
assigned to the robot, and the navigation process will con-
tinue until all configurations in the roadmap are being
cleared.

In order to reduce unblocked areas that could potentially
be identified as obstacle grids during the grid decomposition
process, the minimal grid size is defined to match the size of
a hTetro block (dgrid = dblock), which provides the highest
resolution of the grid map with each grid being geometrically
coverable by hTetro blocks. The hTetro robot can perform
either linear motion or angle adjustment within each time
step. Performing a linear motion moves all hTetro blocks
simultaneously in one of the four directions for a grid length
dgrid with respect to the workspace frame FW . An angle
adjustment of a block changes the orientation of the block by
90 degrees with respect to the blocks’ reference frames. In the
hTetro model, the robot frame FA is attached to the second
block, indicating that block 1 and block 3 will be taking
block 2 as reference frame and rotate 90 degrees within a time
step, block 4 will be taking block 3 as its reference frame, and

VOLUME 7, 2019 94645

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

TABLE 1. hTetro configuration command table.

block 2will be taking the workspace frame as reference frame
instead. For angle adjustments that cannot be finished within
a single time step, the process will continue until the heading
angles of all blocks are identical to those specified in the
next robot configuration. Combining the linear motions and
orientation adjustments hTetro can perform, a total of 13 com-
mands are being defined to control the movements of the plat-
form, which forms a configuration command table as shown
in Table 1. A configuration command array set Qc consists
of several configurations commands qc that correspond to
specific input string commands. The robot configuration at
the next time instance can be updated based on the command
received and the current configuration through the equation
below:

q(t + 1) = q(t) + qc (5)

III. GRAPH MODEL OF COMPLETE COVERAGE PROBLEM
Searching algorithms have been extensively studied in graph
theory. By modeling the system as a graph, an optimal solu-
tion is guaranteed to be found, though the problem might not
be solvable within polynomial time [26]. Applying heuris-
tics to the problem has been a common approach to tackle
graph-based problems; however, to reduce the time con-
sumed to solve the problem, some of these approaches might
make compromises on the accuracy of the solution [29].
The approach this paper proposed creates partitions of
the workspace graph based on heuristics and performs
exhaustive searches within the partitioned subgraphs to
ensure accuracy and to accomplish full coverage of the
area.

This section formulates the graph model of the workspace
based on the hTetro model developed in section II. The
definitions of morphology layer sets and stripe layer sets
that are used to construct the graph model is then intro-
duced. An auxiliary graph will then be constructed based
on the graph partitioning results, and searching algorithms
will be implemented to generate the optimal path to traverse
within the stripe layer sets. The details of the navigation

FIGURE 3. An illustration of hTetro workspace graph G.

algorithms within stripe layer sets are further introduced
in section IV.

A. CONSTRUCTION OF HTETRO WORKSPACE GRAPH
A morphology layer set is being defined to construct a graph
theory based representation of the workspace. A morphol-
ogy layer set specifies the vertices where the hTetro robot
with certain morphology can navigate. The hTetro workspace
graph, consisting of several morphology layer sets, in then
defined. The definitions are shown as follow.
Definition 4 (Morphology Layer Set): Amorphology layer

setMLs is a set that consists of a total of nrow×ncol elements:

MLs = {vsi,j|i, j ∈ N, i ≤ nrow, j ≤ ncol} (6)

where:

s = (θB1 , θB2 , θB3 , θB4) a tuple with four heading angles

which represents a specific hTetro morphology.

vsi,j = vertex that correspond to the grid at i-th row and j-th

column in morphology s

Definition 5 (hTetro Workspace Graph): A hTetro work-
space graph G is defined as a weighted graph with vertex
set V, edge set E, and morphology set S. A morphology
set S represents the set of all hTetro morphologies s that are
allowed throughout the navigation. V and E can be written
as:

3V =
(⋃
s∈S

MLs
)

E

= {(vsi,j, v
s′
i,j)|s, s

′
∈ S, s 6= s′, i, j ∈ N, i ≤ nrow, j ≤ ncol}

∪{(vsi,j, v
s
i+1,j|s ∈ S, i, j ∈ N, i ≤ nrow − 1, j ≤ ncol}

∪{(vsi,j, v
s
i,j+1|s ∈ S, i, j ∈ N, i ≤ nrow, j ≤ ncol − 1}

Figure 3 illustrates the definition of a workspace, which
consists of threemorphology layer sets (MLs1 ,MLs2 ,MLs3).

94646 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

The vertices of the workspace graph are the union of vertices
in all available morphology layer sets. The edge connections
within a morphology layer set represent possible robot linear
movements within the workspace with fixed robot morphol-
ogy. In Figure 3, the edge connectivity of vertex vs2i,j is being
highlighted. The linear motion is limited to four different
directions, while a connection between two morphology
layers represents a shift in robot morphology with the grid
position being fixed.

Assuming that the total number of morphologies in S is
set to nshape, the workspace graph will consist of a total of
nrow × ncol × nshape vertices, which makes exhaustive search
approach throughout the entire graph unpractical; therefore,
graph partitioning and dynamic programming techniques are
introduced to simplify the problem.

B. GRAPH PARTITIONING AND DYNAMIC
PROGRAMMING
This subsection introduces the attempt to utilize graph par-
titioning method to separate the graph into several stripes.
Graph partitioning is a commonly used algorithmic operation
that significantly reduces the time complexity of a graph [30]
and is a crucial prerequisite for efficient large-scale parallel
graph algorithms [31].

The core idea to implement graph partitioning method to
the hTetro workspace graph is to divide it into several ‘‘stripe
layer subgraphs’’. Each stripe layer subgraph covers a small
portion of the workspace area, where the recursive backtrack-
ing algorithm is implemented to search for a path that covers
the subgraph area. The details of the recursive backtracking
algorithm are introduced in section IV. Assuming that all
grids in a striped layer subgraph are covered and the action
costs of all stripe layers have been calculated, one remaining
task of the algorithm is to provide an optimized path between
the stripe layer subgraphs such that the total action cost for the
overall area coverage mission is minimized. The optimization
problem is being solved by implementing Dijkstra searching
algorithm in our algorithm.

The stripe layer set and stripe layer graph in the graph
partition model is defined as follow.
Definition 6 (Stripe Layer Set): A stripe layer set SLk is a

set that consists of all vertices in the k-th stripe layer set, with
a total of ncol × nstrk elements:

SLk={vi,j|i, j ∈ N, i≤ncol,
k−1∑
n=1

nstrk < j≤
k∑

n=1

nstrk } (7)

where:

nstrk = number of columns within stripe layer k . (nstrk ∈ N,∑
k

nstrk = ncol)

Definition 7 (Stripe Layer Graph): A stripe layer graph
SLGk is a vertex-induced subgraph of G, which shares the
vertex set SLk and all corresponding edges in workspace
graph G.

FIGURE 4. hTetro workspace graph G with O- and horizontal I-shape
morphology layer sets. The cut-edges between stripe layer sets are being
highlighted.

In the proposed algorithm, reasonable values chosen for
stripe column widths nstr are between 2 to 4, which creates
stripes with similar size with the hTetro robot. When the
robot navigates within in a stripe layer subgraph, due to
the constrained column direction movement, the robot will
generally be moving in either +xW or −xW direction. The
shortest path that connects all stripe paths can be found when
the positive direction and negative direction stripes are placed
alternately, forming a boustrophedon-patterned motion [32].
The robot will navigate to the next stripe layer subgraph
once all accessible grids in the current subgraph are being
covered. The stripe layers are being connected by one or sev-
eral directed cut-edges. Within a morphology layer set, each
transition between stripe layer subgraphs will be assigned a
cut-edge to provide the robot with the flexibility to navigate to
the following stripe layer with different robot morphologies.

Take the scenario demonstrated in Figure 4 for example,
which illustrates a simple workspace graph partitioned into
three stripe layer sets SLk (k = 1, . . . , 3) with different
colors. In the example, graph morphology set S consists of
two elements: O-shape (s1 = (0, 0,−π,−π)) and hori-
zontal I-shape (s2 = (−π/2,−π/2,−π/2,−π/2)). During
the initialization of the algorithm, the start configuration
(denoted as qS), goal configuration (denoted as qG), and the
partitions of the stripes have to be determined. In Figure 4,
the start and goal configurations are being marked as the
letter ’S’ and ’G’ with O-shaped starting morphology. The
algorithm will generate a path from qS that covers the area
under the first stripe layer before entering one of the cut-
edges that connects to the second stripe layer, which is either
(vSL1

1 , vSL2
1) or (vSL1

2 , vSL2
2) in Figure 4. The row positions of

cut-edges might differ between morphologies based on the
position of the second block B2 of hTetro. For instance, in the
first morphology layer (O-shape) of the presented scenario,
the cut-edge is located at the second-to-last row since placing
it at the last row will result in several hTetro blocks going
beyond the workspace boundary. The idea also applies to all
other morphology layers. Within a morphology layer, only a
single cut-edgewill be formed to connect two different stripes
layers.

VOLUME 7, 2019 94647

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 5. A quotient graph of hTetro workspace graph in Figure 4 after
graph partitioning.

With the workspace graph defined, we now focus on the
simplification of the computational complexity of the prob-
lem through dynamic programming, which is a commonly
used algorithmic paradigm for approaching a complex prob-
lem by breaking it into several subproblems and make use of
the memoization technique to cache the results of subprob-
lems and directly reuse them when the same computation
is required again [33]. In the proposed model, the coverage
tasks within each stripe layer subgraphs are the subproblems;
while the minimization of the number of actions required
is the main problem. To prevent re-calculation of the cost
required to cover each stripe layer, the total action cost of each
stripe layer will be memorized by the dynamic programming
scheme. It is essential to take note that the total action cost is
not guaranteed to be constant within each stripe layer due to
the combinations of selected start and goal vertices. Different
start and goal vertex not only represent different hTetro mor-
phologies but might also suggest different geometry positions
of the second block B2 of hTetro in the workspace. To tackle
the aforementioned issue, the concept of the auxiliary vertex
is introduced and defined as follow.
Definition 8 (Auxiliary Vertex): An auxiliary vertex vEkn

is a vertex that is introduced between the n−th cut-edge
(vSLkn , vSLk+1n) that runs between stripe layer sets SLk and
SLk+1. The newly formed edges that replace the original cut-
edge will become (vSLkn , vEkn) and (vEkn , v

SLk+1
n).

Figure 5 demonstrates a quotient graph which illustrates
the auxiliary vertices and their connections between each
stripe layer sets. The three different colors represent the three
stripe layer sets in Figure 4. To minimize the total cost of the
entire navigation process, the costs of all stripe layer sets and
cut-edges have to be known. The definition of the costs is as
follow.
Definition 9 (Cut-Edge Cost): A cut-edge cost cEkn is the

weight of cut-edge (vSLkn , v′SLk+1n).
Definition 10 (Stripe Layer Set Cost): A stripe layer set

cost cSLk (A → B) is the total action cost for the robot to
travel from vertex A to vertex B in stripe layer set SLk . For the
first stripe layer set, the starting vertex is considered as ’S’,
and the goal vertex in the last stripe layer is denoted as ’G’.
The value of the stripe layer set cost is calculated by function
GetStripeLayerCost in Algorithm 5, which will be introduced
in section IV-C.

Since a cut-edge is separated into two edges after auxiliary
vertices are introduced, the original cut-edge cost cEkn will
be shared by the two edges, with one of them inheriting the
original cut-edge cost while the cost of the other edge is set

FIGURE 6. Auxiliary graph of Figure 4. Each vertex v corresponds to the
auxiliary vertex in Figure 5 which stands for a connection between two
subgraphs.

to 0. In Figure 5, two extra vertices, vS and vG, are being
introduced. Vertex vS is attached to the original starting ver-
tex; while vertex vG is attached to the goal vertex, both with
an edge cost of 0. All newly introduced vertices in Figure 5
form a directed acyclic graph (DAG) in a higher hierarchy
level, which is referred to as an auxiliary graph as shown
in Figure 6. The edge weight w of a directed edge e in the
auxiliary graph is the sum of all edge costs that run between
the two vertices in Figure 5. The calculation of w takes the
path costs of stripe layer sets defined in Definition 10 into
account, and the equation can be written as follow.

w(e) =


cSL1 (S → n′)+ cE1n , if e = (vS , v

E1
n′)

cSLk (n→ n′)+ cEkn , if e = (vEkn , v
Ek+1
n′)

cSLk (n→ G) , if e = (vEkn , vG)

(8)

With the hTetro auxiliary graph model constructed and
weights known, Dijkstra algorithm with priority queue [34]
is being implemented to calculate the shortest path of the
graph as shown in Algorithm 1. The best solution found
will determine the shape morphologies and positions for the
robot to traverse between stripes that result in the minimum
overall action cost. Dynamic programming is introduced to
memorize the calculated stripe layer set costs to prevent re-
calculations from speeding up the computation process.

With the start and goal hTetro configurations known and
the auxiliary graph fully defined, Algorithm 1 is being
implemented, and it will return the optimal path, and the
corresponding path cost throughout the entire auxiliary
graph, which shows the best hTetro morphologies to traverse
between the stripe layer sets. However, to construct a full
roadmap R for the robot to follow, the paths within the stripe
layer graphs are still required.

IV. STRIPE LAYER SUBGRAPH COMPLETE COVERAGE
PATH PLANNING
This section introduces a recursive backtracking algorithm
that solves the coverage problem within a stripe layer graph
SLGk with start and goal configurations given. During the
recursive backtracking searching process, the validity of
robot action is checked continuously, and optimization tech-
niques are being implemented to speed up the computation
time. Coverage checking criteria are being introduced to
ensure maximum coverage of the workspace after the nav-
igation process terminates. The proposed CCPP algorithm

94648 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

Algorithm 1 Dijkstra Algorithm With Priority Queue and
Memoization
1: function DijkstraPQ(G, vS , vG)
2: Create edge weight table WT for memoization, dis-

tance array dist, and path array path
3: Create priority queue PQ, add every vertex v as ele-

ments and dist[v] as keys to PQ.
4: WT[vi, vj] ← ∞ for all vi, vj ∈ N, vi ≤ nrow, vj ≤
ncol

5: dist[v]←∞ for all vertex v ∈ VG
; dist[vS]← 0

6: path[v]← [vS] for all vertex v ∈ VG

7: while PQ not empty do
8: u← PQ.ExtractMin() // Remove and returns the

element with smallest key in PQ.
9: for all edges e = (v, v′), e ∈ EG do
10: we← LookupWeightTable(WT, v, v′)
11: if dist[v′] > dist[v]+ we then
12: dist[v′] = dist[v]+ we
13: path[v′] = path[v].Append(v′)
14: PQ.DecreaseKey(v′,dist[v′]) // Decrease

the value of v′.key to dist[v′].
15: end if
16: end for
17: end while
18: return {dist[vG],path[vG]}
19: end function
20:

21: function LookupWeightTable(WT, v, v′)
22: vi, vj← row, column value of vertex v in grid map.
23: if WT[vi, vj] <∞ then
24: return WT[vi, vj]
25: else
26: WT[vi, vj]← w(e),where e = (v, v′)
27: return WT[vi, vj]
28: end if
29: end function

will determine the value of stripe layer set cost as defined
in Definition 10 while being invoked in Algorithm 1 and
will save vertices in the optimal paths into a stripe subgraph
path table (SPT) for memorization. The roadmap R will
eventually be generated based on the stored path in SPT.
The pseudocode for the proposed complete coverage path
planning algorithm is shown in Algorithm 2.

A. ACTION VALIDITY FOR RECONFIGURABLE ROBOTS
A major challenge that lies in the implementation of CCPP
algorithms for reconfigurable robots is the modeling process
of motion constraints based on different robot morphologies.
CCPP algorithms developed for fixed-morphology robots
consider only the fixed geometry of the robot modules and
their orientations. A common approach for these algorithms
to simplify obstacle avoidance tasks in the path planner is
to decompose the workspace with the grid size matching

Algorithm 2 Complete Coverage Path Planning Algorithm
Input: Workspace grid map of size nrow × ncol , stripe
columnwidthsNstr , viablemorphologies set S, starting and
goal configurations (qS ,qG).
Output:RoadmapR that stores all configurations in a path

1. Generate a valid angle adjustment table AAT between
all morphologies in S which stores all invalid relative grid
positions (xrel, yrel).
2. Create stripes based on Nc, identify the cut-edges
between all stripes, and generate hTetro auxiliary graph G.
3. Create following tables for memoization: i) valid action
table (VAT), ii) action cost table (ACT), iii) stripe subgraph
path table (SPT)
4. Determine start and goal vertices (vS , vG) from start and
goal configurations (qS ,qG).
5. Calculate auxiliary graph {dist,path} ← DijkstraPQ
(G, vS , vG) from Algorithm 1.
6. Create empty roadmap R
for all v ∈ path do

R.Append(SPT[v])
end for

the robot size. Assuming that a robot action is considered
as ‘‘valid’’ if the assigned action does not result in any col-
lision between the robot and the terrain, the path planning
algorithms for fixed-morphology robots would only require
the system to examine the clearance of the following grids
based on the robot’s direction of motion. However, for a
reconfigurable robot to perform a valid action, it is crucial
to ensure that the geometries of all robot modules during the
transition phase of robot actions are not colliding or inter-
secting with obstacles in the workspace. In the proposed
algorithm, the validity of each action that can be performed by
the robot is being evaluated and modeled independently and
serves as an essential constraint in the recursive backtracking
function.

In the case of hTetro, the task is to model the valid-
ity of every action listed in the configuration command
table (Table 1). The three types of actions in the config-
uration command table include stop, linear motions, and
rotations or shape-shifting. The platform will not be per-
forming any motion once a stop command is being received,
so apparently, no extra constraints would be added. Linear
motion would translate the four blocks in a specific direction
regardless of their individual headings. Since a hTtro block
size is identical to the grid size in our model, the algorithm
has to checkwhether any of the four blocks collidewith obsta-
cles during the translation process, which can be achieved
by simply checking the clearance of the four grids at the
goal configuration. For the hTetro platform to accomplish a
rotation or shape-shifting, however, will require clearance for
extra grids as some of them are being covered by rotating
hTetro blocks due to the change in angles of the hinges.

VOLUME 7, 2019 94649

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 7. Examples of invalid hTetro motions. In the figures,
the black-colored areas represent obstacles, while gray-colored areas
represent the space being swept during the robot motion. Collision
occurs whenever the two different colored areas overlap during the
transition phase of the action.

An illustration of the validity of a hTetro action is shown
in Figure 7. During the initialization process of the algorithm,
the relative positions of all swept grids when these actions
are being performed will be calculated and saved in a valid
action table VAT for memoization; during the path searching
process, the VAT will be constantly utilized to determine the
validity of robot angle adjustment commands.

B. GRAPH PARTITIONING IN STRIPE LAYER GRAPH
The k-th stripe layer subgraph SLGk is an undirected graph
with nrow× nstrk × nshape vertices, which is a relatively small
number compared to number of vertices in hTetro workspace
graph. Nevertheless, conducting exhaustive searches in an
undirected graph like a stripe layer graph SLG would poten-
tially be time-consuming once the number of rows nrow
or number of morphologies allowed nshape increases. In order
to reduce the time complexity in the algorithm, we propose
an approach similar to section III-B, where graph partition
and dynamic programming techniques are used to simplify
the problem.

When the program initializes, all grids in the workspace
are being evaluated utilizing the grid validity check technique
introduced previously to find grids that can be only able to
be cleared by one or few morphology layers. These con-
figurations are considered as ‘‘intermediate configurations’’
throughout the navigation process within a stripe layer sub-
graph. By identifying the intermediate configurations set QI

Algorithm 3 hTetro Waypoint Navigation Strategy
1: function zigzagSeq(WP[], nrow, ncol, nwid)
2: curX , seq← 1
3: dir ← 1
4: WPzigzag[]← (1, 1)
5: while curX < nrow do
6: if dir = 1 then
7: coli← 1; colf ← ncol
8: else
9: coli← ncol; colf ← 1
10: end if
11: for curY ← coli to colf do
12: for curW ← 0 to nwid − 1 do
13: for all (R,Q) ∈ Wp[] do
14: if (curX + curW = Q.X ∧ curY =

Q.Y) then
15: WPzigzag[].push(seq,Q)
16: seq← seq+ 1
17: end if
18: end for
19: end for
20: end for
21: dir ←−1× dir
22: curX ← curX + nwid
23: end while
24: end function

in the stripe layer, an auxiliary graph will be constructed
similar to Section III-B. Algorithm 1 will then be used to
calculate the best path within the stripe layer, which will sig-
nificantly speed up the computation process since we are only
required to focus on optimization problems in graphs with
much smaller size. These graphs between the intermediate
configurations are referred to as ‘‘regions’’. The realization of
the idea is demonstrated in Algorithm 4, where we introduce
nver that represents the total number of vertices that are cov-
ered by all morphologies at the same grid. A new intermediate
configuration will only be added to QI if the nver is equal
to or smaller than a predetermined number, which is denoted
as nver,max . In this paper, nver,max = 1 is chosen, which
implies that whenever the best route is found within a region,
it will directly become a portion of the navigation path within
a stripe layer.

C. RECURSIVE BACKTRACKING
With the navigation setup within a stripe layer determined,
a simple backtracking algorithm is being implemented to find
a valid path. Backtracking is a modified depth-first search
(DFS) algorithm which will perform DFS traversal of the
tree and incrementally build candidates. If a non-promising
candidate is reached, the candidate will be abandoned while
the system backtracks to its state before the decision is
made [35]. The proposed recursive backtracking algorithm is
demonstrated in Algorithm 5.

94650 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

Algorithm 4 Determination of Intermediate Configurations
1: function GetIntermediateConfig(S,A)
2: QI ,Gvis,Gcov← []
3: for all {(s, row, col)| s ∈ S, row, col ∈ N, row ≤
nrow, col ≤ ncol} do

4: if isGridValid(row, col,A) then
5: Gvis[s, row, col]← 1
6: for all gBkrow,col , k = 1, . . . , 4 do
7: for all ai,j ∈ A do
8: if ai,j = 0 AND (area of hTetro block

at gBkrow,col) ∩ (area of grid at gWi,j) 6= ∅ then
9: Gcov[s, row, col]← (i, j)
10: end if
11: end for
12: end for
13: else
14: Gvis[s, row, col]← ∅
15: end if
16: end for
17: for all {(row, col)| row, col ∈ N, row ≤ nrow, col ≤

ncol} do
18: nver ← 0
19: for all s ∈ S do
20: if Gcov[s, row, col] 6= ∅ then
21: nver ← nver + 1
22: end if
23: end for
24: if nver ≤ nver,max then
25: (i, j)← Gcov[s, row, col]
26: QI .Append((i, j, s))
27: end if
28: end for
29: end function

The recursive backtracking function RBT in the proposed
algorithm will loop through all elements within the configu-
ration command table set Qc as defined in section II-D. The
algorithm will visit nearby nodes based on the commands
in Qc. The weights of the edges are determined based on
the number of commands required for the hTetro platform to
perform the assigned action. The cost of a linear action is one
as only one command is required. However, for the robot to
visit vertices in different morphology layer sets, the number
of commands in Table 1 required might differ. For instance,
for the robot to visit horizontal I-shape (s = (0, 0,−π,−π))
layer set from vertical I-shape (s = (0, 0, 0, 0)), a single
command ’2r’ would be sufficient; while to visit O-shape
(s = (0, 0,−π,−π)) layer set from vertical I-shape, two
consecutive ’3r’ commands are required for the action to be
accomplished. Since the action costs for angle adjustments,
which includes rotations and shape-shifting, are determined
based on the total number of commands required, formulating
the cost function based on robot commands will reflect on
the total time taken of the entire navigation process. It is

Algorithm 5 Stripe Layer Cost Determination
1: function GetStripeLayerCost(SLG, qS ,qG)
2: QI ← [qS ,qG] ; Qtot ← [] ; costtot = 0 ;m← 1
3: G← SLG
4: A← grid activities of all vertices in G
5: while m 6= size(QI)− 1 do
6: ccur ← 0; copt ←∞; Qcur ,Qopt ← []
7: RunRBT function betweenQI [m] andQI [m+1].
8: if Qopt 6= [] then
9: Qtot . Append(Qopt) ; costtot ← costtot +copt
10: m← m+ 1.
11: else
12: Check all ai,j = 0∀a ∈ A ∧ gi,j ∈ G.
13: Determine valid q at grid (i, j) and insert
14: it to (m+ 1)-th position of QI .
15: If no valid grid found, nstrk ← nstrk + 1
16: G← subgraph of current region
17: A← grid activities of all vertices in G
18: end if
19: end while
20: SPT [SLG]← Qtot ; ACT [SLG]← ctot
21: return ctot
22: end function
23:

24: function RBT(G, q,qG,A, ccur , copt ,Qcur ,Qopt)
25: for all qc ∈ Qc do
26: if isValidAction(q,qc,A) then
27: Cache value of A, ccur , and Qcur
28: t ← t + 1 ;q′← q+ qc
29: Update grid activity A with Equation 4.
30: Qcur ← Qcur .Append(q′)
31: caction← action cost between q,q′ in Table 1.
32: cprev← ccur + caction
33: if (q′ = qG) AND (ccur < copt) AND (ai,j =
34: 1 ∧ IsGridValid(i, j,A)∀a ∈ A)
35: Qopt ← Qcur ; copt ← ccur
36: else
37: Run RBT function between q′ and qG.
38: end if
39: Restore cached value of A, ccur , and Qcur
40: t ← t − 1
41: end if
42: end for
43: return A, ccur , copt ,Qcur ,Qopt
44: end function

worth noting that defining the cost function based on the
energy consumption of actions or other strategies might yield
different optimization results.

The overview of the recursive function that achieves maxi-
mum region coverage while minimizing total action cost is
demonstrated as follow. The function first iterates through
all feasible actions Qc that can be taken by the robot. If the
selected action is considered as valid in Algorithm 6 and the

VOLUME 7, 2019 94651

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 8. A workspace example with the area separated into a 16 × 7 grid map. Figure 8a shows the initial workspace and the start and goal hTetro
configurations; while Figure 8b demonstrates the final path generated by the proposed complete coverage algorithm. (Green arrows: horizontal
I-shape; blue arrows: O-shape).

next vertex has not yet been visited, the path and action cost
will be cached before a new recursive function is called at
the next vertex. When all feasible actions are being explored
by a vertex, it will backtrack to its parent vertices while
undoing the previous actions. If the goal vertex is reached,
the coverage of the stripe layer will be calculated to check
whether the candidate path fulfills maximum coverage and
outperforms previously cached optimal path by having a
smaller action cost. If the candidate path fulfills the criteria
above, the optimal will be updated, and the algorithm will
continue to explore the remaining portion of the tree.

D. ASSURANCE OF COMPLETE AREA COVERAGE
In Algorithm 6, we deliberately introduce the constraint
which prevents the robot from revisiting any vertices. The
idea is to create a simple path which does not contain repeat-
ing vertices so that the searching algorithm will not be stuck
in indefinite loops during the search. The disadvantage of
the constraint, however, is that several vertices might be
unvisitable due to the action limitations. Consider a scenario
in which the robot has to move in to cover a narrow area
and move out afterward. The robot is unable to perform the
simple action mentioned in this scenario due to the restriction
of revisiting the same nodes. To tackle this issue, a check
will be conducted once the tree in the region has been fully
explored. If none of the paths suggests complete area cov-
erage while the areas are reachable by any of the allowed
morphologies, an extra intermediate vertex will be added.
The vertex will separate the region into two smaller ones in
which the searching algorithm resumes. Several vertices will
be shared by both regions, which allow a small portion of
grids being re-visited throughout the process. In situations
where no path exists between the start and goal configurations
due to obstacle placements, the stripe column width nstr will
be gradually increased until a valid path is found.

V. SIMULATIONS RESULTS
In this section, the simulated path planning results of the
proposed algorithm are being presented. The simulations are
being conducted using MATLAB Simulink software.

Algorithm 6 Grid Validity Check
1: function isValidAction(q,qc,A)
2: if VAT[q,qc] 6= ∅ then
3: return VAT[q,qc]
4: end if
5: q′← q+ qc
6: if qc[0] 6= 0 OR qc[1] 6= 0 then
7: (row, col)← (q′[0],q′[1])
8: VAT[q,qc]← isGridValid(row, col,A)
9: return VAT[q,qc]
10: else
11: for all (xrel, yrel) ∈ AAT do
12: (row, col)← (q[0]+ xrel,q[1]+ yrel)
13: if ! isGridValid(row, col,A) then
14: VAT[q,qc]← false
15: return VAT[q,qc]
16: end if
17: end for
18: VAT[q,qc]← true
19: return VAT[q,qc]
20: end if
21: end function
22:

23: function isGridValid(row, col,A)
24: for all gBkrow,col , k = 1, . . . , 4 do
25: for all ai,j ∈ A do
26: if ai,j = −1 AND (area of hTetro block at

gBkrow,col) ∩ (area of grid at gWi,j) 6= ∅ then
27: return false
28: end if
29: end for
30: end for
31: return true
32: end function

Figure 8 to Figure 12 illustrate an example which demon-
strates the core working principles of the proposed com-
plete coverage path planning algorithm for reconfigurable

94652 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 9. Transition validity check between O-shape and horizontal
I-shape hTetro morphologies.

FIGURE 10. Coverage path obtained within the first stripe area
in Figure 8a, which demonstrates how maximum area coverage is
reached by introducing intermediate vertices.

FIGURE 11. Coverage path obtained within the last stripe area
in Figure 8a, which demonstrates how maximum area coverage is
achieved by increasing stripe column width.

robots. Figure 8a shows the empty workspace before nav-
igation and Figure 8b demonstrates the final CCPP result.
The simulated workspace is decomposed into a grid map
with 16 rows and 7 columns, with grids that are occupied
by obstacles shaded in black in the figure. Two morpholo-
gies, O-shape (s = (0, 0,−π,−π)) and horizontal I-shape
(s = (−π/2,−π/2,−π/2,−π/2)) are being allowed in
this simulation. Figure 9 demonstrates the swept area when
shape-shifting between the two morphologies occurs. The
figure indicates that the clearance of four nearby grids are
required for a valid shape-shifting action. These grids are
being checked in Algorithm 6 during the robot reconfig-
uration. In this simulation, the columns are separated into
3 stripes with nstr1 = 2, nstr2 = 3, nstr3 = 2.

A. DEMONSTRATION OF STRIPE LAYER COVERAGE
Figure 10 shows the coverage path planning algorithm of
the first stripe (k = 1) with stripe column width nstr of 2
and demonstrates the strategy to ensure maximum stripe area

coverage by introducing intermediate vertices. The numbers
in the figure represent the sequence of the configuration
queue qqueue, which the robot will attempt to clear accord-
ingly once the navigation process begins. The grid that a
number locates at indicates the position of the second hTetro
block, and the shape of the configuration at the position is
being directly illustrated in the figure, with O-shapemorphol-
ogy colored in blue and horizontal I-shape colored in green.
The generated path is represented in arrows, where blue and
green colored arrows represent movement paths of O-shaped
and horizontal I-shaped hTetro, respectively. In Figure 10a,
the simple path that is first generated by Algorithm 5 has five
grids that are unvisited since re-visiting the same vertex is
prohibited. The unvisited grids are marked with ’X’ in the
figures. Since the stripe is not fully covered by the path gener-
ated, Algorithm 4will search for configurations that cover the
unvisited grids and set them as intermediate configurations.
In the presented scenario, the four unvisited grids at the right
side of the figure can be covered by a horizontal I-shaped
hTetro, so an intermediate configuration is being inserted
into qqueue. The single unvisited grid at the left, however,
cannot be covered by any of the allowed configurations.
These grids are not in the scope of the complete coverage task
we aim to accomplish, so once no viable configurations can
be found that covers the grids, the grids will be left unvisited
while the algorithm moves on to clear the next stripe layer
set. Figure 10b demonstrates the path generated after the
horizontal I-shaped intermediate configuration is added as
the second configuration to be cleared during the navigation
process. As shown in this example, by introducing inter-
mediate configurations that separate the stripe into different
regions, the algorithm is able to search for the simple path
independently and ensure maximum area coverage within the
stripe layer by allowing several grids with overlapping paths.

Figure 11 demonstrates the last stripe layer (k = 3)
at the top with stripe column width nstr of 2. As shown
in Figure 11a, the stripe is being blocked by obstacles and
neither hTetromorphologies are able to navigate to the ending
configuration of the stripe. If no valid path is found during
the process, the stripe width will be gradually increased
until a valid path is found. In Figure 11b, a column (gray
colored grids) that has been fully covered previously is being
borrowed by the current stripe, and traveling to vertices on
this column is being permitted. With the extra column intro-
duced, as shown in the figure, the algorithm is now able to
generate a path that avoids the obstacle and reaches the goal
configuration.

B. DEMONSTRATION OF ROADMAP CONSTRUCTION
After all edge costs in the auxiliary graph are cached in
the memoization table in Algorithm 1, Dijkstra algorithm
is being implemented to determine the optimal cut-edge
vertices between all stripe layer sets that results in min-
imal overall action cost. The process is being illustrated
in Figure 12, where the costs of all stripe layer sets and
cut-edges are being listed. In this example, the generated

VOLUME 7, 2019 94653

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 12. Dijkstra searching process of auxiliary graph of workspace example shown in Figure 8a. The generated optimal path is shown in Figure 8b
with a total cost of 73.

FIGURE 13. A workspace example with the area separated into a 16 ×

16 grid map. The two stripe separating methods (Nstr ,1, Nstr ,2) are shown
in the figure.

optimal path takes path with the following vertices in the
auxiliary graph: (vS → vE11 → vE21 → vG). The total
action cost is calculated by summing up all the stripe layer
set costs and cut-edge costs the path passes by, which equals
to 73.

The last step in Algorithm 5 attempts to generate the final
roadmap R which stores all robot configurations within the
workspace according to the action sequence. The roadmap
is generated by concatenating the paths of all stripe layer
sets which is stored in the stripe path table (SPT). Once the
roadmap stores all robot configurations within the workspace
in sequence, the CCPP task is completed and the robot
is ready to start its navigation in the workspace. By con-
necting the paths in the generated roadmap, the final result
of the algorithm shown in Figure 8b. In this figure, all
intermediate vertices are being drawn to better illustrate
the moving patterns and the morphologies of the hTetro
robot.

C. ALGORITHM STARTING VARIABLES
In the proposed algorithm, adjustable variables that deter-
mine algorithm performance include stripe column widths
nstr and the allowed hTetro morphologies S. Since the final
path outcome is affected by the starting variables, the main
objective of this subsection is to propose promising starting
variables so that the algorithm will function properly regard-
less of the size of the workspace and the quantity of obstacles.
The efficiency of predetermined starting variables will be
evaluated based on following criteria: i) whether the setup
yields a path that achieves complete coverage ii) total action
cost iii) total overlapping area. A new workspace example
is being introduced as shown in Figure 13 with grid size of
16 × 16 for the analysis, and the proposed CCPP algorithm
will be implemented to calculate the optimal path for different
starting variables setups.

The first criterion being checked is the capability of the
algorithm to generate a complete coverage path with the
assigned starting variables. Several combinations of starting
variables might not work well in workspaces with com-
plicated obstacle layout or with inadequate stripe column
widths chosen. For instance, the workspace demonstrated
in Figure 8a has nstr of several stripe layers set to 2, which
significantly restricts the possible morphologies that can be
utilized within the layers. The placement of obstacles creates
narrow regions which limit the transformation space of the
robot, resulting in shape-shifting into certain morphologies
becoming a sub-optimal strategy in the algorithm.

Once a valid path is generated, the total action cost is
calculated based on the optimization result of the proposed
algorithm, and the overlapped area is being evaluated based
on the time elapsed for a robot to cover the workspace.
As defined in section II-D, a linearly moving hTetro block

94654 VOLUME 7, 2019

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 14. Navigation result of workspace in Figure 13 with stripe column width set Nstr ,2 and allowed morphology set to O-shape.

will cover an entire grid area within a single time instance.
The overlapped area analysis decomposes a single grid into
10 × 10 pixels and calculates the time each pixel is being
covered by hTetro blocks throughout the entire navigation
process. The time step is being set to 0.1 in this analysis to
provide coverage estimation with higher accuracy for robot
motions. The average coverage time will then be calculated
based on the average time spent on each pixel.

The starting variables chosen for the analysis make use of
three different hTetro morphologies, namely, O-shape, ver-
tical I-shape, and horizontal I-shape. Simulations have been
conducted which experiment with different combinations of
hTetro morphologies and column stripe width S. In the anal-
ysis, two different profiles of stripe column widths are tested,
which are Nstr,1 and Nstr,2. They are defined as follow:

Nstr,1=

{
3 , k=1, . . . , 4
4 , k=5

;Nstr,2=4, k=1, . . . , 4 (9)

A visualization of the two stripe column sets is shown
in Figure 13, whereNstr,1 generally makes use of stripes with
column width of 3 and Nstr,2 with column width of 4.
After the proposed CCPP algorithm is being implemented

on different hTetro morphology sets and stripe column width
sets, the results including the successes of complete coverage,
action cost, and average coverage time of different morphol-
ogy sets are recorded as shown in Table 2, where hTetro
O-shape morphology is simplified as ’O’; vertical I-shape
simplified as ’vI’; and horizontal I-shape simplified as ’hI’.
According to the table, with all three morphologies selected
and Nstr,2 chosen, the algorithm demonstrates the best per-
formance with the lowest action cost and lowest average
coverage time. Scenarios where Nstr,1 is selected generally
do not perform well compared to Nstr,2 since most hTetro
morphologies struggle to fully cover the entire workspace
with small stripe column widths. The table also suggests
that by increasing the number of morphologies allowed,
the performance of the path planning algorithm is improved

accordingly. A comparison between starting variables with
different allowed morphology sets is shown in Figure 14 and
Figure 15. Figure 14 demonstrates an example with stripe
column width set Nstr,2 and with only O-shaped allowed;
whereas in the example of Figure 15, all three morphologies
are allowed. Figure 14a and Figure 15b show the path gener-
ated by the proposed algorithm. Figure 14b and Figure 15b
illustrate the coverage result of the path, showing the time
spent for the robot to cover each pixel. A yellow colored pixel
shows that the total coverage time is around 1 unit time, while
longer coverage time yields a darker color at the pixel. The
distribution histograms of the time spent on each pixel are
shown in Figure 14c and Figure 15c. Even though both exam-
ples yield a rather close total action cost according to Table 2,
with more hTetro morphologies allowed, the average grid
coverage time is greatly reduced from 1.994 to 1.770. The
reason being that the robot can easily switch to morphologies
that effectively cover areas at large and open spaces, where
the upper and lower right area yields covering the time of
nearly one as shown in Figure 15b.

Therefore, for practical implementations of the proposed
algorithm in the real world, which generally consists of a
larger workspace and obstacles with regular shapes, the fol-
lowing starting variable setup for the hTetro workspace graph
is suggested:

3nstrk = 4 , ∀nstrk ∈ Nstr

S = {(0, 0, 0, 0), (0, 0,−π,−π),

(−π/2,−π/2,−π/2,−π/2)}

This starting variable setup is capable of efficiently clearing
most unobstructed areas with vertical I-shaped hTetro mor-
phology and makes use of O-shaped and horizontal I-shaped
morphologies to achieve obstacle avoidance. The proposed
CCPP algorithm with this setup yields an optimal navigation
strategy that minimizes the total number of vertices being
revisited while achieving full area coverage and shows its

VOLUME 7, 2019 94655

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

FIGURE 15. Navigation result of workspace in Figure 13 with stripe column width set Nstr ,2 and allowed morphology set to O-, vertical I-, and horizontal
I-shape. (Red arrows: vertical I-shape; green arrows: horizontal I-shape; blue arrows: O-shape).

TABLE 2. Starting variables performance table.

strong potential to be implemented in real-world reconfig-
urable robots to tackle complete coverage tasks with high
dexterity and efficiency.

VI. CONCLUSIONS
This paper presents a novel off-line approach that focuses
on complete coverage path planning tasks for self-
reconfigurable robots using graph theory based searching
algorithms and optimization techniques. In the presented
algorithm, the workspace is modeled as a graph with multiple
morphology layers sets and can be decomposed into several
stripe layer sets. The navigation strategy focuses on full
coverage within each individual stripe layer set, where the
algorithm takes the cost of all robot actions into account and
generates a path with minimal action cost through recursive
backtracking. The stripe layer costs will then be calculated
and memorized.With the stripe layer costs and cut-edge costs
identified, an auxiliary graph is created where the Dijkstra
algorithm is being implemented to determine the final path
with the optimal configuration sequence between stripe layer
sets. Finally, this paper analyzes the performance of different
algorithm starting variables and proposes an ideal setup for
real-world reconfigurable robot implementation.

Potential future research areas are as follow. (1) Improve-
ment of graph partitioning strategies. By splitting the original
workspace graph into subgraphs of wisely designed shapes
instead of simple stripes may reduce revisited vertices and
yield better solutions. (2) Alternative optimization goals, such
as minimum energy cost or the minimum number of grids that
are covered by hTetro blocks multiple times. (3) Extension of
current work to different self-configurable robots and adap-
tion of the algorithm to the new platforms accordingly.

REFERENCES
[1] M. Waanders, ‘‘Coverage path planning for mobile cleaning robots,’’

in Proc. 15th 20th Student Conf. IT, Enschede, The Netherlands, 2011,
pp. 1–10.

[2] Z. Bo, F. Fang, S. Zhenhua, M. Zhengda, and D. Xianzhong, ‘‘Fast and
templatable path planning of spray painting robots for regular surfaces,’’
in Proc. 34th Chin. Control Conf. (CCC), Jul. 2015, pp. 5925–5930.
doi: 10.1109/chicc.2015.7260567.

[3] M.Ðakulovic and I. Petrovic, ‘‘Complete coverage path planning ofmobile
robots for humanitarian demining,’’ Ind. Robot, Int. J., vol. 39, no. 5,
pp. 484–493, 2012. doi: 10.1108/01439911211249779.

[4] R. N. De Carvalho, H. A. Vidal, P. Vieira, and M. I. Ribeiro, ‘‘Com-
plete coverage path planning and guidance for cleaning robots,’’ in Proc.
IEEE Int. Symp. Ind. Electron. (ISIE), Jul. 1997, pp. 677–682. doi: 10.
1109/isie.1997.649051.

[5] B.-M. Shiu and C.-L. Lin, ‘‘Design of an autonomous lawn mower with
optimal route planning,’’ in Proc. IEEE Int. Conf. Ind. Technol., Apr. 2008,
pp. 1–6. doi: 10.1109/icit.2008.4608497.

[6] P.-M. Hsu and C.-L. Lin, ‘‘Optimal planner for lawn mowers,’’ in Proc.
IEEE 9th Int. Conf. Cyberntic Intell. Syst., Sep. 2010, pp. 1–7. doi: 10.
1109/ukricis.2010.5898126.

[7] H. Choset, ‘‘Coverage for robotics—A survey of recent results,’’ Ann.
Math. Artif. Intell., vol. 31, nos. 1–4, pp. 113–126, Oct. 2001. doi: 10.1023/
A:1016639210559.

[8] Y. Gabriely and E. Rimon, ‘‘Spanning-tree based coverage of continuous
areas by a mobile robot,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA),
May 2001, pp. 1927–1933. doi: 10.1109/robot.2001.932890.

[9] Y. Gabriely and E. Rimon, ‘‘Competitive on-line coverage of grid environ-
ments by a mobile robot,’’ Comput. Geometry, vol. 24, no. 3, pp. 197–224,
2003. doi: 10.1016/s0925-7721(02)00110-4.

[10] Y.-H. Choi, T.-K. Lee, S.-H. Baek, and S.-Y. Oh, ‘‘Online complete cover-
age path planning for mobile robots based on linked spiral paths using con-
strained inverse distance transform,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Oct. 2009, pp. 5788–5793. doi: 10.1109/iros.2009.5354499.

94656 VOLUME 7, 2019

http://dx.doi.org/10.1109/chicc.2015.7260567
http://dx.doi.org/10.1108/01439911211249779
http://dx.doi.org/10.1109/isie.1997.649051
http://dx.doi.org/10.1109/isie.1997.649051
http://dx.doi.org/10.1109/icit.2008.4608497
http://dx.doi.org/10.1109/ukricis.2010.5898126
http://dx.doi.org/10.1109/ukricis.2010.5898126
http://dx.doi.org/10.1023/A:1016639210559
http://dx.doi.org/10.1023/A:1016639210559
http://dx.doi.org/10.1109/robot.2001.932890
http://dx.doi.org/10.1016/s0925-7721(02)00110-4
http://dx.doi.org/10.1109/iros.2009.5354499

K. P. Cheng et al.: Graph Theory-Based Approach to Accomplish CCPP Tasks for Reconfigurable Robots

[11] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara, ‘‘Bsa:
A complete coverage algorithm,’’ inProc. IEEE Int. Conf. Robot. Automat.,
Apr. 2005, pp. 2040–2044. doi: 10.1109/robot.2005.1570413.

[12] S. X. Yang and C. Luo, ‘‘A neural network approach to complete coverage
path planning,’’ IEEE Trans. Syst., Man, Cybern., B (Cybern.), vol. 34,
no. 1, pp. 718–724, Feb. 2004. doi: 10.1109/tsmcb.2003.811769.

[13] M. A. Yakoubi and M. T. Laskri, ‘‘The path planning of cleaner robot for
coverage region using genetic algorithms,’’ J. Innov. Digit. Ecosyst., vol. 3,
no. 1, pp. 37–43, 2016. doi: 10.1016/j.jides.2016.05.004.

[14] T. R. Schäfle, S. Mohamed, N. Uchiyama, and O. Sawodny, ‘‘Coverage
path planning for mobile robots using genetic algorithm with energy
optimization,’’ in Proc. Int. Electron. Symp. (IES), Sep. 2016, pp. 99–104.
doi: 10.1109/elecsym.2016.7860983.

[15] A. Janchiv, D. Batsaikhan, B. Kim, W. G. Lee, and S.-G. Lee, ‘‘Time-
efficient and complete coverage path planning based on flow networks for
multi-robots,’’ Int. J. Control, Autom. Syst., vol. 11, no. 2, pp. 369–376,
2013. doi: 10.1007/s12555-011-0184-5.

[16] S. Dogru and L. Marques, ‘‘Towards fully autonomous energy efficient
coverage path planning for autonomous mobile robots on 3D terrain,’’
in Proc. Eur. Conf. Mobile Robots (ECMR), Sep. 2015, pp. 1–6. doi: 10.
1109/ecmr.2015.7324206.

[17] H. H. Viet, V.-H. Dang, M. N. U. Laskar, and T. Chung, ‘‘Ba*: An online
complete coverage algorithm for cleaning robots,’’ Appl. Intell., vol. 39,
no. 2, pp. 217–235, 2012. doi: 10.1007/s10489-012-0406-4.

[18] J. S. Oh, Y. H. Choi, J. B. Park, and Y. F. Zheng, ‘‘Complete coverage
navigation of cleaning robots using triangular-cell-based map,’’ IEEE
Trans. Ind. Electron., vol. 51, no. 3, pp. 718–726, Jun. 2004. doi: 10.1109/
tie.2004.825197.

[19] N. Tan, N. Rojas, R. E. Mohan, V. Kee, and R. Sosa, ‘‘Nested reconfig-
urable robots: Theory, design, and realization,’’ Int. J. Adv. Robot. Syst.,
vol. 12, no. 7, p. 110, 2015. doi: 10.5772/60507.

[20] V. Prabakaran, M. R. Elara, T. Pathmakumar, and S. Nansai, ‘‘hTetro:
A tetris inspired shape shifting floor cleaning robot,’’ in Proc. IEEE Int.
Conf. Robot. Automat. (ICRA), May/Jun. 2017, pp. 6105–6112. doi: 10.
1109/icra.2017.7989725.

[21] V. Prabakaran, R. E. Mohan, V. Sivanantham, T. Pathmakumar, and
S. Kumar, ‘‘Tackling area coverage problems in a reconfigurable floor
cleaning robot based on polyomino tiling theory,’’ Appl. Sci., vol. 8, no. 3,
p. 342, 2018. doi: 10.3390/app8030342.

[22] J. Bruce and M. Veloso, ‘‘Real-time randomized path planning for
robot navigation,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep./Oct. 2002, pp. 2383–2388. doi: 10.1109/irds.2002.1041624.

[23] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L.
Jurišica, ‘‘Path planning with modified a star algorithm for a mobile
robot,’’ Procedia Eng., vol. 96, pp. 59–69, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187770581403149X.
doi: 10.1016/j.proeng.2014.12.098.

[24] K. Al-Mutib, M. Alsulaiman, M. Emaduddin, H. Ramdane, and E. Mattar,
‘‘D* lite based real-time multi-agent path planning in dynamic environ-
ments,’’ in Proc. 3rd Int. Conf. Comput. Intell., Modelling Simulation,
Sep. 2011, pp. 170–174. doi: 10.1109/cimsim.2011.38.

[25] D. Portugal, C. H. Antunes, and R. Rocha, ‘‘A study of genetic algorithms
for approximating the longest path in generic graphs,’’ in Proc. IEEE
Int. Conf. Syst., Man Cybern., Oct. 2010, pp. 2539–2544. doi: 10.1109/
icsmc.2010.5641920.

[26] A. Björklund, T. Husfeldt, and S. Khanna, ‘‘Approximating longest
directed paths and cycles,’’ in Automata, Languages and Programming
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2004,
pp. 222–233. doi: 10.1007/978-3-540-27836-8_21.

[27] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer,
2010.

[28] E. Galceran and M. Carreras, ‘‘A survey on coverage path planning for
robotics,’’ Robot. Auton. Syst., vol. 61, no. 12, pp. 1258–1276, 2013.
doi: 10.1016/j.robot.2013.09.004.

[29] E. Ippoliti, Heuristic Reasoning. London, U.K.: Springer, 2015.
[30] L. Kuvcera, ‘‘Expected complexity of graph partitioning problems,’’ Dis-

crete Appl.Math., vol. 57, nos. 2–3, pp. 193–212, 1995. doi: 10.1016/0166-
218x(94)00103-k.

[31] H. Meyerhenke, P. Sanders, and C. Schulz, ‘‘Parallel graph partitioning for
complex networks,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
May 2015, pp. 1055–1064. doi: 10.1109/ipdps.2015.18.

[32] H. Choset and P. Pignon, ‘‘Coverage path planning: The boustrophedon
cellular decomposition,’’ in Field and Service Robotics. London, U.K.:
Springer, 1998, pp. 203–209. doi: 10.1007/978-1-4471-1273-0_32.

[33] F. S. Hillier and G. J. Lieberman, Introduction to Mathematical Program-
ming. New York, NY, USA: McGraw-Hill, 1996.

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[35] J. Edmonds, ‘‘Recursive backtracking,’’ inHow to Think About Algorithms.
New York, NY, USA: Cambridge Univ. Press, 2008, pp. 251–266. doi:
10.1017/cbo9780511808241.019.

KU PING CHENG received the B.Sc. degree in
computer engineering from the Singapore Univer-
sity of Technology and Design, in 2017, where
he is currently a Research Officer in autonomous
robotics with the Engineering Product Develop-
ment Pillar. His research interests include robotics
and automation, intelligent robots, control sys-
tems, and computer vision.

RAJESH ELARA MOHAN received the B.E.
degree from Bharathiar University, India, in 2003,
and the M.Sc. and Ph.D. degrees from Nanyang
Technological University, in 2005 and 2012,
respectively. He is currently an Assistant Professor
with the Engineering Product Development Pillar,
Singapore University of Technology and Design.
He is also a Visiting Faculty Member with the
International Design Institute, Zhejiang Univer-
sity, China. He has published over 80 papers in

leading journals, books, and conferences. His research interest includes
robotics with an emphasis on self-reconfigurable platforms as well as
research problems related to robot ergonomics and autonomous systems. He
was a recipient of the SG Mark Design Award, in 2016 and 2017, the ASEE
Best of Design in Engineering Award, in 2012, and the Tan Kah Kee Young
Inventors’ Award, in 2010.

NGUYEN HUU KHANH NHAN defended his
Ph.D. thesis at the Institute of Research and Exper-
iments for Electrical and Electronic Equipment,
Moscow, Russian. He is currently a Lecturer with
the Faculty of Electrical and Electronic Engineer-
ing, Ton Duc Thang University, Ho Chi Minh City,
Vietnam. His research interests include VLSI,
MEMS and LED driver chips, robotics vision,
robot navigation, and 3D video processing.

ANH VU LE received the B.S. degree in elec-
tronics and telecommunications from the Ha Noi
University of Technology, Vietnam, in 2007, and
the Ph.D. degree in electronics and electrical engi-
neering from Dongguk University, South Korea,
in 2015. He is currently with the Optoelectronics
Research Group, Faculty of Electrical and Elec-
tronics Engineering, Ton Duc Thang University,
Ho Chi Minh City, Vietnam. He is also a Post-
doctoral Research Fellow with the ROAR Labora-

tory, Singapore University of Technology and Design. His current research
interests include robotics vision, robot navigation, human detection, action
recognition, feature matching, and 3D video processing.

VOLUME 7, 2019 94657

http://dx.doi.org/10.1109/robot.2005.1570413
http://dx.doi.org/10.1109/tsmcb.2003.811769
http://dx.doi.org/10.1016/j.jides.2016.05.004
http://dx.doi.org/10.1109/elecsym.2016.7860983
http://dx.doi.org/10.1007/s12555-011-0184-5
http://dx.doi.org/10.1109/ecmr.2015.7324206
http://dx.doi.org/10.1109/ecmr.2015.7324206
http://dx.doi.org/10.1007/s10489-012-0406-4
http://dx.doi.org/10.1109/tie.2004.825197
http://dx.doi.org/10.1109/tie.2004.825197
http://dx.doi.org/10.5772/60507
http://dx.doi.org/10.1109/icra.2017.7989725
http://dx.doi.org/10.1109/icra.2017.7989725
http://dx.doi.org/10.3390/app8030342
http://dx.doi.org/10.1109/irds.2002.1041624
http://dx.doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/10.1109/cimsim.2011.38
http://dx.doi.org/10.1109/icsmc.2010.5641920
http://dx.doi.org/10.1109/icsmc.2010.5641920
http://dx.doi.org/10.1007/978-3-540-27836-8_21
http://dx.doi.org/10.1016/j.robot.2013.09.004
http://dx.doi.org/10.1016/0166-218x(94)00103-k
http://dx.doi.org/10.1016/0166-218x(94)00103-k
http://dx.doi.org/10.1109/ipdps.2015.18
http://dx.doi.org/10.1007/978-1-4471-1273-0_32
http://dx.doi.org/10.1017/cbo9780511808241.019

	INTRODUCTION
	HINGED-TETRO PLATFORM
	HTETRO ROBOT PLATFORM
	ROBOT CONFIGURATION
	WORKSPACE MODEL
	HTETRO ROBOT NAVIGATION STRATEGY

	GRAPH MODEL OF COMPLETE COVERAGE PROBLEM
	CONSTRUCTION OF HTETRO WORKSPACE GRAPH
	GRAPH PARTITIONING AND DYNAMIC PROGRAMMING

	STRIPE LAYER SUBGRAPH COMPLETE COVERAGE PATH PLANNING
	ACTION VALIDITY FOR RECONFIGURABLE ROBOTS
	GRAPH PARTITIONING IN STRIPE LAYER GRAPH
	RECURSIVE BACKTRACKING
	ASSURANCE OF COMPLETE AREA COVERAGE

	SIMULATIONS RESULTS
	DEMONSTRATION OF STRIPE LAYER COVERAGE
	DEMONSTRATION OF ROADMAP CONSTRUCTION
	ALGORITHM STARTING VARIABLES

	CONCLUSIONS
	REFERENCES
	Biographies
	KU PING CHENG
	RAJESH ELARA MOHAN
	NGUYEN HUU KHANH NHAN
	ANH VU LE

