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Abstract
Graph databases are becoming increasingly popular for modeling different kinds of networks for data analysis. They are built
over the property graph data model, where nodes and edges are annotated with property-value pairs. Most existing work in the
field is based on graphs were the temporal dimension is not considered. However, time is present in most real-world problems.
Many different kinds of changes may occur in a graph as the world it represents evolves across time. For instance, edges,
nodes, and properties can be added and/or deleted, and property values can be updated. This paper addresses the problem
of modeling, storing, and querying temporal property graphs, allowing keeping the history of a graph database. This paper
introduces a temporal graph data model, where nodes and relationships contain attributes (properties) timestamped with a
validity interval. Graphs in this model can be heterogeneous, that is, relationships may be of different kinds. Associated
with the model, a high-level graph query language, denoted T-GQL, is presented, together with a collection of algorithms
for computing different kinds of temporal paths in a graph, capturing different temporal path semantics. T-GQL can express
queries like “Give me the friends of the friends of Mary, who lived in Brussels at the same time than her, and also give
me the periods when this happened”. As a proof-of-concept, a Neo4j-based implementation of the above is also presented,
and a client-side interface allows submitting queries in T-GQL to a Neo4j server. Finally, experiments were carried out over
synthetic and real-world data sets, with a twofold goal: on the one hand, to show the plausibility of the approach; on the other
hand, to analyze the factors that affect performance, like the length of the paths mentioned in the query, and the size of the
graph.
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1 Introduction andmotivation

Property Graphs [4,28,43] have been increasingly gaining
popularity, especially for modeling and analyzing differ-
ent kinds of networks. The property graph data model
underliesmost graph databases in themarketplace [2]. Exam-
ples of graph databases based on this model are Neo4j,1

Janusgraph,2 and GraphFrames [16]. Typically, the work of
researchers and practitioners is based on graphs were the
temporal dimension is not considered, called static graphs
hereon. However, time is present in most real-world applica-
tions, and graphs are not the exception. Many different kinds
of changes may occur in a property graph as the world they
represent evolves over time: edges, nodes and properties can
be added and/or deleted, and property values can be updated,
to mention the most relevant ones. For instance:

1 http://www.neo4j.com.
2 http://janusgraph.org/.
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(a) In a phone call network, where each vertex represents a
person (or a phone number), and an edge (u, v, t, λ) tells
that u calls v at time t , with duration λ, new nodes and
edges are added frequently, and also the properties of u
or v may change over time.

(b) In social networks (e.g., Facebook, Twitter), each vertex
models a person (or an organization, etc.), and an edge
(u, v, t, λ) represents a relationship between two persons
u and v (e.g., u follows v, u is a friend of v) at time
t which lasts λ (u was a friend of v during an interval
whose duration is λ).

(c) In transportation networks, each vertex represents a loca-
tion, and an edge (u, v, t, λ) represents a road segment, a
street, or a highway segment, from u to v, existing since
time t , and whose interval of existence is λ.

(d) In transportation schedules, each vertex in a graph repre-
sents a location, and an edge (u, v, t, λ) is a trip (flight,
bus, etc.) from u to v departing at time t , whose duration
is λ.

Ignoring the time dimension could lead to incorrect
results, or prevent interesting analysis possibilities. For
example, in case (b), itmay be relevant to know the interval of
the relationships that occur in a social network, toweight their
strength, or to find out chains of relationships that occurred
simultaneously. As another example, a user may be inter-
ested in asking for “People who were still being Nutella fans
while they were living outside Italy,” or “Friends of Mary
while she was working at the University of Antwerp.” Those
are queries that could not be answered without accounting
for time. As another kind of problem, note that in case (c)
above, the shortest (or fastest) way to reach one city from
another one, varies with time, since a segment belonging
to the shortest path may have not existed in the past. Thus,
for example, a transportation analyst may ask for the “Time
saved for going from Buenos Aires to Pinamar after the con-
struction of Highway Number 11.” Further, this can be stated
as a hypothetical query [7,22], asking for the fastest way to
reach a city in case a new highway is built.

Literature in temporal graphs is relatively limited, and
basically oriented to address path problems particularly for
scenarios like (a) and (d) above. As far as the authors are
aware of, problems tackling scenarios like (b) and (c), which
require an approach over property graphs along the lines of
the temporal databases theory [47] have not been addressed
yet, with some partial exceptions discussed in Sect. 2. Tem-
poral property graph-based data models, query languages,
algorithms, and even, a study of the problems that can be
solved with this approach, are still open fields of study, and
this work tackles them.

1.1 Contributions

This paper studies how temporal databases concepts can be
applied to graph databases, in order to be able tomodel, store,
and query temporal graphs, in other words, to keep the his-
tory of a graph database. The work presented here is based
on the property graph data model. This is not the case of
most existing work on the topic (e.g., [51,53]), where only
edges are timestampedwith the initial time of the relationship
they represent, and the duration of such relationship. Further,
those works address homogeneous graphs (i.e., graphs were
only one kind of relationship exists). In the model presented
here, nodes, relationships, and node properties are times-
tamped with their temporal validity interval, and graphs are
heterogeneous, that means, relationships may be of differ-
ent kinds. These graphs are called Interval-labeled Property
Graphs in this paper. This allows richer queries, like “Give
me the friends of the friends ofMary, who lived in Brussels at
the same time than her”. Nevertheless, the model presented
in this paper also captures the semantics of the mentioned
works. For this, two path semantics are supported: Contin-
uous path semantics, defined along the lines of the work by
Rizzolo and Vaisman [42], and Consecutive Path Semantics.
Both semantics, and their implementation, are discussed in
detail. More concretely, the contributions of this work are:

– A temporal graph data model for property graphs, which
allows keeping the history of nodes, edges, and proper-
ties.

– A high-level graph query language, denoted T-GQL,
based on GQL [24] (standing for Graph Query Lan-
guage), the standard language for property graphdatabases
being defined by the graph database community at the
time of writing this paper.

– A collection of algorithms for computing different kinds
of temporal paths in a graph, capturing different temporal
path semantics.

– A Neo4j-based implementation of the above, and a client
interface for querying Neo4j graphs.

– A collection of experiments over the implementation,
over two use cases which capture the two semantics stud-
ied in this work: a synthetic data set of a social network,
and a real-world data set of flights between airports.

1.2 Paper organization

This paper is organized as follows. Section 2 reviews related
work, in order to put the present work in context. Section 3
introduces the temporal property graph data model that will
be used in the paper, and Sect. 4 presents and discusses T-
GQL, the high-level data language proposed for the model,
and Sect. 5 presents the implementation details. Section 6
reports preliminary experimental results. Section 7 studies
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how query performance can be enhanced indexing the dif-
ferent kinds of paths defined in the paper. Section 8 concludes
the paper.

2 Related work

There is a large corpus of work in the field of temporal rela-
tional databases, over which the present work builds [19,47].
TSQL2 [46] is the temporal extension to SQL, proposed to
the international standardization committees, and some of its
features are included in the SQL:2011 standard [38]. Further,
the temporal relational model has inspired temporal exten-
sions for different data models [13], like XML [1,14,42].
Given that this literature is well known, this section addresses
work related with graph models, starting from traditional
(non-temporal) property graphs, and then moving on to the
few existing work on temporal graphs. These existing pro-
posals are compared against the work presented here.

2.1 Graph databasemodels

There is an extensive bibliography on graph database mod-
els, comprehensively studied in [2,5]. The interested reader
is referred to these works for details. Multiple native graph
indexing methods and query languages (e.g., GraphQL [31])
were developed to efficiently answer graph-oriented queries.
In real-world practice, two graph database models are used:

(a) Models based on RDF,3 oriented to the Semantic Web.
(b) Models based on Property Graphs.

Models of type (a) represent data as sets of triples where each
triple consists of three elements that are referred to as the sub-
ject, the predicate, and the object of the triple. These triples
allow describing arbitrary objects in terms of their attributes
and their relationships to other objects. Informally, a collec-
tion of RDF triples is an RDF graph. Although the models
in (a) have a general scope, RDF graphs aim at represent-
ing metadata on the Web. Therefore, an important feature of
RDF-base graph models is that they follow a standard, which
is not yet the case for the other graph databases.

Temporal extensions forRDFhave been proposed.Gutiér-
rez et al. introduced time in RDF [25,26] by means of
timestamping RDF triples with their validity intervals, using
the notion of reification. Over this work, extensions to
SPARQL, the RDF’s standard query language, were pro-
posed [23,48].

In the property graph data model [3,4], nodes and edges
are labeled with a collection of (attribute, value)-pairs. Prop-
erty graphs extend traditional graphmodels, and are the usual

3 https://www.w3.org/RDF/.

choice in modern graph databases used in real-world prac-
tice.Hartig [28,29] proposes a formalwayof reconciling both
models, through a collection of well-defined transformations
between property graphs and RDF graphs. He shows that
property graphs could, in the end, be queried using SPARQL.
This is also studied in [6,50].

Since the problem studied in this paper is based on
the property graph model, the review presented next only
addresses this graph data model.

2.2 Datamodels for temporal graphs

Data models in the temporal graphs literature can be classi-
fied in three groups:

(a) Duration-labeled temporal graphs (DLTG)
(b) Interval-labeled temporal graphs (ILTG)
(c) Snapshot-based temporal graphs (SBTG)

Graphs of type (a) are typically proposed for the phone
calls and travel schedulingproblemsdescribed above.Graphs
of type (b) are more appropriate than the former ones, to
capture the history of the relationships in social networks.
Graphs of type (c) are based on the notion of snapshot tem-
poral databases, where a temporal database is seen either as
a sequence of snapshots, or a sequence composed of an ini-
tial database and a sequence of incremental updates. These
models are discussed next.

2.2.1 Duration-labeled temporal graphs

These kinds of graphs are studied by Wu et al. [51]. In these
graphs, a node is represented as a string (i.e., nodes are not
annotated with properties), and the edges are labeled with a
value representing the duration of the relationship between
two nodes. Based on this work, the same authors have elabo-
rated different proposals [32,52–55]. All of them address the
previously mentioned kinds of graphs. Definition 1 formally
explains the above description.

Definition 1 (Duration-labeled graphs (cf. [51]))
Let Gd = (V , E) be a temporal graph, where V is the set

of vertices, and E is the set of edges in G.

– Each edge e = (u, v, t, λ) ∈ E is a temporal edge repre-
senting a relationship from a vertex u to another vertex v

starting at time t , with a duration λ. For any two temporal
edges (u, v, t1, λ1) and (u, v, t2, λ2), t1 ≤ t2.

– Each node v ∈ V is active when there is a temporal edge
that starts or ends at v.

– d(u, v) : the number of temporal edges from u to v in
Gd .
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– E(u, v): the set of temporal edges from u to v in G, i.e.,
E(u, v) = {(u, v, t1), (u, v, t2), ..., (u, v, td(u, v))}.

– Nout (v) or Nin(v) : the set of out-neighbours or in-
neighbours of v in Gd , i.e., Nout (v) = {u : (v, u, t) ∈
E} and Nin(v) = {u : (u, v, t) ∈ E}.

– dout (v) or din(v): the temporal out-degree or in-degree
of v ∈ Gd , dout (v) = ∑

u∈Nout (v) d(v, u) and din(v) =∑
u∈Nin(v) d(u, v).

Graphs defined in this way are calledDuration Labeled. The
left-hand side of Fig. 1 shows an example, where, for sim-
plicity, λ = 1. ��

Asmentioned, themain use of this kind of temporal graphs
is, for example, for scheduling problems,where usually some
sort of shortest path must be computed. Therefore, the works
around this model propose ‘temporal’ variants of the well-
known Dijkstra’s algorithm [17]. In [51] (and the sequels
of this work, referred above), the authors also define four
different forms of ‘shortest’ paths. These are called heremin-
imum temporal paths, and account for differentmeasures: (1)
Earliest-arrival path, defined as a path that results in the ear-
liest arrival time starting from a source x to a target y; (2)
Latest-departure path, defined as a path that gives the latest
departure time starting from x in order to reach y at a given
time; (3) Fastest path, defined as the path that goes from x
to y in the minimum elapsed time; and (4) Shortest path,
defined as the path that is shortest from x to y in terms of
overall traversal time along the edges.

2.2.2 Interval-labeled temporal graphs

Two main approaches exist in the temporal databases liter-
ature [47], for keeping the history of a database: tuple or
attribute-timestamping, where a temporal label is defined
over the database objects; or database versioning, where dif-
ferent versions of a database are created at different time
instants. The latter is described below in this section. The
former is discussed next. Definition 2 below characterizes
interval-labeled temporal graphs (ILPG). From this general
definition, different constraints can be stated, leading to dif-
ferent models, as the one introduced below in this paper,
based on the work by Campos et al [10] (see Sect. 3), the
first approach to apply the ILTG notion to property graphs.
Transaction time is considered in the remainder, that is, the
timewhere the information is stored in the database, opposite
to valid time, which reflects the time where the data is valid
in the real world. This will make the presentation simpler,
particularly when discussing updates (Sect. 3.4) However,
as it is discussed later, a limited form of retroactive updates
is also allowed, which means that the model supports both
kinds of times up to a certain extent.

Definition 2 (Interval-labeled temporal graphs) Let Gd =
(V , E) be a temporal graph, where V is the set of vertices,
and E is the set of edges inG. ADuration Labeled Temporal
Graph. is a temporal graph where each edge e = (u, v, I ) ∈
E is a temporal edge representing a relationship from a vertex
u to another vertex v, valid during a time interval I = [ts, te].
��

The right-hand side of Fig. 1 shows a graph equivalent
to the one on the left of such figure, but where edges are
labeled with their validity interval instead of a timestamp
representing a duration. In the ILTG on the right-hand side
of Fig. 1, for example, the edge between nodes b and g is
labeled with the interval [3, 4]. This is due to the fact that the
same edge, on the left-hand side of the same figure is labeled
3, representing the initial time of the edge, with a duration
of 1. That means, if the graph represents a bus schedule, the
bus leaves from b at time instant 3, and the trip between b
and g takes one time unit.

Example 1 The path traversal times in Sect. 2.2.1 are also
valid in this representation. Consider for example, the com-
putation of the earliest arrival time from node a to every node
in the graph, in the interval [1, 4]. The algorithm proposed in
[51] gives as a result eat(b) = 2, eat(g) = 4, eat(h) = 4,
and eat( f ) = 4. Obviously, this can also be computed with
the interval-labeled graph. It is easy to see that, for instance,
eat(g) = 4, with path 〈(a, b, [1, 2]), (b, g, [3, 4])〉, since
〈(a, b, [2, 3]), (b, g, [3, 4])〉 cannot be used since the arrival
time at b is equal to the departure time from b to g. ��

The discussion above gives the intuition that ILTGs and
DLTGs are equivalent, in the sense that both allow represent-
ing the same information using different encodings for time
(the proof is outside the scope of this paper). ILTGs appear
to be, at first sight, more appropriate than DLTGs to support
classic temporal queries, for example, the ones asking for the
history of relationships in a social network. At the same time,
travel schedules andmobility data can also bemodeled in this
way, as Example 1 shows.Moreover, current graph databases
are based on the property graph data model, which are not
supported in the work byWu et al. Therefore, the data model
in the present paper along with its the accompanying query
language are based on interval-labeled property graphs.

2.2.3 Temporal graphs as a sequence of snapshots

The work by Semertzidis and Pitoura [45] aims at finding
the most persistent matches of an input pattern in the evolu-
tion of graph networks. The authors assume that the history
of a node-labeled graph is given in the form of graph snap-
shots corresponding to the state of the graph at different time
instants. Given a query graph pattern P, the work addresses
the problem of efficiently finding those matches of P in the
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Fig. 1 Left: a duration-labeled
temporal graph (cf. [51]); right:
an interval-labeled temporal
graph for the graph on the left

graph history that persist over time, that is, those matches
that exist for the longest time. These queries are called graph
pattern queries. Locating durable matches in the evolution
of large graphs has many applications, like for example,
long-term collaborations between researchers, durable rela-
tionships in social networks, and so on. In [45], a temporal
graph is defined as follows, which defines the third category
of temporal graphs introduced above.

Definition 3 (Snapshot temporal graph (cf. [45])) A tem-
poral graph G[ti , t j ] in a time interval [ti , t j ], is a sequence
{Gti ,Gti+1 , . . . ,Gt j } of graph snapshots.

Huo and Tsotras [33] study the problem of efficiently
computing shortest-paths on evolving social graphs. The
authors define a temporal graph as an initial snapshot, fol-
lowed by updates. The traditional Dijkstra’s algorithm [17]
is extended, to compute shortest-path distance(s) for a time-
point or a time-interval, within a social graph’s evolving
history. Temporal queries are thus issued on certain histor-
ical graph snapshot(s). For example, temporal shortest-path
queries in a social network can discover how close two
given users were in the past and how their closeness evolved
over time. Finally, several different kinds of path queries are
defined. For example, a time point shortest path query returns
the shortest-path p from a source node vs to a target node
vt , such that both are temporally valid at query time tq (all
edges in p are valid at query time tq ).

2.2.4 Other work on temporal graphs

Catutto et al. [11,12] present a temporal data model where
temporal data are organized in so-called frames, namely the
finest unit of temporal aggregation. A frame is associated
with a time interval and allows retrieving the status of the
social network during such interval. This model does not
support changes in the attributes of the nodes. Also, frame
nodes may become associated with a large number of edges.

Redundant data are also a problem since each frame is con-
nected to all the existing data, so a frequently changing graph
would become full of redundant connections.

Khurana and Deshpande [35,36] study methods to effi-
ciently query historical graphs. They focus on the particular
problem of querying the state of a network as of a certain
point (snapshot) in time. The work is based on versioning.
Basically, the current graph and a series of deltas containing
the graph variation over time are stored. Among other works
relatedwith temporal graphs,Hanet al. [27] present an engine
for temporal graph mining, and Kostakos [37] shows the use
of temporal graphs to represent dynamic events.

Johnson et al. [34] introduce Nepal, standing for Net-
work Path Language, specifically oriented to time-travel path
queries over communication networks that can change their
state over time. The authors define a temporal inventory, a
structure where changes over nodes and edges in the network
are recorded. Using a notion similar to the one of continu-
ous paths, a valid pathway at time t is defined as a pathway
whose nodes and edges are all valid at time t. In this way,
the status of a network at a given time can be obtained. An
SQL-like query language is described through examples. For
query evaluation, queries are translated to a so-called path-
way algebra. The idea is that a pathway is the first-class
citizen in this language, and operators are basically condi-
tions over these pathways. However, many issues arising in
temporal databases are not addressed (e.g., granularity and
complex temporal operations). Further, no implementation
is reported.

Lazarevic [40] shows how the versions of a graph can
be maintained and queried in Neo4j using Cypher, Neo4j’s
high-level query language [21]. Although interesting from a
practical point of view, the proposal is ad-hoc rather than an
effort to produce a temporal graph database. Path queries are
not discussed in this work.

Byun et al. [8,9] address the problem of computing path
traversals in large temporal graphs. In [9] the authors intro-
duce ChronoGraph, a system that performs path traversals
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satisfying temporal constraints on paths. ChronoGraph rec-
onciles point-based and interval-based semantics, in the
sense of the notion of telic and atelic temporal data [49].
This is also the case of the model and language presented
in this paper (as follows from Sects. 2.2.1 and 2.2.2 ).
The paper presents three kinds of temporal path traversal
algorithms, implemented on top of ChronoGraph: temporal
breadth-first search, temporal depth-first search, and tempo-
ral single source shortest path. In these algorithms, temporal
paths are traversed considering the temporal labels of the
graph’s edges. A prototype implementation of ChronoGraph
on top of the Tinkerpop framework is also presented. An
extension of Gremlin [44] is used as the query language,
that is, ChronoGraph’s language is imperative (which makes
sense, since the system is aimed at path traversal). On the
contrary, the model presented here defines its own declara-
tive high-level query language, T-GQL, designed along the
lines of traditional temporal databases languages. Also, in
[9], each node in the temporal graph is associated with a col-
lection of static (property, value) pairs. Conversely, in the
model of Sect. 3 property evolution is supported.

2.2.5 Data models comparison

This section discusses the main differences between the
model proposed in this paper, and the works commented
above.

First, theworks in [32,51–55] address unlabelled homoge-
neous graphs. The same applies to the snapshot-basedmodels
discussed in Sect. 2.2.3. Opposite to the former, the model
proposed in the present paper is based on the property graph
data model, and supports heterogeneous graphs. Also, com-
puting the temporal paths presented in this paper over the
snapshot-basedmodelswould be computationally expensive.

Second, in the work by Byun et al. [8,9], temporal proper-
ties defined over the nodes are represented as a collection of
static (property, value) pairs, while in the model introduced
in Sect. 3, temporal properties are first-class citizens. Fur-
ther, the temporal query language associated with the former
is based on Gremlin, a procedural language appropriate for
path traversals, while the present paper introduces T-GQL, a
high-level declarative language built along the lines of classic
temporal database semantics. This is not a minor difference,
since, as follows from the discussion in Sect. 5.4 below,
generalizing Gremlin to address continuous and consecutive
temporal paths is not a trivial task.

Third, although the model proposed in [34] supports the
notion of continuous path, the work does not dive into many
problems arising in temporal databases, and also does not
report an implementation or practical results. Moreover, the
query language is limited to so-called pathway queries. On
the other hand, the model and query language presented in
this paper support three different path semantics, namely con-

tinuous, pairwise continuous, and consecutive (see Sect. 3),
as well as a wider spectrum of temporal queries.

To close this section, it is worth mentioning that the works
discussed in this section do not tackle problems that are typ-
ical in a temporal database context, since those works are
mainly focused on the problem of computing path traversals.
For example, temporal constraints are implicit in the data
models supporting the works above, while the temporal data
model presented in Sect. 3 states such constraints explicitly
(Definition 6). In addition, the temporal database approach
allows the model to support queries that mention time gran-
ularities that differ from the ones in the database (Sect. 4.4).
The approach also allows T-GQL to express path queries of
different kinds, as well as a rich variety of temporal queries
(see Sect. 4) which other temporal graph data models do
not support. For example, queries that ask for paths valid in
an interval defined explicitly (using the BETWEEN clause) or
determined by a condition (through theWHEN clause), like in
the query “Who were friends ofMary while she was living in
Antwerp?”. Further, queries returning a graph as of a certain
instant using the SNAPSHOT clause can also be expressed. To
the best of the present paper authors’ knowledge, no tempo-
ral graph data model supports these kinds of queries together
with the features presented in this section.

3 A datamodel for interval-labeled property
graphs

Property graphs are graphs such that their nodes and edges
are labeled with a collection of (property,value) pairs. These
properties can evolve over time. Therefore, in order to keep
the history of the graph, the datamodelmust not only account
for the changes in the relationships and the nodes, but also
for the changes in the properties. A first approach for this
was presented by Campos et al. [10]. Definition 4 builds on
that work.

Definition 4 (Temporal property graph) A temporal prop-
erty graph is a structure G(No, Na, Nv, E) where G is the
name of the graph, E is a set of edges, and No, Na, and
Nv are sets of nodes, denoted object nodes, attribute nodes,
and value nodes, respectively. Every object and attribute
node, and every edge in the graph are associated with a
tuple (name,interval). The name represents the con-
tent of the node (or the name of the relationship), and the
interval represents the period(s) during which the node
is (was) valid, and it is a temporal element (i.e., a set of
intervals). Analogously, value nodes are associated with a
(name,interval) pair. For any node n, the elements in its
associated pair are referred to as n.name, n.interval,
and (for value nodes)n.value. In addition, nodes and edges
in G satisfy the constraints in Definition 6 below. As usual in
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temporal databases, a special value Now is used to tell that
the node is valid at the current time (see Sect. 3.4 for more
details on this). All nodes also have an identifier, denoted id.

��
In Definition 4, object nodes represent entities (e.g., Per-

son), edges represent relationships between object nodes
(e.g., LivesIn, FriendOf), attribute nodes describe entities
(e.g., Name); Finally, value nodes represent the value of an
attribute (e.g.,Mary). To illustrate this more in detail, the first
running example that will be used in this paper is presented
next.

Example 2 (Data model) The model in Definition 4 is used
to represent the social network depicted in Fig. 2. There are
three kinds of object nodes, namely Person, City, and Brand.
There are also three types of temporal relationships: LivedIn,
Friend, and Fan. The first one is labeled with the periods
when someone lived somewhere. The second one is labeled
with the periods when two people were friends. The temporal
semantics of the relationship Fan is similar. For example,
there is an edge of type Fan, joining nodes 14 (a Person node)
and 70 (a Fan node), indicating thatMary Smith is a Samsung
fan since 1982. The attribute nodeName represents the name
associated with a Person node, and it is also temporal. The
actual value of the attribute node is represented as a value
node (represented as ellipses in Fig. 2), e.g., the node in green
with id=34 and value “Mary Smith”. Note that this value
changes to “Mary Smith-Taylor”, showing the temporality
of the attribute node Name. Finally, for clarity, if a node is
valid throughout the complete history, the temporal labels are
omitted. ��

Note that edges could also have properties. However, for
simplicity, they are assumed to remain constant throughout
their lifespan, that is, they cannot change. Although this is of
course a limitation of the model, this assumption is reason-
able for most cases, and contributes to readability, without
keeping out any fundamental issue. Further, it is worth point-
ing out that this proposal is implemented at this stage over
Neo4j, and this database does not allow indexing edge prop-
erties.

Before introducing the temporal graph’s constraints, some
notation is needed. In Definition 6 below, an edge is denoted
by e{na, nb} where na and nb are nodes connected by the
edge e. An attribute node will be represented as na{n} where
n is the object node connected to na . A value node is denoted
nv{na} where na is the attribute node connected to nv . Also,
the following definition is needed.

Definition 5 (Lifespan of an edge) Consider a node n, and a
collection of k edges outgoing from n, Eouti , i = 1, . . . , k
such that Outi .name is the same for all Eouti . Also, let
Ein j , j = 1, . . . ,m be the set of m edges with the same

name incoming to node n. The union of the temporal labels
of all these edges is called the lifespan of n, denoted l(n). ��
Definition 6 (Constraints) For the graph in Definition 4, the
following constraints hold:

1. ∀n, n′ ∈ No, n = n′ ∨ n.id �= n′.id
2. ∀n, n′ ∈ Na, n = n′ ∨ n.id �= n′.id
3. ∀n, n′ ∈ Nv, n = n′ ∨ n.id �= n′.id
4. ∀nv{na}, n′

v{na} ∈ Nv, nv = n′
v ∨ nv.value �=

n′
v.value

5. ∀ei {n, n′}, e j {n, n′} ∈ E ∧ ei .name = e j .name, ei =
e j ∨ ei .name �= e j .name

6. ∀n ∈ No, e{n, n′} ∈ E ⇒ n′ ∈ No
⋃

Na

7. ∀n ∈ Na, e{n, n′} ∈ E ⇒ n′ ∈ No
⋃

Nv

8. ∀n ∈ Nv, e{n, n′} ∈ E ⇒ n′ ∈ Nv

9. ∀n ∈ Na(∃ no ∈ No ∃e ∈ E (e(no, n) ∧ (�n′ ∈
(Na

⋃
Nv

⋃
No) ∧ e′ ∈ E ∧ e′{n′, n})))

10. ∀n ∈ Nv (e{n′, n} ∧ n′ ∈ Na) ⇒ �n′′ ∈ (Na
⋃

Nv⋃
No) (e′′{n′′, n} ∈ E ∨ e′′{n, n′′} ∈ E)

11. ∀ne{n, n′} ∈ Ne, ne.interval ⊂ n.interval ∩
n′.interval

12. ∀na{n} ∈ Na, na .interval ⊂ n.interval
13. ∀nv{na} ∈ Nv, nv.interval ⊂ nv.interval
14. ∀nv{na}, n′

v{na}, nv �= n′
v, nv.interval ∩ n′

v.interval =
∅

Constraints 1 through 3 state that all nodes in the graph
have a different id. Constraint 4 requires coalescing all nodes
with the same value associated with the same attribute node;
thus, the interval becomes a temporal elementwhich includes
all periodswhere the node had such value.Analogously, Con-
straint 5 applies to edges: all edges with the same name
(i.e, representing the same relationship type), between the
same pair of nodes, are coalesced. Constraints 6 through 8
state how the nodes must be connected, namely: (a) An
Object node can only be connected to an attribute node or
to another object node; (b) Attribute nodes can only be con-
nected to non-attribute nodes; and (c) Value nodes can only
be connected to attribute nodes. The cardinalities of these
connections are stated by Constraints 9 through 10, which
tell that attribute nodes must be connected by only one edge
to an object node, and value nodes must only be connected
to one attribute node with one edge. Finally, Constraints 11
to 14 restrict the values of the interval property. ��

3.1 Continuous path

In ILTGs, it is usually the case when queries ask for paths
that are valid continuously during a certain interval. This
requirement is captured by the notion of continuous path
[42], introduced in Definition 7.
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Fig. 2 A temporal graph and its different kinds of nodes

Definition 7 (Continuous path) Given a temporal property
graphG (interval-labeled), a continuous path (cp) with inter-
val T from node n1 to node nk , traversing a relationship r , is
a sequence (n1, . . . , nk, r , T ) of k nodes and an interval T
such that there is a sequence of consecutive edges of the form
e1(n1, n2, r , T1), e2(n2, n3, r , T2), . . . , ek(nk−1, nk, r , Tk),
T = ⋂

i=1,k Ti . ��

Example 3 (Continuous path) Consider the graph in Fig. 3,
where e1(n1, n2, f r iend, [1, 9]]), e2(n2, n3, f r iend,

[2, 3]), e3(n3, n4, f r iend, [1, 10]), e4(n1, n5, f r iend,

[2, 8]), and e5(n5, n4, f r iend, [4, 7]).There are two contin-
uous paths, (n1, n2, n3, n4, f r iend, [2, 3]) and (n1, n5, n4,
f r iend, [4, 7]). That is, n4 can be reached traversing the
edges labeled friend from n1 during the interval [2, 3] with
a path of length 3, and during the interval [4, 7] with a path
of length 2. The interval when n4 is continuously reachable
from n1, is obtained by taking the union of both intervals,
that is [2, 7]. ��

Fig. 3 Continuous paths

3.2 Pairwise continuous path

Requiring a path to be valid throughout a time interval is a
strong condition for a graph query. In many cases, querying
temporal graphs requires a weaker notion of temporal path.
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Consider for example the case of a social network like the
one in Fig. 2. Also assume that there are friendship relation-
ships between a person p1 and a person p2, in an interval
[2, 7]. Also, p2 was a friend of p3 during the interval [6, 12],
and p3 was a friend of p4 during the interval [10, Now].
It can be seen that there is no continuous path from p1
to p4. However, the user may be interested in a transitive
friendship relationship such that there is an intersection in
the interval of two consecutive edges. In the example above
such intersection exists, e.g., there is an overlap between
(p1, p2, f r iend, [2, 7]) and (p2, p3, f r iend, [6, 12]), and
between the latter and (p3, p4, f r iend, [10, Now]). That
means, although there is not a continuous path between p1
and p4, there is a consecutive chain of pairwise temporal
relationships. This is formalized by the notion of pairwise
continuous path.

Definition 8 (Pairwise continuous path) Given a tempo-
ral property graph G, a pairwise continuous path between
two nodes n1, nk , through a relationship r , is a sequence of
edges e1(n1, n2, r , [ts1 , t f1 ]), . . . , ek(nk−1, nk, [tsk−1, t fk ]),
such that (ts1 ≤ ts2 ≤ t f1 ∨ ts2 ≤ t f1 ≤ t f2) ∧ . . . ∧
(tsk−1 ≤ tsk ≤ t fk−1 ∨ tsk ≤ t fk−1 ≤ t fk ). ��

3.3 Consecutive paths

Figure 1 shows that DLTGs can also be represented as ILTGs.
Therefore, the queries in Sect. 2.2.1, e.g., asking for earliest
or fastest arrival times in aDLTG, require a different temporal
semantics than the ones in Sects. 3.1 and 3.2. Definition 9
introduces the notion of consecutive path.

Definition 9 A consecutive path Pc traversing a relation-
ship r in a temporal property G is a sequence of edges
P = (e1, e2, r , [t1, t2]) . . . , (ek−1, ek, r , [tk−1, tk])) where
(ni , ni+1, r , [ti , ti+1]) is the i th temporal edge in P for
1 ≤ i ≤ k, and ti−1 < ti for 1 ≤ i ≤ k. Instant tk is
the ending time of P , denoted end(P), and t1 is the starting
time of P , denoted start(P). The duration of P is defined
as dura(P) = end(P)− start(P), and the distance of P as
dist(P) = k. ��

With the notion of consecutive path, several different tem-
poral paths can be defined, analogously to the paths for
DLTGs described by Wu et al. in [51]. The ones studied
in this paper are introduced in Definition 10.

Definition 10 (Types of consecutive paths) Let G be a tem-
poral property graph G, a relationship r in G, a source node
ns , and a target node nt , both in G; there is also a time inter-
val [ts, te]. LetP(ns, nt , r , [ts, te]) = {P | P is a consecutive
path from x to y such that

start(P) ≥ ts, end(P) ≤ te}. The following paths can
be defined:

The earliest-arrival path (EAP) is the path that can be
completed in a given interval such that the ending time of the
path is minimum. Formally,

EAP: P ∈ P(ns, nt , r , [ts, te]) such that end(P) =
min{end(P ′) : P ′ ∈ P(ns, nt , r , [ts, te])}.

The latest-departure path (LDP) is the path that can be
completed in a given interval such that the starting time of
the path is maximum. Formally,

LDP: P ∈ P(x, y, [ts, te]) such that start(P) = max
{start(P ′) : P ′ ∈ P(ns, nt , r , [ts, te])}.

The fastest (FP) is the path that can be completed in a
given interval such that its duration is minimum. Formally,

FP: P ∈ P(ns, nt , r , [ts, te]) such that dura(P) = min
{dura(P ′) : P ′ ∈ P(ns, nt , r , [ts, te])}.

The shortest path (SP) is the path that can be completed
in a given interval such that its length is minimum. Formally,

SP: P ∈ P(ns, nt , r , [ts, te]) such that dist(P) = min
{dist(P ′) : P ′ ∈ P(ns, nt , r , [ts, te])}. ��

Based onDefinition 10,more kinds of paths can be defined
to address practical problems. For example, for scheduling,
a fastest path can be defined restricted to the paths such that
there is a minimum ‘waiting’ time between two consecutive
edges. Or, for phone fraud analysis, a path such that the time
between two consecutive edges is below a given threshold,
can be computed.

3.4 Updating the graph

A graph like the one in Fig. 2 could be updated at any time.
These updates may involve the addition or deletion of a
node of any kind, and the addition or deletion of an edge.
In addition, it is assumed that updates are performed over
a consistent document (cf. Definition 6), and must leave the
graph in a consistent state. Before discussing updates inmore
detail, the semantics of time must be further explained.

3.4.1 The semantics of time

In temporal databases, using a current time variable has sev-
eral implications which require the definition of a precise
semantics [15]. When using the transaction time approach,
like in this work, the problems arising from the use of Now
to represent a moving current time are considerably reduced
compared with a valid time data model, because in valid
time databases, timestamps are provided by the user, while
in transaction time ones, these values are usually handled by
the underlying database system. The semantics adopted for
the current time variable Now in this work, is the one in [15],
that is, if the ending point of an interval is Now, the edge
is valid until the timestamped element is updated, yielding
the so-called until changed semantics. As a consequence, the
start instant of an interval can never beNow. In what follows,
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Fig. 4 Left: updating nodes; right: updating edges

the attributes representing the start and end times of a time
interval are denoted FROM and TO, respectively.

3.4.2 Node and edge updates

The addition of a node is straightforward. Adding an object
node has no constraint. To add an attribute node, the corre-
sponding object node must previously exist. Analogously, in
the case of a value node, an attribute node must preexist. In
all cases, the temporal constraints in Definition 6 require
that, for example, the lifespan of an attribute node does not
fall outside the lifespan of its associated object node, and the
same for a value node with respect to an attribute node.

A deletion of a node or edge is performed in the tem-
poral database sense. That means, only currently existing
objects can be deleted. Informally, when deleting a node n at
time td , Now is replaced by td in interval.TO. Analogously,
updating an attribute or value node at time tu implies delet-
ing the current node at tu , and creating a new one, where
interval.FROM= tu+1, where tu+1 is the instant immediately
following the updating time in the node’s granularity. The
left-hand side of Fig. 4 depicts an example. It shows that the
name of Mary Smith was changed to Mary Smith-Taylor
at time tc. Now, assume that the complete Person node
number 14 must be deleted at time td . This implies setting
interval.TO= td in nodes 14, 24, and 35. Thus, deleting an
object node at time td also implies deleting in the tempo-
ral database sense, the related attribute and value nodes, that
means, setting all Now values to td . Since consistency must
be maintained, all currently incoming and outgoing edges
must be ‘deleted’ too.

Adding or deleting an edge is a little bit more involved,
since it impacts on the paths defined in Sects. 3.1 through 3.3.
The example on the right-hand side of Fig. 4 shows that,
for instance, the edge in dashed line can be inserted at any
time, provided that the temporal constraints are satisfied.That
means, in this example, that the edge interval could be any-
one starting in 1998, the start time of the interval of Node 90.
This shows that the model supports also a restricted form of
valid time, since these kinds of retroactive updates are also

allowed. Note, however, that this new edge produces a new
continuous path with interval [2006, Now]. Now, assume
that the person with id = 14 stops following the person
with id = 55 at time td . Since edge deletion is also log-
ical rather than physical, the interval of the edge between
the two nodes becomes [2005, td ], and all continuous paths
must be modified, since the edge ceases to exist. However,
the continuous paths existing prior to td must remain. This
impacts the indices that may exist over the paths (see Sect. 7).
Also, note that if this person, after some time, starts follow-
ing again the same person with id = 55, at time ti , a new
interval must be added to the same edge, which becomes
{[2005, td], [ti , Now]}.

4 T-GQL syntax and semantics

This section introduces T-GQL, a high-level query language
for graph databases. The language has a slight SQL flavor,
although it is based on Cypher,4 Neo4j’s high-level query
language.Cypher’s formal semantics can be found in [20,21].
T-GQL also extends Cypher with a collection of functions,
whose implementation is explained in Sect. 5.

4.1 Basic statements

The syntax of the language has the typical SELECT- MATCH-
WHERE form. The SELECT clause performs a selection over
variables defined in theMATCH clause (aliases are allowed).
The MATCH clause may contain one or more path patterns
(of fixed or variable length) and function calls. The result of
the query is a temporal graph. This can be modified by the
SNAPSHOT operator, which allows retrieving the state of the
graph at a certain point in time. The basic syntax and seman-
tics will be introduced using the social network in Fig. 2.
Path functions implementing the consecutive path semantics
will be covered using a flight scheduling example.

4 https://neo4j.com/docs/cypher-manual/current/.
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Consider the query: “List the friends of the friends ofMary
Smith-Taylor”. This does not include temporal features, but
allows introducing the basic T-GQL syntax.

SELECT p2
MATCH (p1:Person) - [:Friend*2] -> (p2:Person)
WHERE p1.Name = ’Mary Smith-Taylor’

Note that this query just returns the object nodes (recall
the model of Definition 4), which, for a final user, would not
be useful. A variant to the query above would select the name
of the friends of friends of Mary as follows (an alias is used
in the query):

SELECT p2.Name as friend_name
MATCH (p1:Person) - [:Friend*2] -> (p2:Person)
WHERE p1.Name = ’Mary Smith-Taylor’

For returning all the paths, the wildcard operator ‘*’ is
used. The expression below returns the three paths of length
2 from the node representing Mary.

SELECT *
MATCH (p1:Person) - [:Friend*2] -> (:Person)
WHERE p1.Name = ’Mary Smith-Taylor’

The T-GQL language supports the three path semantics
explained in previous sections: (a) Continuous path seman-
tics; (b) Pairwise continuous path semantics; (c) Consecutive
path semantics. These semantics are implemented by means
of functions, which are included in a library of Neo4j plu-
gins. To compute temporal paths, two types of functions
are defined: Coexisting and Consecutive. Both receive two
nodes as arguments. These are explained in the following
sections.

Remark 1 Functions computing continuous and pairwise
paths, do not accept thewildcard ‘*’. That is, the length of the
pathsmust be constrainedby theuser.On the contrary, tempo-
ral functions computing consecutive paths (earliest, fastest,
etc.) do not support a limited search, therefore ‘*’ must be
used.

4.2 Continuous path queries

Query 1 requires the computation of all continuous paths
of length 2, over the social network running example. As
Remark 1 mentions, the length of the continuous paths in a
query must be explicitly specified.

Query 1 Compute the friends of the friends of each person,
and the period such that the relationship occurred through
all the path.

In Fig. 2, for example, Cathy (person node 12) was a friend
of Pauline (person node 11) between 2002 and 2017. Also,
Pauline was a friend of Mary (person node 14) between
2010 and 2018. Thus, the path (Mary → Pauline →
Cathy, [2010, 2017])will be in the answer to Query 1, since
the whole path was valid in this interval (Definition 7). The
query reads in T-GQL:

SELECT path
MATCH (n:Person), path = cPath((n)-[:Friend*2]

-> (:Person))

In this case, a record is returned for each path. The mod-
ifiers SKIP and LIMIT can be used, as in Cypher, to get a
specific path or a range. For example, to get the third path in
the answer:

SELECT path
MATCH (n:Person), path = cPath((n)-[:Friend*2]
-> (:Person))
SKIP 2
LIMIT 1

SELECT path
MATCH (n:Person), path = cPath((n)-[:Friend*2]

-> (:Person))
SKIP 2
LIMIT 1

A continuous path search between two specific persons
can also be performed, as Query 2 shows.

Query 2 Find the continuous paths betweenMary Smith Tay-
lor and Peter Burton with a minimum length of two and a
maximum length of three.

SELECT paths
MATCH (p1:Person), (p2:Person),
paths = cPath((p1) - [:Friend*2..3] -> (p2))
WHERE p1.Name = ’Mary Smith-Taylor’

and p2.Name = ’Peter Burton’

The cpath function computes the continuous path. The
result is a single path of length three (the other possible path,
with length one, is discarded). The path is an array of the
object nodes traversed together with their interval, attributes,
id and title. The interval of the result is the intersection of the
intervals of the object nodes in the path.

The figure below shows the format of the result. It can
be seen that attribute and value nodes are embedded in the
answer in an inline fashion, to facilitate their search (as men-
tioned previously, object nodes are not likely to be useful
for a final user). Note that the value node “Mary Smith”
is ignored since its interval [1937–1959] does not intersect
with the continuous path’s interval [2010–2017]. Also note
that the value node returned has the interval [2010–2017],
which is the intersection of the intervals [1960 − Now]
(the interval of the value) and [2010–2017]. Finally, the
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interval of the continuous path is [2010–2017], which is
the result of the intersection between the traversed edges
([2010−2018], [2002−2017], [1995 − Now]).

paths
{
"path": [

{ "interval": ["1937-Now" ],
"attributes": {

"Name": [
{"value": "Mary Smith-Taylor",

"interval": "[2010 - 2017]" }]
},

"id": 8,
"title": "Person"

},
{

...
}

],
"interval": "2010-2017"

}

The cPath function is overloaded to return a Boolean
value, like Query 3 shows.

Query 3 Find the names of the persons such that there is a
continuous path from them to Peter Burton.

SELECT p1.Name
MATCH (p1:Person), (p2:Person)
WHERE p2.Name = ’Peter Burton’
and cPath((p1) - [:Friend*2..3] -> (p2))

In this case the function call is located in the WHERE
clause, and the parser decides from the context that the
Boolean procedure must be used.

Pairwise continuous paths (Definition 3.2) can be also
computed, using the pairCPath function. An example is
shown below.

Query 4 Find the pairwise continuous paths between Mary
Smith Taylor and Peter Burton with a minimum length of two
and a maximum length of three.

SELECT paths
MATCH (p1:Person), (p2:Person),
paths = pairCPath((p1)-[:Friend*2..3]->(p2))
WHERE p1.Name = ’Mary Smith-Taylor’

and p2.Name = ’Peter Burton’

The intermediate results of a query can be filtered by an
interval I , provided by the user. This filters out the paths
whose interval does not intersect with I . The granularity of
the starting and ending instants of the interval must be the
same. Query 5 illustrates this.

Query 5 Compute all the continuous paths of friends between
MarySmithTaylor andPeterBurton, in the interval [2018, 2020],
with a minimum length of 2 and maximum length of three.

In the running example, there are two possible paths between
Mary and Peter: one of length 3 and the other of length 1
(which is thus, discarded). Therefore, the only continuous
path obtained would be Mary → Pauline → Cathy →
Peter , [2010, 2017]. However, the path will be filtered out
of the result set, since [2018, 2020]∩ [2018, 2020] = ∅. The
query is expressed as:

SELECT paths
MATCH (p1:Person), (p2:Person),
paths = cPath((p1) - [:Friend*2..3] -> (p2),

’2018’, ’2020’)
WHERE p1.Name = ’Mary Smith-Taylor’

and p2.Name = ’Peter Burton’

The properties of the returned structure can also be
retrieved. For example, if only the interval of the path is
needed in Query 2, the query would read:

SELECT paths.interval as interval
MATCH (p1:Person), (p2:Person),
paths = cPath((p1) - [:Friend*2..3] -> (p2))
WHERE p1.Name = ’Mary Smith-Taylor’ and

p2.Name = ’Peter Burton’

Furthermore the attributes in the path can be retrieved as
in the following query, where the names of the persons in the
starting and in the the third position in the resulting paths are
requested.

SELECT paths.interval as interval
MATCH (p1:Person), (p2:Person),
paths = cPath((p1) - [:Friend*2..3] -> (p2))
WHERE p1.Name = ’Mary Smith-Taylor’ and

p2.Name = ’Peter Burton’

The head() and last() path methods can be used as follows.

SELECT head(paths.path).attributes.Name as
start_node, last(paths.path).attributes.Name
as end_node

MATCH (p1:Person), (p2:Person),
paths = cPath((p1)-[:Friend*2..3]->(p2))
WHERE p1.Name = ’Mary Smith-Taylor’ and

p2.Name = ’Peter Burton’

If more than one path were returned, the head() and last()
functions will be applied to each one.

4.3 Consecutive path queries

To illustrate consecutive path semantics (Definitions 9 and
10 ), a second running example is introduced, depicted in
Fig. 5. In this example, there are two object nodes, namely
Airport and City. There are also two temporal relationships,
Flight and LocatedAt. The former is labeled with the inter-
val [td , ta], where td is the departure time of a flight from an
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Fig. 5 A temporal graph for flight scheduling analysis

airport, and ta is the arrival time at the destination airport. Air-
port nodes are labeledwith the period duringwhich an airport
belongs to a city (not shown in the figure, for clarity). Note
here the flexibility that the ILTG model provides, allowing
representing cases that are typically modeled using DLTGs.
It is worth remarking that, of course, this does not intend to
be a real-world example of a flight scheduling graph, but a
simplified portion of it.

Consecutive path semantics is implemented through func-
tions that are called fromT-GQL.Four functions are currently
supported: fastestPath, earliestPath, shortestPath, and lat-
estDeparturePath. The first three ones receive two nodes as
arguments. The latter also receives a time instant. The queries
below illustrate their syntax and semantics.

Query 6 How can we go from Tokyo to Buenos Aires as soon
as possible?

Recalling Definition 10, Query 6 refers to the earliest-
arrival path fromTokyo to Buenos Aires. Note that this query
uses the consecutive path semantics of Definition 9. Here, the
difference with the continuous path semantics is clear: a path
in the solution must be such that the intervals of the edges are
pairwise disjoint. The T-GQL query is written as follows:

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport),

(c2:City)-[:LocatedAt]->(a2:Airport),
path = fastestPath((a1)-[:Flight*]->(a2))
WHERE c1.Name = ’Buenos Aires’ AND

c2.Name = ’Tokyo’

Opposite to the earliest-arrival path function, the lat-
estDeparturePath function needs a threshold parameter as
argument. As an example, consider Query 7 below.

Query 7 How can we go from Tokyo to Buenos Aires, leaving
as late as possible and arriving before July 15 at 8 pm?

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport),

(c2:City)-[:LocatedAt]->(a2:Airport),
path = latestDeparturePath((a1)-[:Flight*]->

(a2),’2019-07-15 20:20’)
WHERE c1.Name=’Buenos Aires’ AND

c2.Name=’Tokyo’

4.4 Handling temporal granularity

The reader may have noticed that all time intervals in the
social network example are given in the Year time granular-
ity; for the flight example, granularity isDatetime. However,
queries may mention a granularity different to the one in
the graph’s objects. This time granularity problem has been
extensively studied in temporal database theory, and it is com-
mon to all kinds of queries.When a query includes a temporal
conditionwith a temporal granularity tg different than the one
of an object in the graph og , two cases may occur:

– tg is finer than og . In this case, both granularities are
identified, in a way such that the finer one is transformed
into the coarser one. For example, if og.interval =
[2010, 2012], and the condition is t I N og.interval,
where t = 2/10/2012, then, the interval is transformed
into the intervalog.interval = [1/1/2010, 31/12/2012].

– tg is coarser than og . In this case, one time instant
in the granularity of og is chosen. For example, if
og.interval = [15/10/2010, 23/12/2010], and the con-
dition is 2010 I N og.interval, the semantics would
imply that the condition is satisfied.

Since in the social network example, the granularity used
is Year, and the example queries are given using this gran-
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Fig. 6 General architecture

ularity, no problem arises in this sense. However, if a query
asks for Cathy’s friends on October 10th, 2018, it would not
be possible to give a precise answer, and the query must
use the semantics explained above. T-GQL supports the fol-
lowing granularities (examples will be presented in the next
sections):

– Year: yyyy
– YearMonth: yyyy-MM
– Date: yyyy-MM-dd
– Datetime: yyyy-MM-dd HH:mm

4.5 Temporal operators

Some kinds of T-GQLqueries require temporal operators and
filters, explained in this section. To begin with, the SNAP-
SHOT operator returns the state of the graph at a certain
point in time. Therefore, along the lines of temporal database
notions, the answer is a non-temporal graph, like in Query 8
below.

Query 8 Who where the friends of the friends of Cathy in
2018?

SELECT p2.Name as friend_name
MATCH (p1:Person) - [:Friend*2] -> (p2:Person)
WHERE p1.Name = ’Cathy Van Bourne’
SNAPSHOT ’2018’

Exactly one value is allowed to be used in the SNAPSHOT
clause. The following non-temporal result is returned:

p2.Name
{

"value": "Mary Smith Taylor"
}

The relationship with Pauline is filtered out since it was valid
during the interval [2002, 2017]. Therefore, there is only one
object node reached, which has two possibles values for the
Nameattribute. Thevalue “MarySmith” is discardedbecause
it was not valid in 2018.

The BETWEEN operator performs an intersection of the
graph intervals with a given interval. Exactly one interval is
allowed. The granularity of both intervals must be the same,
like in Query 9 below.

Query 9 Where did the friends of Pauline live between 2000
and 2004?

This query returns the cities where the friends of Pauline
lived during the given interval. The temporal semantics
adopted also applies the condition on the relationship inter-
val. That means, for example, that the relationship with
Sandra will not be considered, since the interval of the rela-
tionship is [2005, Now], thus, it does not intersect with the
given interval. The T-GQL query is written as follows:

SELECT c.Name
MATCH (p1:Person) - [:Friend] -> (p2:Person),

(p2) - [:LivedIn] -> (c:City)
WHERE p1.Name = ’Pauline Boutler’
BETWEEN ’2000’ and ’2004’

Only the Friend relationship with Cathy Van Bourne was
valid during the interval used above, and the query returns
Brussels and Paris, the cities where she lived during the inter-
vals [1980, 2000], and [2001, Now], the ones that intersect
[2000, 2004].

Finally, theWHEN clause is useful for answering parallel-
period queries, which follows the SQL inner query idea. The
syntax has the form MATCH-WHERE-WHEN, and the inner
query can have references to variables in the outer query.
Function calls are not allowed within this clause, and it can
only handle exactly one two-node path in the inner MATCH
clause.

Query 10 Who were friends of Mary while she was living in
Antwerp?

Mary lived in Antwerp between [1990-Now], thus, any per-
son that was a friend of Mary at any instant of that interval
would be in the result.
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Fig. 7 Social network metamodel

SELECT p2.Name as friend_name
MATCH (p1:Person) - [:Friend] -> (p2:Person)
WHERE p1.Name = ’Mary Smith-Taylor’
WHEN

MATCH (p1) - [e:LivedIn] -> (c:City)
WHERE c.Name = ’Antwerp’

ForWHEN queries, the wildcard selection can only be per-
formed on the nodes of the outer query (theMATCH clause).
In a nutshell, the inner query returns a collection of inter-
vals, and the WHEN clause performs a BETWEEN operation
with these intervals. Query 11 shows an even more involved
example.

Query 11 Where did Cathy live when she and Sandra fol-
lowed the same brands?

Cathy and Sandra both followed the brand LG. Sandra,
during the interval [1995, 2000], and Cathy, in the interval
[1998-2000]. The query language allows expressing a graph
traversal to the node that indicates where did Cathy live from
1998 to 2000. In this case, it would be the city of Brussels. For
this, the query must compute the intersection of the intervals.
Note that the former two queries would be much difficult and
unnatural to express with a duration-labeled representation.

SELECT c.Name as city, b1.Name as brand
MATCH (p1:Person) - [:LivedIn] -> (c:City),
(p1) - [:Fan] -> (b1:Brand)
WHERE p1.Name = ’Cathy Van Bourne’
WHEN

MATCH (p2:Person) - [f:Fan] -> (b2:Brand)
WHERE p2.Name = ’Sandra Carter’ and

b1.Name = b2.Name

5 Implementation

This section describes a proof-of-concept implementation of
this proposal. First, the general system architecture is pre-
sented. Then, the parsing process and the translation of a
T-GQLquery toCypher are explained. Finally, the algorithms
for computing the temporal operators and the different kinds
of paths are discussed.

5.1 Architecture

The model and language described in this paper were imple-
mented over the open source Java-based graph database
Neo4j. Neo4j allows extending its functionality with user-
defined procedures, which can be easily added as plugins,
packed in a .jar file. These procedures can then be used in
Cypher queries as any of the other built-in functions that this
language offers.

The T-GQL language grammar was implemented using
ANTLR.5 With this tool, T-GQL queries are translated into
Cypher, Neo4j’s high-level query language, so it can be exe-
cuted over theNeo4j database. Figure 6 sketches the system’s
architecture. To edit and execute T-GQLqueries, aweb appli-
cation interface was developed, also coded in Java, using the
Javalin framework.6 The application exposes a page where
the queries can be executed from an endpoint. The parser
translates the users’ queries into Cypher and executes them
on aNeo4j server that contains the plugins to run the temporal
operators and path algorithms.

In addition, for populating the social network running
example database (and also for the experiments reported
in the next section), a data set generator was developed.
Parameters for this generator allow indicating the number
of relationships and nodes, and number of intervals that each
edge can have, among other ones. The application commu-
nicates directly with a running Neo4j server through the Bolt
protocol, and automatically populates the database by exe-
cuting the corresponding Cypher queries.

5.2 Parsing and query translation

The parser was developed using ANTLR4, a parser gen-
erator that reads a grammar and produces a recognizer for
it. It is important to keep in mind that the query language
hides the actual data structure of the graph. Recall that the
model explained in Sect. 3 is composed of three kinds of
nodes, namely object, attribute, and value nodes, but the user
writes her queries abstracting from these elements. Consider
for instance, the metamodel of the social network example,
depicted in Fig. 7. It can be seen that Person, City, and Brand

5 https://www.antlr.org/.
6 http://javalin.io.
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Fig. 8 Social network model for the metamodel in Fig. 7

are object nodes, connected by different kinds of relation-
ships. These object nodes are associated with attribute and
value nodes through a single kind of edge, denoted Edge (also
not visible to the user). Thus, in the implementation, Person
is actually a property (denoted title) of the object node, the
Name of a person is a property (also denoted title) of an
attribute node, and the actual name of the person is stored
as a property of a value node, denoted value. All of these
elements, again, are not perceived by the user, but stored in
the Neo4j database, as shown in Fig. 8. In the figure it can
be seen that there is an edge labelled Edge outgoing from an
object node labeled Person (which is the value of the property
title of the object node). That edge reaches the attribute node
Name (again, Name is a property of the attribute node), and
finally another Edge links that node with a value node with
value= ‘NewYork’. Note that all of these nodes and edges are
associated with intervals, not shown in the figure. The trans-
lation, then, must not only rewrite the query in terms of the
Cypher language, and bridge the gap between the structure
exposed to the user, and the model actually stored in Neo4j.

To illustrate the parsing process, consider the query:

SELECT p
MATCH (p:Person)
WHERE p.Name = ’John Smith’

Figure 9 depicts the parse tree. The start rule is highlighted
in blue, non-terminal nodes are indicated in yellow, and ter-
minal nodes in green. For the sake of simplicity, not all the
nodes needed for evaluating this query are expanded and
represented in the tree. Once the tree has been generated, it
must be traversed. ANTLR’s default method is represented
in the figure in dashed line. First, all the tokens in the SELECT
clause are recognized, followed by the MATCH clause, and
finally the WHERE clause. When the tree is fully traversed,
the Cypher query is generated. The query translation process
is explained next.

The object nodes in the MATCH clause are translated as
{alias:Object {title: ‘Name’}}, since, as explained above, this
property contains the entity type that the user refers to. For
example “(p:Person)”would be translated to {p:Object {title:
‘Person’}}. The edges do not need to be translated, since
the grammar for the edges matches the Cypher’s grammar.
If a function call is found, the corresponding procedure is
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Fig. 9 Example parse tree

Fig. 10 An example for Algorithm 3

called, with the given arguments (an example of this is shown
later). For each attribute in the SELECT clause, a three-node
path (Object - Attribute - Value) is produced from the object
node. For example, “p.Name as name” would generate the
following path:

OPTIONAL MATCH(p)-->(internal_n:Attribute
{title:’Name’})-->(name:Value)

Recall that title is a property of the attribute node. In this
case,OPTIONALMATCH is used to allow replacing the miss-
ing values in the SELECT clause with a NULL value, and
to return the row instead of discarding it. Variables start-
ing with ‘internal’ are generated internally by the parser,
and are reserved. For the conditions in the WHERE clause,
the attributes are expanded as explained above, and the con-
stants are translated without changing them. Finally, for each
attribute, the access to the value property of the value node,
is added. For example, the condition “p.Name = ‘John’ and
p.Age = 18” is translated as:

MATCH (p)-->(internal_n:Attribute{title:
’Name’})-->(internal_v:Value)

MATCH (p)-->(internal_a:Attribute{title:
’Age’})-->(internal_v1:Value)

WHERE internal_v.value = ’John’ and
internal_v1.value = 18

Queries mentioning functions are explained next. Con-
sider the continuous path query:

SELECT p.path as path, p.interval as interval
MATCH (p1:Person), (p2:Person), p=cPath((p1)-

[:Friend*2..3]->(p2),’2016’,’2018’)
WHERE p1.Name = ’Mary Smith-Taylor’

The query is translated into Cypher as:

MATCH (p1:Object{title:’Person’}),(p2:Object
{title:’Person’})

MATCH (p1)-->(internal_n0:Attribute{title:
’Name’})-->(internal_v0:Value)

WHERE internal_v0.value = ’Mary Smith-Taylor’
CALL coexisting.coTemporalPaths(p1,p2,2,3

{edgesLabel:’Friend’,nodesLabel:’Person’,
between:’2016-2018’,direction:’outgoing’})
YIELD path as internal_p1, interval as
internal_i1

WITH {path:internal_p1,interval:internal_i1}
as p

RETURN p.path as ’path’, p.interval as
’interval’

Temporal procedures are described in Sect. 5.3. Note that
after calling these path procedures, the query may ask for
just one of the computed paths. For example, the following
query asks for the fastest path between airports located in the
cities of London, UK and Bariloche, Argentina, both with
more than one airport.

SELECT path
MATCH (c1:City)<-[:LocatedAt]-(a1:Airport),

(c2:City)<-[:LocatedAt]-(a2:Airport),
path=fastestPath((a1)-[:Flight*]->(a2))
WHERE c1.Name=’London’ AND c2.Name=’Bariloche’

This is translated to:

MATCH (c1:Object{title:’City’})<-[internal_l0:
LocatedAt]-(a1:Object{title:’Airport’}),
(c2:Object{title:’City’})<-[internal_l1:
LocatedAt]-(a2:Object{title:’Airport’})

MATCH (c1)-->(internal_n0:Attribute{title:
’Name’})-->(internal_v0:Value)

MATCH (c2)-->(internal_n1:Attribute{title:
’Name’})-->(internal_v1:Value)

WHERE internal_v0.value=’London’ AND
internal_v1.value=’Bariloche’

CALL consecutive.fastest(a1,a2,1,
{edgesLabel:’Flight’,direction:’outgoing’})

YIELD path as internal_p0, interval as
internal_i0

WITH paths.intervals.fastest({path:internal_p0,
interval:internal_i0}) as path

RETURN path

To evaluate this Cypher query, the engine will look for
all the airports in London and Bariloche, and all the com-
binations from airports in London to airports in Bariloche.
Thepaths.intervals.fastest aggregation function
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is called to retrieve the fastest path. It receives all the paths
and returns only the fastest ones, according to Definition 10.

5.3 Temporal procedures algorithms

It was already explained that the Neo4j database was
extended with temporal capabilities by means of a collec-
tion of procedures. Implementing the procedures on the
server side allows calling the procedures directly from the
Cypher Language. Besides, a client-side implementation
would require retrieving a large portion of the graph to exe-
cute the queries, which would not scale for large graphs.
Thus, the algorithms will use less resources running on
the server side, since nodes and relationships are obtained
directly from the database. Procedures can be classified in
three groups, depending on their functionality:

– Temporal procedures Implement basic temporal opera-
tions. Here, Between and Snapshot are defined.

– Coexisting paths procedures Implement the continuous
and pairwise continuous path semantics.

– Consecutive paths procedures Implement the consecu-
tive path semantics.

The procedures above are packed in a library which is
stored in the Neo4j’s Plugin folder. The Coexisting and Con-
secutive procedures extend a framework defined to work on
temporal graphs. This framework was based on the neo4j-
graph-algorithms library,7 which contains implementations
of classic graph algorithms, although no algorithms for tem-
poral graphs.

5.3.1 Temporal procedures

The Between and Snapshot procedures receive a Cypher
query, execute it, and filter the results depending on the oper-
ation. Neo4j returns the results of a query as a stream of
records, analogously to relational databases. The operations
above are thus applied to all the rows in the stream, filter-
ing the results that do not satisfy the temporal restrictions.
In both cases, the procedure receives a string containing the
query, and another string representing the granularity that
must be applied to the operation. In addition, the Between
operation receives an interval, and keeps the records in the
stream whose intervals are inside the former one. The Snap-
shot operation also receives a string that contains a specific
time instant, and keeps the records whose intervals contain
that specific time instant.

7 https://github.com/neo4j-contrib/neo4j-graph-algorithms.

Fig. 11 Result of the execution of Algorithm 3

5.3.2 Coexisting paths procedures

These procedures return the continuous paths of a given
length, either starting from a node, or between two nodes.
In addition, a Boolean alternative is implemented, that can
be used, for example, for checking whether or not a contin-
uous path exists between two nodes.

Algorithm 1 retrieves all of the coexisting paths between
two nodes, receiving as input a graph G, a source node x , the
minimumpath length Lmin , themaximumpath length, Lmax ,
a function f that returns an interval depending on the algo-
rithm, and optionally, a destination node y. The algorithm
returns a set S with the results. Given two intervals, the func-
tion f returns another interval. When computing continuous
paths, f is defined as f (i1, i2) = i1 ∩ i2. This way, only
the intersection of the intervals is stored, and the algorithm
keeps iterating with them. For pairwise temporal paths, f is
defined as f (i1, i2) = i2, this way it only returns the latter
interval, and the algorithm iterates only with the last interval
in the path.

The algorithm takes the source node x and adds it to a
list, in a triplet containing an interval [−in f ,+in f ], whose
values are the minimum and maximum time instants of the
node, and the length of the path, initially set to zero. This list
represents a path that starts at the source node, and is added to
the queue. The algorithm picks up the paths in the queue until
the queue is empty. The algorithm takes the last triplet of the
path, and looks up in the graph G for the edges associated
with the node in this triplet. Then, for each edge, it checks if
the node in the opposite end of the edge is in the path, or the
interval in the edge does not intersect with the interval in the
triplet. If that is the case, the edge cannot continue the path.
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Algorithm 1 Computes Coexisting Paths (Continuous and
pairwise continuous paths).
Input:A graph G, a source node x, the minimum path length Lmin , the maximum path
length Lmax , a function f depending on the type of path requested, and a destination
node y (optional).
Output: A list of coexisting paths S.
Initialize a queue of paths Q and a list of solutions S.
Q.enqueue([(x, [−in f , +in f ], 0)])
while not Q.isEmpty do

current = Q.dequeue()
z, interval, length = current .last()
for (z, other Interval, dest) ∈ G.edgesFrom(z) do

if not current.containsNode(dest) and interval ∩ other Interval �= ∅ then
newTuple = (dest, f (interval, other Interval), length + 1)
copy = current .copy()
copy.insert(newt uple)
if Lmin <= length + 1 <= Lmax and (y not exists or dest == y) then

S.insert(copy)
end if
if length + 1 < Lmax then

Q.enqueue(copy)
end if

end if
end for

end while

This prevents iterating over the same nodes. For example,
given an edge from A to B with interval [1, 2], a path A-B-
A-B would be possible without this limitation, because the
interval between A and B always intersects with itself. In the
case that the edge can continue the path, a triple with the
new node is created, containing the result of the execution
of the function f , and the length of the path, which is the
length of the last triplet in the path, plus 1. The path is copied
and the triplet is added to the copy. If the copy of the path
(which is also a path) has a length between Lmin and Lmax

and the node of the last triplet is also the destination node (if
such node is defined as input), this path is added to the set of
solutions S. Otherwise, it is added to the queue. When this
queue is empty, the set of solutions S is returned.

Algorithm 2 is the Boolean version of the previous one,
since it computes if there exists a continuous path between
two nodes. That is, if a path is found, true is returned, other-
wise, it returns false.

5.3.3 Consecutive paths procedures

These procedures follow the graph transformation approach
introduced byWu et al. [53] for DLTGs, to compute paths on
ILTGs. However, unlike the approach presented in [53], the
algorithm presented here does not create the whole graph to
apply the path computation algorithms, since this would be
extremely expensive. Instead, the transformed graph is built
as the iterations proceed over the original temporal graph,
call it G. The transformation creates a new graph, denoted
Gt , where the nodes contain either the starting time or the
ending time of an interval of the temporal graph (explained
below), and the edges indicate the nodes that are reachable
from that position, where reachable means that both nodes
are included in the same interval, or that they start from the

Algorithm 2 Checks the existence of a Continuous Path.
Input:A graph G, a source node x, the minimum path length Lmin , the maximum path
length Lmax , a function f which depends on the type of path requested (continuous o
pairwise), and a destination node y (optional).
Output: True if a Continuous Path exists. False otherwise.
Initialize a queue of paths Q.
Q.enqueue([(x, [−in f , +in f ], 0)])
while not Q.isEmpty do

current = Q.dequeue()
z, interval, length = current .last()
for (z, other Interval, dest) ∈ G.edgesFrom(z) do

if not current.containsNode(dest) and interval ∩ other Interval �= ∅ then
newTuple = (dest, f (interval, other Interval), length + 1)
if Lmin <= length + 1 <= Lmax and (y not exists or dest == y) then

return true
end if
if length + 1 < Lmax then

copy = current .copy()
copy.insert(newt uple)
Q.enqueue(copy)

end if
end if

end for
end while
return f alse

same node and the starting time of the source node is prior
to the one in the destination node. The weight of an edge is
the duration of the corresponding interval. This new graph
does not contain cycles, because it is not possible to go from
a node with a greater time to a node with a lesser time, and
all the weights of the edges are (or can be represented as)
positive numbers.

Algorithm 3 sketches the process. The algorithm receives,
as arguments, a temporal graphG, the source and destination
nodes of the path (s and d, respectively) to be computed, a
function f to be used to sort the nodes of the transformed
graph in a priority queue -in a way which depends on the
algorithm (earliest, latest, fastest, shortest paths), and returns
a set of nodes S. The following is assumed in the sequel for
f :

x < y i f f (x, y) < 0

x = y i f f (x, y) = 0

x > y i f f (x, y) > 0

The nodes of the transformed graph Gt have four
attributes: a reference to the node in the original graph, a
time instant, the length of a path that passes through that
node to iterate the graph in a DFS way, and a reference to the
previous node in Gt , in order to allow rebuilding the paths
after running the algorithm. These attributes are denoted (for
a node n), n.nodere f , n.t ime, n.length and n.previous in
Algorithm 3.

After initializing the necessary structures, the algorithm
adds the initial transformed graph node to the priority queue.
This node is a quadruple that contains the source node s,−∞
as the time instant, 0 as length, and null as the reference
to the previous node. An element e is picked up from the
queue until the queue is empty. There is a node vi in the
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Algorithm 3 Compute the minimum consecutive paths.
Input:AgraphG, a source node s, a destination node d. A comparison function f (x, y)
where x < y if f (x, y) < 0.
Output: A set with the optimal solutions S.
Initialize the transformed graph Gt and Q (priority queue of Gt nodes)
Q.enqueue((s, −∞, 0, null))
while not Q.isEmpty do

current = Q.dequeue()
for (current .node, interval, dest) ∈ G.edgesFrom(current .node) do

if current .time > interval.start then
continue

end if
vOut = (current.node, interval.start, current.length + 1, current)
vIn = (dest, interval.end, current.length + 1, vOut)
if Gt .containsNode(v I n.node, v I n.time) then

otherv I n = Gt .get(v I n.node, V In.time)
if f (otherv I n, v I n) > 0 then

continue
end if

end if
if dest == d then

if S.isEmpty then
S.add(vIn)

else
s = S.getAny()
comp = f(vIn, s)
if comp > 0 then

S.empty()
S.add(vIn)

else if comp == 0 then
S.add(vIn)

end if
end if
continue

end if
Q.insert(v I n)

end for
end while
return S

temporal graph associated with e. For each edge outgoing
from vi in G, the node is expanded creating the nodes vout
and vin in the transformed graph. The node vout contains the
current node vi , the start time of the interval in the edge, the
length of e plus 1, and e as the previous node, that means
(vi , t .start, e.length + 1, null). The node vin contains the
destination node of the edge, the end time of the interval in
the edge, the length of e plus 1, and vout as the previous
node, that is (v f , tend , e.length + 1, vout ). If the start time
of the interval is less than the time instant of e, the path is not
expanded, because it means that this interval occurred prior
to the interval associated with the instant. For example, for
the interval [5, 8], if the time instant in e is 7, the node will
not be expanded, and it would not yield a consecutive path.

After creating vin and vout in the transformed graph Gt ,
the algorithm checks if Gt already contains a node vin′ such
that the temporal graph node and the time moment are the
same as the ones in vin . If this is the case, the two nodes
are compared with the function f . If f (vin, vin′) < 0, the
path is discarded. If f (vin, vin′) > 0 the node is replaced.
Otherwise, the node is kept in the graph. The rationale behind
discarding the paths is that if two paths P1 and P2 in Gt that
end at the same node d, contain the same transformation node
n, if f (P1(n), P2(n)) > 0, then f (P1(d), P2(d)) > 0, since
the same nodes will be expanded, and the function f depends

on the nodes already traversed (e.g., for the shortest-path, f
depends on the path length, for the earliest-path, it depends
on the arrival time to each node, and so on). Then, if vi , the
temporal graph node in vin is not the same as the one in the
destination node d, vin is added to the queue. If vi is the same
as in d, and S = ∅, vin is added to S. If S! = ∅, then any s ∈ S
is picked up. If f (s, vin) < 0, the whole set S is discarded
f (vin, s) == 0, vin is added to S, and if f (vin, result) > 0,
S is reset to {vin}. When Q is emptied, the set of nodes in Gt

is returned, and the algorithm reconstructs the paths using the
stored references to previous nodes in the paths. That is, for
each node, the algorithm follows the link to the previous node
until there is no previous node, like in the implementation of
the Dijkstra algorithms.

It is worth remarking again that the function f is defined
differently for eachkindof consecutive path.Given a function
f irst that returns the first node of the path defined by the
reference to the previous node in a node in Gt , f is defined
as:

– Earliest-arrival path: f (x, y) = x .t ime − y.t ime.
– Latest-departure path: f (x, y) = f irst(x).time −

f irst(y).t ime
– Shortest path: f (x, y) = x .length − y.length
– Fastest path: f (x, y) = (x .t ime − f irst(x).time) −

(y.t ime − f irst(y).t ime)

The library that has been developed, also contains aggre-
gation functions. These functions iterate over the results
and then return some value associated with the input. They
are used to filter the results obtained by executing the con-
secutive paths procedure. They iterate over all the results
received by the execution of these procedures, and choose
the fastest, earliest, shortest, latest departure or latest arrival
paths depending on the function we called. These functions
are useful when the procedures are called more than once,
for preventing returning non-optimal values.

Example 4 (Consecutive paths computation) Figure 10 shows
a graph over which the shortest path between nodes A and B
is computed with Algorithm 3. The function f will thus be
f (x, y) = x .length − y.length. Figure 11 shows the trans-
formed graph at the end of the execution of the algorithm.

The first node created in Gt is (A,−∞, 0) (the reference
to the previous node is omitted, for clarity), which is added to
the queue. Thus, Q = [(A,−∞, 0)] is the initial state of the
queue. The node is picked up from the queue, and, since the
edges outgoing from A in the graph of Fig. 10 have intervals
[2, 4] and [1, 2], taking [2, 4], the nodes vout = (A, 2, 0)
and vin = (C, 4, 1) are created in Gt . Then, vin is picked up,
and the edges outgoing from C have intervals [5, 7], [1, 3]
and [6, 8]. Here, [1, 3] cannot be expanded, since it would
not yield a consecutive path. The new nodes vin are created.
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From these nodes, and (E, 7, 2) is added to the result set,
and the new state of the queue is Q = [(B, 8, 2), (B, 2, 1)].
Since now a first solution is obtained, it is compared against
(B, 8, 2), and given that f ((B, 8, 2), (E, 7, 2)) = 2−2 = 0,
this path is discarded. Then, (B, 2, 1) is expanded, and the
process continues in the same way. Finally, the two paths
are: (A, 1, 0)− > (B, 2, 1)− > (B, 4, 1)− > (E, 6, 2) and
(A, 2, 0)− > (C, 4, 1)− > (C, 5, 1)− > (E, 7, 2) which
leads to the shortest paths A, B, E and A,C, E .

5.4 Extending the system

At this point, the reader may be asking herself, whether or
not the ideas exposed in this section can be generalized to
other databases and query languages. Assume for example,
that Janusgraph is the database that the user wants to use for
storing the graph. The statements below allow representing
the fact that a person A was a friend of B between 1999 and
2003, and between 2005 and 2015 (note that since edge is a
reserved word in Gremlin, the edge variable below is ended
with ‘_’). First, the schema is created, as follows:

edge_ = mgmt.makeEdgeLabel(’edge_’).
multiplicity(SIMPLE).make()

livesin = mgmt.makeEdgeLabel(’livesin’).
multiplicity(SIMPLE).make()

friend = mgmt.makeEdgeLabel(’friend’).
multiplicity(SIMPLE).make()

object = mgmt.makeVertexLabel(’Object’).make()
Attribute = mgmt.makeVertexLabel(’Attribute’).

make()
Value_= mgmt.makeVertexLabel(’Value_’).make()
title = mgmt.makePropertyKey(’title’).

dataType(String.class).make();
val = mgmt.makePropertyKey(’value’).

dataType(String.class).make();
int = mgmt.makePropertyKey(’interval’).

dataType(String.class).
cardinality(Cardinality.set).make();

friend = mgmt.makeEdgeLabel(’friend’).
multiplicity(SIMPLE).make()

The edge labels are created first, followed by the vertex
labels, which support the object, attribute and value nodes
of the model. Finally, the property labels are created. The
multiplicity ‘simple’ tells that only one edge type is allowed
between the same two nodes. After declaring the schema,
vertex and edges can be created as follows (attribute and
value nodes are omitted for brevity):

o1=g.addV(’object’).property(’title_’,’Person’)
o2=g.addV(’object’).property(’title_’,’Person’)
f1=o1.addEdge(’friend’,o2,’interval’,

[’1999-2003’,’2005-2015’])

It can be seen that the creation of the graph is straight-
forward. Simple queries can also be easily generalized.
Consider the query “When was Pauline Boutlier friend of

Cathy Van Bourne?”. This query is expressed in Gremlim as
(the T-GQL query is omitted) follows, yielding the answer:
[1999 − 2003, 2005 − 2015].

g.V().hasLabel(’Value’).has(’value’,’Pauline
Boutlier’).in().in().outE(’friend’).
has(’interval’).as(’f’).inV().out().out().
has(’value’,’Cathy Van Bourne’).select(’f’).
by(’interval’).dedup()

However, generalizing the target language to address tem-
poral paths (continuous and consecutive) is much more
involved, since Gremlin must be non-trivially extended to
be used as a target language for T-GQL. This can be inferred
from the work by Byun at al. [9], who show that the Grem-
lin’s path management scheme must be modified, and new
functions defined. This is left for future work, as explained
in Sect. 8.

6 Evaluation

This section reports and discusses the experiments carried out
in order to test the different algorithms described and imple-
mented in this work. These experiments cover the two classes
of path algorithms studied: continuous paths and consecutive
paths. Since the implementation is a proof-of-concept, and
Neo4j is not a database oriented and handling very large
graphs, this evaluation is aimed at finding out the impact
of the factors that influence the performance, rather than to
measure performance itself. Future work will address perfor-
mance issues through indexing schemes.

6.1 Description of the experiments

The goals of the experiments, and the experimental setup are
detailed in this section, for each of the classes of algorithms
tested.

6.1.1 Continuous paths algorithms

The goal of these experiments is to test how does the length
of the paths and the size of the data set impact on the per-
formance of the algorithm. Therefore, different tests are
conducted, varying both variables. Typical continuous path
queries are run over the social network temporal graph, ask-
ing for continuous paths of different lengths between two
specific persons, the latter indicated by a property denoted id,
generated during the population of the data set. For example,
the query below asks for all the continuous paths of length 8
between the Person nodes with id 10 and 30. This query is
run for different pairs of persons and different path lengths.
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(a) (b)

Fig. 12 a Execution time versus path length for continuous path algorithm; b execution time versus path length for pairwise continuous path
algorithm

SELECT p
MATCH (n:Person), (m:Person),

p = cPath((n)-[:Friend*8]-(m))
WHERE n[id] = 10 AND m[id] = 30

The same type of query was ran to test the pairwise con-
tinuous path algorithm:

SELECT p
MATCH (n:Person), (m:Person),

p = pairCPath((n)-[:Friend*8]-(m))
WHERE n[id] = 10 AND m[id] = 30

6.1.2 Consecutive paths algorithms

The goal of these experiments is to evaluate how do the dif-
ferent paths behave for various graph sizes. The tests are run
over real-world flights data sets, taking a subset of the airports
in such data sets. The chosen airports are of very different
sizes, to cover a wide range of connecting flights. The queries
perform a consecutive path search for two specific airports
using their IATA (International Air Transportation Associ-
ation) code, a three-letter code that uniquely identifies an
airport. The queries address the four kinds of consecutive
path algorithms, and are of the following form:

SELECT path
MATCH (a1:Airport), (a2:Airport),
path = fastestPath((a1)-[:Flight*]->(a2))
WHERE a1.Code = ’BOS’ and a2.Code = ’HOU’

SELECT path
MATCH (a1:Airport), (a2:Airport),
path = shortestPath((a1)-[:Flight*]->(a2))
WHERE a1.Code = ’BOS’ and a2.Code = ’HOU’

SELECT path

MATCH (a1:Airport), (a2:Airport),
path = earliestPath((a1)-[:Flight*]->(a2))
WHERE a1.Code = ’BOS’ and a2.Code = ’HOU’

SELECT path
MATCH (a1:Airport), (a2:Airport),
path = latestDeparturePath((a1)-[:Flight*]

->(a2))
WHERE a1.Code = ’BOS’ and a2.Code = ’HOU’

6.1.3 Temporal model overhead

These experiments aim at evaluating the cost of introduc-
ing temporal support to a non-temporal system. That is, to
measure the overhead in terms of memory and performance,
producedby the structure described inSect. 5. Twonewsocial
network graphs G1 and G2 are created: (a) a temporal one,
calledG1, similar to the graph in Fig. 2; and (b) a static graph
G2, derived from G1, but keeping only the nodes and edges
valid at a certain time (the current time), that is, a snapshot
of G1 at the instant ‘Now’. Over these graphs, two queries
are tested, both considering only the current instant.

– Query 1:Compute all the paths of length 5 between every
pair of persons.

– Query 2: Compute all the paths of length 5 starting from
a given person.

Both queries are run over the underlying Neo4j graph and
over the static graph. For example, Query 2 over the under-
lying Neo4j graph reads:

MATCH p=(v1:Value)<--(a1:Attribute)<--
(o1:Object{title:’Person’})-[e1:Friend]->
(:Object{title:’Person’})-[e2:Friend]->
(:Object{title:’Person’})-[e3:Friend]
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->(:Object{title:’Person’})-[e4:Friend]->
(:Object{title:’Person’})
-[e5:Friend]->(o2:Object {title:’Person’})

WHERE v1.value =’Vivian Medhurst Jr.’
AND a1.title="Name" AND right(e1.interval
[size(e1.interval)-1],3)=’Now’ AND
right(e2.interval[size(e2.interval)-1],3)
=’Now’ AND right(e3.interval[size
(e3.interval)-1],3)=’Now’ AND
right(e4.interval[size(e4.interval)-1],3)
=’Now’ AND right(e5.interval[size
(e5.interval)-1],3)=’Now’ AND
right(v1.interval[0],3)=’Now’
RETURN p

The equivalent query over the static graph reads:

MATCH p=(o1:Object {title:’Person’})
-[e1:Friend]->(:Object{title:’Person’})
-[e2:Friend]->(:Object{title:’Person’})
-[e3:Friend]->(:Object{title:’Person’})
-[e4:Friend]->(:Object{title:’Person’})
-[e5:Friend]->(o2:Object{title:’Person’})

WHERE o1.name ="Vivian Medhurst Jr."
RETURN p

6.2 Data sets and setup

This section reports the characteristics of the data sets used
for evaluating the two kinds of algorithms. For continuous
paths algorithms, synthetic data were generated, resembling
the social network running example (Fig. 2). For consecutive
paths algorithms, real-world flight data were used.

All experiments were run under the same environment,
a Neo4j 3.5.17 server, ran on Ubuntu 16.04 64-bits, with a
12-core CPU and 25 GB of RAM.

6.2.1 Continuous paths algorithms

A data set generator, based on the model described in Defini-
tion 4 and represented in Fig. 2, populates the graph databases
for these experiments. To generate data for the social network
graph, the following parameters are considered:

– N = Number of Person nodes.
– F = Maximum number of Friend relationships per per-

son.
– I = Maximum number of intervals per friendship.
– Number (C) and length (L) of the continuous paths.

First, the generator creates C continuous paths of length
L and then, randomly generates the friendship relationships
for the whole graph. The generator ensures a minimum of C
continuous paths of length L . Once the continuous paths are
created, the id of the persons involved in each continuous

Table 1 Continuous paths experiments: characteristics of each social
network data set

N Nodes Edges Size (MB)

1000 3021 6833 747.95

10,000 30,021 67,676 776.02

100,000 300,021 677,278 1.06

Table 2 Consecutive paths experiments: number of airports, flights and
sizes of each data set

Data set Airports Flights Size (MB)

1 week 312 109,911 1.92

1 month 312 469,968 22.53

3 months 315 1,403,471 64.52

6 months 322 2,889,512 131.38

1 year 629 5,819,079 413.23

path are stored, to be used in the queries as the start and end
of the paths of length L .

Three data sets were generated, with N = 1000, 10,000
and 100,000, and the other parameters are fixed, with values
F = 5 and I = 2. For each data set, at least 3 paths (i.e.,
C = 3) of each of the following lengths (L) were generated:
4, 6, 8, 10 and 12. Table 1 details the number of nodes, edges
and sizes of the data sets. Indices were created on the Object,
Value and Attribute nodes for the id property.

The execution of a query for a specific N and L is carried
out C times varying the ids of the start and end nodes of the
path, to account for different number of paths of length L
that may exist in a graph, and for the different starting and
ending nodes.

6.2.2 Consecutive paths algorithms

Consecutive path algorithms were tested using a real-world
flight database, the Flight Delays and Cancellations for US
flights in 2015,8 using the original departure and arrival times
for the flights. Five data sets were generated from the former
ones, filtering the flights with different time intervals. The
selected periods for the data sets were the first week, first
month, first three months, first half year, and the entire year.
The number of flights and airports are shown in Table 2. The
following airports were chosen:

1. ATL - Atlanta International Airport, Atlanta, GA.
2. CLD - Mc Clellan-Palomar Airport, Carlsbad, CA.
3. BOS - Logan International Airport, Boston, MA.
4. HOU - William P. Hobby Airport, Houston, Texas
5. SBN - South Bend Regional Airport, S. Bend, IN.

8 https://www.kaggle.com/usdot/flight-delays?select=flights.csv.
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Table 3 Total number of nodes in each data set

Data set Vout Vin T otal

1 week 71,455 84,216 155,661

1 month 308,656 366,301 674,957

3 months 920,257 1,095,713 2,015,970

6 months 1,891,583 2,254,938 4,146,521

1 year 3,828,264 4,549,494 8,377,758

6. ISP - Long Island Mac Arthur Airport, Islip, NY.

The selected routes between these airports were:

1. ATL to CLD (A large airport to a small one)
2. BOS to HOU (A medium-size airport to a medium-size

one)
3. ATL to AUS (A large airport to a medium one)
4. SBN to ISP (A small airport to a small one)

Routes between two large airports were not chosen
because usually there are direct flights between them, mean-
ing that a path of length 1 normally exists, and therefore the
results would not be representative. The number of incoming
and outgoing flights are listed in Table 8 in “Appendix A”.
Note that for CLD airport, the number of flights stops grow-
ing at the 6 months as the airport closes. This airport was
chosen since it challenges the latest departure path algorithm,
as it will try to search for the latest departure path going to
the paths with the latest departure time, although the arrivals
are all in the first half of the year.

6.2.3 Temporal model overhead

It was mentioned that for assessing the overhead introduced
by the temporal graph model, two new social network graphs
G1 andG2 are created. The former has 52,000 nodes, 10,000
of them labeled as Object nodes of type Person, 20,000
labeled as Attribute nodes, and 22,000 nodes labeled as
Value nodes. Every Person node has two attribute nodes:
name and identifier, whereas every attribute node has its
corresponding value node. G1 has 43,097 Friend relation-
ships.

From G1, a static graph G2 is obtained, keeping only the
nodes and edges valid at the current time, with no reference
to time at all, i.e., G2 is a snapshot of G1 at time instant
‘Now’. The steps to take this snapshot are (assume a copy of
G1, denoted G2 is created):

1. Select nodes and edges whose interval end with ‘Now’.
2. Two properties, name and identifier, are added to the

Object nodes. Thus, so far, G1 has zero or one value node

per attribute node, because each different value of the title
property is collapsed as a property name of the object
node, and the values of these properties correspond to the
associated value node.

3. All attribute and value nodes are deleted from G2.
4. All time intervals are deleted from G2.

The resulting graph G2 has 8000 Object nodes and 19,370
Friend relationships.

6.3 Results

This section reports the results of the experiments presented
above. The algorithms’ execution times depend on a number
of factors, like, for example, the number of continuous paths
of a certain length that the algorithm finds, which may vary
for different pairs of starting and ending nodes. Therefore, to
ensure a fair comparison, the following average definition is
used.

T = 1

n

n∑

i=1

tn
cn

= 1

n

(
t1
c1

+ · · · + tn
cn

)

In the expression above, n is the number of different pairs
of nodes (start and end of a continuous path) for which the
query was run, t the execution time and c the number of
paths found for each pair of nodes. For example, forC = 3, a
minimumof three continuous paths of length L are generated
between three pairs of nodes, but more could be found.

Node pair Paths found Execution time

A1 → A2 3 12 s
A3 → A4 2 6 s
A5 → A6 9 45 s

The weighted average T is computed as:

T = 1

n
(
t1
c1

+ t2
c2

+ tn
cn

) = 1

3
(
12

3
+ 6

2
+ 45

9
) = 4

For consecutive paths, the usual definition of average is
used, running the algorithms three times for each path and
data set.

Figure 12 displays the execution times for the continuous
path and pairwise continuous path algorithms. The x-axis
represents the length of the continuous paths in the queries.
Figure 13 displays the execution times with respect to the
number of nodes visited by the continuous path algorithm,
for N = 100, 000 and L = 12. In this case, the execution
time is the simple average computed dividing the execution
time by the number of paths found for each pair of person
nodes.
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Fig. 13 Visited nodes versus execution time for continuous path algo-
rithm on paths of L = 12

Figures 14 and 15 display the results for the tests address-
ing latest departure, fastest, earliest, and shortest paths
algorithms. Execution times are represented on the y-axis,
and the number of flights on the x-axis. Table 3 shows the
number of Vout and Vin nodes of the complete transformed
graph, for each data set. Tables 4, 5, 6 and 7 show, for each
route tested, the average time and the number of paths in the
result, for each time partition of the data set.

6.3.1 Temporal model overhead

Figure 16 shows the space required by the two graphs, G1

and G2, the temporal and static ones, respectively. It can be
seen that, although there is a large overhead produced by the
structural information, most of the space required by G1 is
used to store actual temporal information, that is, the history
of the graph. This space overhead does not impact in the same
way on the performance results shown in Fig. 17. This figure
shows the results of executing Queries 1 and 2 indicated in
Sect. 6.1.3. In both queries, the performance overhead lies
between 25 and 30%, which appears to be reasonable given
the space overhead introduced by the structure needed to keep
the historical information.

6.4 Discussion of results

A discussion of the results reported in the previous section
is presented next.

Table 4 Average time and number of results for the latest departure
path algorithm

Path Data set Latest departure path
Avg. time (ms) # Results

ATL → CLD 1 week 267 1

1 month 1318.33 1

3 months 4098 1

6 months 15,622,280.67 1

1 year 129,165,589.33 1

BOS → HOU 1 week 231 1

1 month 1224.33 3

3 months 3952.33 1

6 months 12,072 1

1 year 33,875.33 1

ATL → AUS 1 week 97.33 1

1 month 1807 2

3 months 7462.33 1

6 months 34,883 1

1 year 118174.67 1

SBN → ISP 1 week 257 1

1 month 1263.67 9

3 months 3735.33 3

6 months 8829.67 3

1 year 18,760.33 74

Table 5 Average time and number of results for the fastest path algo-
rithm

Path Data set Fastest path
Avg. time (ms) # Results

ATL → CLD 1 week 6755 3

1 month 140,522.33 3

3 months 1,427,239.33 3

6 months 8,172,404 8

1 year 29,744,579 8

BOS → HOU 1 week 1969.33 7

1 month 51,980.67 31

3 months 536,338 31

6 months 2,123,572.67 2

1 year 8,694,658.33 11

ATL → AUS 1 week 973 3

1 month 17,640.33 27

3 months 237,272.33 45

6 months 671,548 21

1 year 2,938,933 4

SBN → ISP 1 week 3925.33 1

1 month 72,191.33 2

3 months 560,382 4

6 months 3,628,807 21

1 year 13,622,908.67 1
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(a) (b)

Fig. 14 a Execution time for each pair of airports for the latest departure path algorithm; b execution time for each pair of airports for the fastest
path algorithm

(a) (b)

Fig. 15 a Execution time for each pair of airports for the earliest path algorithm; b execution time for each pair of airports for the shortest path
algorithm

6.4.1 Continuous paths

The left-hand side of Fig. 12 shows the execution time for
each data set size, and different continuous path lengths. For
N = 10,000 and 100,000, the execution times increase as the
path length increases, starting with values around 50 ms for
L = 4 and growing up to 733 ms and 3279 ms, respectively
for L = 12. On the other hand, for N = 1000, execution
times remain low, and, starting with an execution time of 30
ms, decreases for longer paths, without exceeding 80 ms in
any case. It can also be seen that, for N = 100,000, execu-
tion times grow faster than for N = 10, 000. Figure 13 shows
that the execution time is linear with respect to the number of
nodes visited by the algorithm. Results for the pairwise con-
tinuous paths are depicted on the right-hand side of Fig. 12.

Relative to each other, results for the three data sets are sim-
ilar to the ones obtained for continuous paths: increasing the
length of the path searched implies higher execution times.
However, it can be seen that execution times are lower in this
case.

6.4.2 Consecutive paths

Figures 14 and 15 display the results for the tests addressing
latest departure, fastest, earliest, and shortest paths algo-
rithms. All figures show a lineal behaviour in most of the
cases. The y-axis is displayed in logarithmic scale, since the
difference between the running times of the algorithms is
very large, depending on the paths. As expected, the exe-
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Table 6 Average time and number of results for the earliest path algo-
rithm

Path Data set Earliest path
Avg. time (ms) # Results

ATL → CLD 1 week 412 1

1 month 1995.33 1

3 months 7349 1

6 months 18,505 1

1 year 36,813.67 1

BOS → HOU 1 week 360 1

1 month 1783.33 1

3 months 5699.67 1

6 months 14,219.66 1

1 year 33,812 1

ATL → AUS 1 week 98.33 1

1 month 414.33 1

3 months 1411.33 1

6 months 2758.33 1

1 year 6391.67 1

SBN → ISP 1 week 1992.67 9

1 month 10507 9

3 months 36,670.33 9

6 months 102,361.67 9

1 year 238,015.67 9

Table 7 Average time and number of results for the shortest path algo-
rithm

Path Data set Shortest path
Avg. time (ms) # Results

ATL → CLD 1 week 4031.67 1969

1 month 91,449.67 39,034

3 months 1,060,364.67 342,124

6 months 4,643,210 391,462

1 year Out of memory

BOS → HOU 1 week 10.67 20

1 month 83.67 89

3 months 82 253

6 months 342.67 506

1 year 469.33 926

ATL → AUS 1 week 32.33 58

1 month 99 252

3 months 273 775

6 months 585.67 1667

1 year 1252.67 3154

SBN → ISP 1 week 8066 2783

1 month 270,057.33 66,464

3 months 3,459,141.33 699,214

6 months Out of memory

1 year Out of memory

Fig. 16 Performance results for the snapshot queries

Fig. 17 Space overhead results

cution time of the algorithm grows as the number of flights
grows.

For the latest departure path (Fig. 14a and Table 4), tests
show a rather linear behaviour except the one from ATL to
CLD. This is because all the arrivals to the airport are in the
first half of the year, so it takes a long time to prune the graph
to find a path between those airports. This is why the time
grows exponentially and then continues linearly, reflected in
the fact that the algorithm runs in 4098ms for the 3-months-
data set, and 15,622,280.67ms for the 6-months one, that is,
a growth of about 3800 times. For the other airports, this ratio
is between 3 and 5. However, note that this is a very particular
case.

In the case of the shortest path algorithm (Fig. 15b and
Table 7), for the largest data set, and routes including one
small airport, the algorithm ran out of memory, due to the
large number of results obtained. This was caused by the
number of paths that are stored in the memory. Another par-
ticular situation occurs when a path starts in the beginning of
the year, and ends at the end of the year.

For all algorithms, with the exception of the cases of short-
est and latest departure pathsmentioned above, the behaviour
of the algorithms is rather linear, and, in many cases, not
dependent on the routes (it can be seen that, in general,
the curves are quite close to each other). The fastest path
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algorithm (Fig. 14b and Table 5) is the one with the low-
est performance (except from the particular cases mentioned
above). For example, for the largest data set, for the paths
from BOS to HOU and ATL to AUS, the average execution
times were 8,694,658ms and 2,938,933ms respectively. On
the other hand, for the earliest path (Fig. 15 and Table 6),
these times were 33,812ms and 6,391.67ms, for the shortest
path 469.33ms and 1252.67ms, and for the latest depar-
ture 33,875ms and 118,174ms, respectively. However, as
the sizes of the data sets decrease, the execution times also
decrease in a significant way. For example, in the case of the
fastest path algorithm, for the 1-month data set, for the paths
from BOS to HOU and ATL to AUS, the average execution
times were 51,980ms and 17,640ms respectively.

The intuition is that the results reported may be caused
by the nature of the paths. For the earliest departure path
algorithm, execution time depends on the time of the last
node in the path; for the latest departure path algorithm, the
execution time strongly depends on the time of the first node
of the path, and the shortest path on the length of the path.
For example, in the latest departure path algorithm, once a
path reaches a node that is part of a possible latest departure
path, no better path can be reached that contains that node,
because the time of the first node cannot change. On the other
hand, in the fastest path algorithm, a fastest path could be
found, depending on the first and last nodes. The shortest path
algorithm explores the same nodemany times, increasing the
execution time.

7 Indexing

This section studies how the performance of the queries pre-
sented in this paper can be enhanced through the use of
indexing strategies. First, an indexing scheme is proposed.
Then, the impact of updates is studied. Finally, a sketch of
how the index could be used when a query is submitted to
the system, is given. It is worth mentioning that these strate-
gies are ongoing research work, and they are included here
to highlight the issues that need to be addressed in future
work.

7.1 Temporal indices

Typically, indices on property graph databases are defined
over properties (in Neo4j, only properties in nodes can be
indexed). The research community has proposed indexing
schemes for paths (in particular, shortest paths) in non-
temporal (static) graphs. For example, Kusu and Hatano [39]
index the shortest path between every two nodes in a sub-
graph of a given one. Hassan et al. [30] propose a method

to index paths usually mentioned in queries (these paths are
called recurrent). In another proposal, Pokorny et al. [41]
index graph patterns in Neo4j, using a structure stored in the
same database as the graph.

To enhance the performance of the queries discussed in
this paper, the three kinds of paths studied (i.e., continuous,
pairwise continuous, and consecutive) can be indexed. Since
these paths are temporal, indexingmust also be applied along
the time dimension, for example, to quickly find the contin-
uous paths within a given interval. A sketch of a possible
solution for this problem is discussed next. The idea is based
on the proposal in [41], which can be combined with typical
methods for time indexing [18], to produce different kinds
of indices, one for each type of path addressed in the paper.
This way, as proposed in [42]), there is an entry in the index
for each path in a given interval. For continuous paths, for
example, the index is implemented as a collection of Neo4j
nodes containing, as properties, the start and end nodes, the
nodes in the path, and the time interval of the continuous
path. Figure 18 shows an example over the social network
graph. Here, all relationships other than Friend are indicated
in dashed lines, for clarity. There is an index for the contin-
uous paths over this relationship. Two index entry nodes are
shown (in black), for paths of length 2 and 4. The former
starts at the Person node with id = 22, and ends at node
with id = 20, with interval [2010−2017]. The latter starts
at the Person node with id = 22, and ends at node with
id = 20, with interval [2015−2017]. There is a pointer from
the index entry node, to eachof the nodes in the indexedpaths.
Of course, many issues must be considered in this scheme,
and are open research problems. For example, indexing all
possible paths would result in huge index volumes, where
probably a large portion of the index would remain unused.
Therefore, incremental indexing based on the prediction of
the queriesmentioning a certain path can be applied. Another
issue refers to updating the index as changes on the underly-
ing graph occur. This is discussed below.

7.2 Updating the index

The updates presented in Sect. 3.4, in general, impact on the
state of the indices discussed above. For example, if an edge is
added to the graph, it may produce an update in one or more
index entries. The paths related to the inserted edge must
be recomputed and the index be updated if the new edge, for
instance, produces a new continuous path. Note that if a node
is added to the graph, this has no effect on the path index until
an edge connects the new node with the existing graph. The
impact over the continuous path, of the insertion and update
of an edge, is studied next.
Insertion of an edge Given a graph G, assume that a new
edge enew from v1 to v2 is added to G, with time interval

123



Amodel and query language for temporal graph databases 853

Fig. 18 Indexing paths in a temporal graph

[td − Now], where td is the current timestamp. This change
produces new paths if enew is connected with paths valid
at the current instant, Now. In this case, the existing paths
ending at v1 and starting at v2 are extended with enew. The
time interval for the new pathswould be [td−Now], and they
must be added to the index, if it exists. Algorithm 4 describes
the procedure.
Updating an edge Assume there is an edge eold , whose end-
ing time is told �= Now. The newedge interval enew.interval
would be {eold .interval, [td−Now]}.This changemay pro-
duce new paths if eold is connected to paths valid at the Now
time instant. In this case, the paths ending at v1 and starting at
v2 will be extended with enew. The time interval for the new
paths is [td − Now]. Algorithm 5 describes the procedure.
Deleting an edge This operation is only possible for an edge
eold whose ending time is t f = Now. The newending time of
edge, enew, becomes the current timestamp td . The algorithm
looks for every path P valid at Now, such that P includes

eold . The ending time of all those paths stored in the index,
must be changed to td . Algorithm 6 shows the process.

7.3 Using the index

To conclude this discussion, this section sketches how the
indices above can be used to enhance performance. As usual,
the idea is that if a T-GQL query asks for a certain path, if
possible, it will be redirected to an index. If, for example,
the query mentions a source value for the path, the object
identifier associated with such value must be looked for. Any
path starting from that object node, will have a relationship
labeled start connecting it to the index node representing
that path. There can be as many index nodes connected to
the object node, as paths starting from it in the graph. Thus,
the answer to the query will be the index nodes that match
the parameters. An example is shown next. The query below
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Algorithm 4 Index Update: Edge Insertion
Input: A temporal graph G, a temporal Index I , a new edge enew

with starting and ending nodes v1 and v2, respectively.
Output: An updated Index I ′.
Initialize a list Out with all indexed cPaths whose Source node is v2,
valid at Now time instant.
Initialize a list I n with all indexed cPaths whose Destination nodes is
v1, valid at Now time instant.
Initialize an empty list Ptemp
for all pathi ∈ Out do

path = {v1 + enew + pathi }
path.interval = [td − Now]
Add path to Ptemp

end for
Add the path v1+enew+v2 to Ptemp {This is a path of length 1.}
Copy Ptemp to Pf inal
for all pathi ∈ Ptemp do
for all path j ∈ I n do

path = {path j + pathi }
Add path to Pf inal
path.interval = [td − Now]

end for
end for
For every path in Pf inal create a new temporal index node.

Algorithm 5 Index Update: Edge Update
Input: A temporal graph G, a temporal Index I , an edge eold with

starting and ending nodes v1 and v2, respectively, and the updated edge
enew .

Output: An updated Index I ′.
Initialize a list Out with all indexed cPaths starting at v2 valid at Now
time instant.
Initialize a list I n with all indexed cPaths ending at v1 valid at Now
time instant.
Initialize an empty list Ptemp
for all pathi ∈ Out do

path = {v1 + enew + pathi }
path.interval = [td − Now]
Add path to Ptemp

end for
Add the path v1+enew+v2 to Ptemp . {This is a path of length 1.}
Copy Ptemp to Pf inal
for all pathi ∈ Ptemp do
for all path j ∈ I n do

path = {path j + pathi }
path.interval = [td − Now]
Add path to Pf inal

end for
end for
For every path in Pf inal create a temporal index node

asks for the continuous paths of length 2 starting from the
node corresponding to Mary Smith-Taylor.

SELECT p2.interval
MATCH (p1:Person),(p2:Person),
paths = cPath((p1)-[:Friend*2]->(p2))
WHERE p1.Name = "Mary Smith-Taylor"

Algorithm 6 Index Update: Edge Delete
Input: A temporal graph G, a temporal Index I , an edge eold where

the interval ends at Now, an edge enew where the interval ends at the
current time td , and its starting and ending nodes v1 and v2.

Output: An updated Index I ′.
Initialize a list Current with all indexed cPaths valid at Now time,
that include v1+eold+v2
for all pathi ∈ Current do

pinterval = pathi .interval
ts = pinterval .startT ime
pathi .interval = [ts − td ]

end for
Update the index nodes associated with Current

The query processor will find out that there is an index for
the relationship, like the one in Fig. 18, and will translate the
query into Cypher as follows:

MATCH (v1:Value)<--()<--(o1:Object)
<-[:start]-(i:Index)

WHERE v1.value = "Mary Smith-Taylor"
AND o1.id=i.source AND i.length=2

RETURN [i.from,i.to]

8 Conclusions and future research directions

The first part of this section summarizes the paper and its
results. In light of these results, the second part of the section
motivates and discusses future work.

8.1 Paper summary

This work introduces a temporal property graph data model,
and an associated high-level temporal query language,
denoted T-GQL, which supports two kinds of temporal
paths semantics: continuous paths (and the particular case
of pairwise continuous) and consecutive paths. As relevant
real-world application examples, those semantics capture the
dynamics of social network evolution, and of travel schedul-
ing, respectively. Algorithms for path computation for both
semantics are devised and implemented. Finally, experiments
are carried out, and the results reported and discussed.

The experiments address the tree kinds of pathsmentioned
above. For the continuous and pairwise continuous paths,
the synthetic data sets simulating a social network are pro-
duced,with sizes up to 700,000 edges and 300,000 nodes. For
consecutive paths, real-world flight data are used, with sizes
up to 6,000,000 flights. Since the database is not optimized,
the experiments are aimed at showing the plausibility of the
approach, and highlighting the main issues that need to be
addressed in future work. The results show execution times
below 3.5 s for temporal paths up to a length of 12. For the
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consecutive path algorithms times are in the (1, 60)-seconds
range for the largest data set, and below 1 s for the shortest-
path algorithm, except for particular cases in the data sets,
which affect the algorithms. All in all, the results suggest
that the proposal is a plausible step towards temporal graph
databases.

8.2 Open research directions

Although the current version of the T-GQL language has
powerful features, it can be extended in many ways. Just
as an example, the WHEN clause could be improved so it
can support a path function call (even more than one such
clauses can be supported). Further, the MATCH clause could
be enhanced to support more than one path, as in the current
version.

Performance is a key issue, particularly in temporal
databases. Indexing is crucial to achieve an acceptable per-
formance for (temporal) path queries. The ideas discussed
in Sect. 7 for continuous paths, which borrow from existing
research on indexing both, temporal databases and paths in
graphs, must further investigated and extended to other kinds
of paths.

Finally, although in this paper T-GQL is implemented over
Neo4j, for larger graphs other options need to be investigated,
as sketched in Sect. 5.4. This also requires a generalization
of the proposal, allowing target languages other than Cypher.
The goal is, for example, to allow using Janusgraph as the
underlying database, and Gremlin as target language. This
is not a trivial task, however, as shown in [9], where the
authors not only extend Gremlin with temporal functions to
support the computation of paths similar to the consecutive
paths studied in this paper, but also define their own path
management scheme, adapting the one used by Gremlin.
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A Appendix A: Characteristics of the data
sets

See Table 8.

Table 8 Number of incoming and outgoing flights for each airport

Airport Data set Departing flights Arriving flights

ATL 1 week 6707 6678

1 month 29,512 29,492

3 months 89,632 89,633

6 months 186,135 186,180

1 year 346,836 346,904

CLD 1 week 44 44

1 month 204 204

3 months 601 601

6 months 641 640

1 year 641 640

BOS 1 week 1943 1953

1 month 8837 8841

3 months 27,188 27,204

6 months 57,973 57,996

1 year 107,847 107,851

HOU 1 week 1105 1106

1 month 4650 4651

3 months 13,628 13,628

6 months 27,972 27,972

1 year 52,042 52,041

AUS 1 week 796 797

1 month 3376 3372

3 months 10,182 10,186

6 months 21,941 21,950

1 year 42,067 42,078

SBN 1 week 79 80

1 month 384 386

3 months 1246 1248

6 months 2452 2455

1 year 4454 4452

ISP 1 week 88 89

1 month 377 378

3 months 1162 1163

6 months 2462 2463

1 year 4392 4392

B Appendix B: Summary of main concepts

See Table 9.
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Table 9 Continuous paths experiments: Characteristics of each social network data set

Symbol Name Meaning

G(No, Na, Nv, E) Temporal property graph A graph where nodes and edges are labelled with their interval
of validity, and the history of node properties and values is
kept. The properties of the edges is are static

No, Na, Nv Sets of object, attribute, value
nodes

Object nodes in No represent entities, attribute nodes in Na
represent time-varying properties of an object node, and value
nodes in Nv represent time-varying property values

n.interval, e.interval Time interval associated with a
node n or an edge e

CP = (n1, . . . , nk , r , T ) Continuous path between n1and
nk , with interval T and edge type
r

(n1, . . . , nk , r , T ) of k nodes and an interval T Sequence of
consecutive edges between n1and nk valid during an interval
that is the intersection of all the intervals in the path

PCP = (n1, . . . , nk , r) Pairwise continuous path between
n1 and nk and edge type r .

Sequence of edges such that there is an intersection in the
interval of two consecutive ones

Pc = (n1, n2, r , [t1, t2]) Consecutive path A sequence of edges such that the end time of an edge interval
is less or equal than the starting time of the immediately
consecutive one

E AP Earliest-arrival path Path that can be completed in a given interval such that the
ending time of the path is minimum

LDP Latest-departure path Path that can be completed in a given interval such that the
starting time of the path is maximum

SP Shortest path The path that is shortest from x to y in terms of overall traversal
time along the edges

FP Fastest path A path that can be completed in a given interval such that its
duration is minimum
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