
DNA methylation is the only epigenetic mark for which 
a detailed mechanism of mitotic inheritance has been 
described1. In vertebrates, the most common form of 
DNA methylation is 5‑methylcytosine (5mC), which 
affects 70 to 80% of CpGs in the human genome2. High 
levels of 5mC in CpG-rich promoter regions are strongly 
associated with transcriptional repression, whereas CpG-
poor genomic regions exhibit a more complex and con‑
text-dependent relationship between DNA methylation 
and transcriptional activity3. DNA methylation has been 
extensively studied for its role in various biological pro‑
cesses — including genomic imprinting4, transposable 
elements silencing5, stem cell differentiation6, embryonic 
development7 and inflammation8 — and characteristic 
changes in DNA methylation have been reported for 
cancer9 and several other diseases10. Given the deli‑
cate balance between stability and plasticity of DNA  
methylation patterns, it has been suggested that  
DNA methylation may provide a lifetime record of envi‑
ronmental exposures and a useful source of biomarkers  
for risk stratification and disease diagnostics11–13.

Recent advances in next-generation sequencing and 
microarray technology make it possible to map DNA 
methylation genome-wide, at a high resolution and in 
a large number of samples14. These new methods cre‑
ate ample opportunities for epigenome research, but 
they also pose substantial challenges in terms of data 
processing, statistical analysis and biological interpre‑
tation of observed differences15. The scale of the bio
informatic challenges is best demonstrated by the goal 
of the International Human Epigenome Consortium 
to establish reference epigenomes for 1,000 biomedically 

relevant human cell populations16. To achieve this goal, 
it will be necessary to align in the order of 1 trillion 
sequencing reads to the human genome, to identify 
cell-type-specific DNA methylation patterns through 
hundreds of comparisons and to make the results acces‑
sible through user-friendly epigenome browsers and 
Web-based analysis tools. Additional challenges arise 
from the recent surge of interest in epigenetic epidemi‑
ology and the epigenetic basis of human diseases17, and 
this has resulted in substantial efforts mapping DNA 
methylation in large case–control cohorts18. Such an 
epigenome-wide association study (EWAS) requires 
robust normalization algorithms for microarray-based 
DNA methylation data and rigorous statistical tests 
for identifying differentially methylated regions (DMRs) 
between cases and controls. Furthermore, as the tech‑
nologies for DNA methylation mapping are becoming 
increasingly available in non-specialist laboratories, 
there is a growing need for easy‑to‑use software tools 
that facilitate the handling and analysis of large DNA 
methylation data sets.

This Review discusses relevant concepts, compu‑
tational methods and software tools for analysing and 
interpreting DNA methylation data. The first section 
outlines essential steps of data processing and quality 
control as well as the transformation of raw sequencing 
reads and microarray data into accurate DNA methyla‑
tion maps. The second section reviews tools for visual‑
izing DNA methylation data and statistical methods for 
identifying sample-specific differences in DNA meth‑
ylation. The third section summarizes computational 
methods that assist with the validation of differences in 
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Biomarkers
Molecular assays that predict  
a clinical phenotype, such as 
disease status or response  
to a drug.

Reference epigenomes
Publicly available epigenome 
maps that comprise multiple 
epigenetic marks for the same 
cell type (for example, DNA 
methylation, several histone 
modifications and non-coding 
RNA expression).

Epigenome-wide association 
study
(EWAS). A study design that 
involves measuring an 
epigenetic mark in cases and 
controls to identify 
disease-associated differences.

Analysing and interpreting DNA 
methylation data
Christoph Bock

Abstract | DNA methylation is an epigenetic mark that has suspected regulatory roles  
in a broad range of biological processes and diseases. The technology is now available 
for studying DNA methylation genome-wide, at a high resolution and in a large number 
of samples. This Review discusses relevant concepts, computational methods and 
software tools for analysing and interpreting DNA methylation data. It focuses not  
only on the bioinformatic challenges of large epigenome-mapping projects and 
epigenome-wide association studies but also highlights software tools that make 
genome-wide DNA methylation mapping more accessible for laboratories with limited 
bioinformatics experience.
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Differentially methylated 
regions
(DMRs). Genomic regions that 
exhibit statistically significant 
differences in DNA methylation 
between sample groups.

Bisulphite
Bisulphite ions (HSO3

−) 
selectively deaminate 
unmethylated but not 
methylated Cs, giving rise  
to Us, which are replaced  
by Ts during subsequent  
PCR amplification.

DNA methylation and their interpretation in a broader 
biological context. The final section outlines emerging 
trends in the analysis and interpretation of DNA meth‑
ylation data. The structure of this Review follows the 
flow of a typical DNA methylation mapping study, as 
illustrated in FIG. 1, and a list of the described software 
tools is available from TABLE 1.

Data processing and quality control
Various experimental methods have been devel‑
oped for genome-wide DNA methylation mapping, 
each with their own advantages and challenges14,19,20. 
In this Review, we focus on the three most popular 

approaches: bisulphite sequencing, bisulphite microar‑
rays and enrichment-based methods (FIG. 1a; BOX 1). 
These three approaches pose distinct computational 
challenges during data processing and quality control, 
as outlined below.

Processing bisulphite-sequencing data. As a result of 
DNA treatment with the bisulphite chemical, the vast 
majority of unmethylated Cs appears as Ts among the 
sequencing reads, whereas methylated Cs are largely 
protected from bisulphite-induced conversion. To cal‑
culate absolute DNA methylation levels from bisulphite-
sequencing data, sequencing reads are aligned to the 

Verifying and validating differences in DNA methylation
• Global analysis of DMR list: volcano plots, Q–Q plots, Manhattan plots
• Manual or computational ranking and selection of promising DMRs 
    for experimental verification and/or validation
• Computational design of high-throughput assays for confirming the 
    sensitivity and specificity of DMR identification in large sample cohorts

Interpreting differences in DNA methylation
• Integrative analysis in the context of other genomic data sets
• Search for significant enrichment of gene functions and regulatory 
    elements among the DMRs
• Statistical assessment of confounding factors to assess whether it 
    would be plausible to hypothesize causal effects 

Nature Reviews | Genetics

a  Assays for DNA methylation mapping

Bisulphite sequencing
DNA treatment with bisulphite specifically 
introduces mutations at unmethylated Cs. 
These mutations are mapped by next-
generation sequencing

Bisulphite microarrays
DNA-methylation-specific mutations are 
introduced by bisulphite treatment. These 
mutations are mapped using a genotyping 
microarray that covers a selection of Cs

Enrichment-based methods
Methylated (alternatively, unmethylated) 
DNA fragments are enriched in a DNA 
library. The library composition is quantified 
by next-generation sequencing

b  Data processing and quality control

Processing bisulphite-sequencing data
• Bisulphite sequence alignment
• Quantification of absolute DNA 
    methylation at single-base resolution
• Quality control 

Processing bisulphite microarray data
• Data normalization
• Quantification of absolute DNA 
    methylation at single-base resolution
• Quality control

Processing enrichment-based data
• DNA sequence alignment
• Quantification of relative enrichment
• Statistical inference of absolute DNA 
    methylation corrected for CpG density
• Quality control

c  Data visualization and statistical analysis

Visualizing DNA methylation data
• Visual inspection of selected regions in a genome browser
• Global visualization of the distribution of DNA methylation
• Clustering-based assessment of global similarity and differences 
    in a set of samples 

Identifying differentially methylated regions
• Statistical testing for differential DNA methylation at single 
    CpGs and/or larger genomic regions
• Statistical correction for multiple hypothesis testing
• Ranking based on statistical significance and effect size

d  Validation and interpretation

Unprocessed DNA sequencing or 
microarray data (assay-specific)

List of DMRs that are statistically significant

Table with DNA methylation levels for each 
CpG in each sample (assay-independent)

Figure 1 | Workflow for analysing and interpreting DNA methylation data.  a | Genome-wide DNA methylation is 
mapped with one of the three most commonly used assays, resulting in methylation-specific DNA sequencing or 
microarray data. b | These raw data are processed and quality-controlled using assay-specific algorithms and software. 
The main result of data normalization is an assay-independent CpG methylation table that contains absolute DNA 
methylation levels (β-values) for all covered CpGs. c | Data visualization and statistical analysis identifies relevant 
associations and derives a list of differentially methylated regions (DMRs) between cases and controls. d | The resulting 
DMR list is validated both computationally and experimentally, and biological interpretation is assisted by computational 
tools. (Note that the separation of the analysis workflow into four subsequent steps constitutes a conceptual 
simplification, and there are a number of reasons why a specific study may need to deviate from this approach.)
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Absolute DNA methylation 
levels
Percentage of methylated 
alleles for a given C; this value 
is always binary (0% or 100%) 
for single alleles but can take 
any value between 0% and 
100% when averaging over 
many cells.

positions in the reference genome from which they 
were most likely to be derived, and the percentage of 
Cs and Ts are determined among all reads aligned to 
each C in the genomic DNA sequence.

The alignment of bisulphite-sequencing reads needs 
to account for the selective depletion of unmethylated 
Cs, but otherwise it can be carried out with short-read 
aligners that are similar to those used for chromatin 
immunoprecipitation followed by high-throughput 
sequencing (ChIP–seq) or genome-resequencing 

data. Two alternative approaches have been devel‑
oped (FIG. 2). Wild-card aligners (such as, BSMAP21, 
GSNAP22, Last23, Pash24, RMAP25, RRBSMAP26 and 
segemehl27) replace Cs in the genomic DNA sequence 
by the wild-card letter Y, which matches both Cs and 
Ts in the read sequence, or they modify the alignment 
scoring matrix in such a way that mismatches between 
Cs in the genomic DNA sequence and Ts in the read 
sequence are not penalized. By contrast, three‑letter 
aligners (such as Bismark28, BRAT29,30, BS-Seeker31 and 

Table 1 | Software tools for the analysis and interpretation of DNA methylation data

Software Description URL Refs

Processing bisulphite-sequencing data

B-SOLANA Bisulphite aligner for processing bisulphite-sequencing data obtained in 
the two-base encoding of ABI SOLiD sequencers

http://code.google.com/p/bsolana 40

Bismark Probably the most widely used three‑letter bisulphite aligner; supports 
both Bowtie (fast, gap-free alignment) and Bowtie 2.0 (sensitive, gapped 
alignment)

http://www.bioinformatics.babraham.ac.uk/
projects/bismark

28

Bis-SNP Variant caller for inferring DNA methylation levels and genomic variants 
from bisulphite-sequencing reads that have been aligned by other tools

http://epigenome.usc.edu/publicationdata/
bissnp2011

35

BRAT Highly configurable and well-documented three‑letter bisulphite aligner http://compbio.cs.ucr.edu/brat 29,30

BS-Seeker Basic three‑letter bisulphite aligner based on Bowtie http://pellegrini.mcdb.ucla.edu/BS_Seeker/
BS_Seeker.html

31

BSMAP Probably the most widely used wild-card bisulphite aligner http://code.google.com/p/bsmap 21

GSNAP Wild-card bisulphite aligner included in a widely used general-purpose 
alignment tool

http://share.gene.com/gmap 22

Last Recent and well-validated wild-card bisulphite aligner included in a 
general-purpose alignment tool

http://last.cbrc.jp 23

MethylCoder Three‑letter bisulphite aligner that can be used with either Bowtie (high 
speed) or GSNAP (high sensitivity)

https://github.com/brentp/methylcode 32

Pash Wild-card bisulphite aligner included in a general-purpose alignment tool http://brl.bcm.tmc.edu/pash 24

RMAP Wild-card bisulphite aligner included in a general-purpose alignment tool http://www.cmb.usc.edu/people/
andrewds/rmap

25

RRBSMAP Variant of BSMAP that is specialized on reduced-representation 
bisulphite sequencing (RRBS) data

http://rrbsmap.computational-epigenetics.
org

26

segemehl Wild-card bisulphite aligner included in a general-purpose alignment tool http://www.bioinf.uni-leipzig.de/Software/
segemehl

27

Processing bisulphite microarray data

ComBat R script for correcting known or suspected batch effects using an 
empirical Bayes method

http://www.bu.edu/jlab/wp‑assets/ComBat 52

Illumina 
BeadScan

Machine control and image processing software for Illumina Infinium 
microarray scanners

http://www.illumina.com/support/array/
array_instruments/beadarray_reader.ilmn

Illumina 
GenomeStudio

Graphical tool for data normalization, analysis and visualization of 
Illumina Infinium microarrays (and other genomic data types)

http://www.illumina.com/software/
genomestudio_software.ilmn

isva R package for batch effect correction using an algorithm that is based on 
singular value decomposition

http://cran.r‑project.org/web/packages/
isva

50

methylumi R/Bioconductor package for Infinium data normalization and general 
data handling

http://www.bioconductor.org/packages/
release/bioc/html/methylumi.html

minfi R/Bioconductor package for Infinium data normalization, analysis and 
visualization

http://www.bioconductor.org/packages/
release/bioc/html/minfi.html

RnBeads R package providing a software pipeline for Infinium data normalization, 
quality control, exploratory visualization and differentially methylated 
region (DMR) identification

http://rnbeads.computational-epigenetics.
org

SVA R/Bioconductor package for correcting batch effects that are directly 
inferred from the data using surrogate variable estimation

http://www.bioconductor.org/packages/
release/bioc/html/sva.html

53
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Table 1 (cont.) | Software tools for the analysis and interpretation of DNA methylation data

Software Description URL Refs

Processing enrichment-based data

BATMAN Command-line tool for methylated DNA immunoprecipitation (MeDIP) 
data normalization

http://td‑blade.gurdon.cam.ac.uk/software/
batman

56

Bowtie General-purpose aligner based on the Burrows–Wheeler transform http://bowtie-bio.sourceforge.net 33

BWA General-purpose aligner based on the Burrows–Wheeler transform http://bio-bwa.sourceforge.net 55

MEDIPS User-friendly R package for MeDIP data normalization http://medips.molgen.mpg.de 58

MEDME R package for MeDIP data normalization http://espresso.med.yale.edu/medme 57

MeDUSA Command-line software pipeline for MeDIP read alignment, data 
normalization, quality control and DMR identification

http://www2.cancer.ucl.ac.uk/
medicalgenomics/medusa

60

MetMap Command-line tool for normalization of DNA methylation 
data obtained using restriction enzymes that specifically cut 
unmethylated DNA

http://www.cs.berkeley.edu/~meromit/
MetMap.html

62

MeQA Command-line software pipeline for MeDIP read alignment, data 
normalization and quality control

http://life.tongji.edu.cn/meqa 59

Repitools R/Bioconductor package for quality control and visualization of 
enrichment-based DNA methylation data

http://www.bioconductor.org/packages/
release/bioc/html/Repitools.html

61

Visualizing DNA methylation data

bigWig/bigBed 
tools

Command-line tools for preparing genome browser tracks in a format 
that allows efficient visualization over the Internet

http://hgdownload.cse.ucsc.edu/admin/
exe/linux.x86_64

69

Ensembl Widely used Web-based genome browser that includes a regulatory 
build with various epigenome data sets

http://www.ensembl.org 71

HilbertVis Graphical tool and R package for visualizing genomic data as 
two-dimensional fingerprint diagrams

http://www.ebi.ac.uk/huber-srv/hilbert 77

IGB Graphical genome browser that is run locally on the user’s computer http://bioviz.org/igb 74

IGV Widely used graphical genome browser that is run locally on the user’s 
computer

http://www.broadinstitute.org/igv 73

UCSC Genome 
Browser

Widely used Web-based genome browser hosting all ENCODE data http://genome.ucsc.edu 70

WashU Epigenome 
Browser

Web-based genome browser focusing on the human epigenome http://epigenomegateway.wustl.edu 72

Identifying differentially methylated regions

dmrFinder Function for DMR detection that is a part of the charm package in  
R/Bioconductor

http://www.bioconductor.org/packages/
release/bioc/html/charm.html

96

IMA R package for exploratory analysis and DMR detection based on 
normalized Infinium data

http://www.rforge.net/IMA 89

NHMMfdr R package for estimating false discovery rates (FDRs) using an explicit 
model of dependence between statistical tests performed for 
neighbouring CpGs

http://www.unc.edu/~pfkuan/softwares.htm 98

QDMR User-friendly software tool for DMR identification based on Shannon 
entropy

http://bioinfo.hrbmu.edu.cn/qdmr 91

qvalue R/Bioconductor package for calculating q value estimates of false 
discovery rates

http://www.bioconductor.org/packages/
release/bioc/html/qvalue.html

97

Verifying and validating differences in DNA methylation

BiQ Analyzer HT Graphical tool for analysing locus-specific high-throughput bisulphite-
sequencing data

http://biqanalyzer.computational-epige-
netics.org

108

CpGassoc R package for visualization and analysis of DNA methylation data http://genetics.emory.edu/conneely 101

MassArray R/Bioconductor package for processing Sequenom EpiTYPER data http://www.bioconductor.org/packages/
release/bioc/html/MassArray.html

106

MethLAB Graphical interface for the visualization and analysis methods 
implemented in CpGassoc

http://genetics.emory.edu/conneely/
MethLAB

102

MethMarker Graphical tool for validating DMRs and designing DNA methylation 
biomarkers

http://methmarker.mpi-inf.mpg.de 105

PRIMEGENS Web-based tool for large-scale primer design: for example, in the 
context of locus-specific high-throughput bisulphite sequencing

http://primegens.org 107
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Sequence complexity
The diversity of the DNA 
sequence; it can be measured 
by the information content of 
the base composition.

Genotype calling
The determination of SNPs  
and other genetic variants  
in a given individual.

Genome Analysis Toolkit
(GATK). A widely used software 
tool for genotype calling based 
on next-generation sequencing 
data.

M bias plot
A quality-control diagram that 
plots mean DNA methylation 
levels for each position of the 
bisulphite-sequencing reads. 
Deviations from a horizontal 
line indicate biases.

MethylCoder32) simplify bisulphite alignment by con‑
verting all Cs into Ts in the reads and for both strands 
of the genomic DNA sequence. This way, they can carry 
out the alignment exclusively on a three‑letter alphabet 
(namely, A, G and T) using a standard aligner, such as 
Bowtie33.

As illustrated in FIG. 2, wild-card aligners can be 
expected to achieve a higher genomic coverage but at 
the cost of introducing some bias towards increased 
DNA methylation levels. This is because three‑letter 
aligners purge the remaining Cs from the bisulphite-
sequencing reads and thereby decrease the sequence 
complexity, such that a larger percentage of reads is 
discarded owing to ambiguous alignment positions. 
By contrast, wild-card aligners are at an increased risk 
of introducing bias towards higher methylation levels 
because the extra Cs in a methylated sequencing read 
can raise the sequence complexity to a level that is suf‑
ficient for unique alignment to the genome, whereas the 
corresponding, unmethylated, T‑containing read is dis‑
carded owing to non-unique alignment (see FIG. 2 for an 
example). Both of these issues are restricted to genomic 
regions that exhibit high levels of sequence identity with 
other parts of the genome (such as retrotransposons and 
segmental duplications) and become less relevant for 
longer sequencing reads; for this reason, other consid‑
erations, such as speed, memory consumption and user- 
friendliness, increasingly influence the selection of the 
most suitable bisulphite aligner.

After the bisulphite alignment has been completed, 
absolute DNA methylation levels are inferred from 
the frequency of Cs and Ts that align to each C in the 
genomic DNA sequence. Most researchers simply 
divide the number of observed Cs by the total num‑
ber of Cs and Ts. However, experiences from genotype 
calling suggest that the accuracy can be improved by 
additional steps, such as local realignment, analysis 
of sequence quality scores and statistical modelling of 
allele distributions34. The Bis-SNP variant caller extends 
the well-validated Genome Analysis Toolkit (GATK) 

algorithm to bisulphite-sequencing data and thereby 
provides an important step in this direction35. Bis-SNP 
also removes a common error source in the analysis of 
DNA methylation data, as it can distinguish bisulphite-
induced changes from genetic variants. This is possible 
because bisulphite-induced C‑to‑T variants exhibit a G 
on the opposing strand, whereas genetic C‑to‑T variants 
exhibit an A instead. Furthermore, Bis-SNP can directly 
infer accurate genotype information from bisulphite- 
sequencing data, and in combination with a prior 
report that describes the accurate identification of copy- 
number aberrations from bisulphite-sequencing data36, 
these results suggest that bisulphite sequencing may be 
able to map genetic and epigenetic characteristics with  
acceptable accuracy in a single experiment.

To obtain high-quality DNA methylation data from 
the results of bisulphite sequencing, several techni‑
cal details require careful attention (TABLE 2). First, 
most protocols include an enzymatic end repair step 
to restore double-stranded DNA after fragmentation, 
and this introduces constitutively unmethylated Cs 
at both ends of the DNA fragments. The magnitude 
of this effect can be assessed using the M bias plot and 
can be mitigated by discarding those positions among 
the sequencing reads that exhibit globally biased DNA 
methylation levels37. Second, a sizable fraction of  
DNA fragments is often shorter than the read length 
of the DNA-sequencing reaction. As a result, parts of 
the DNA-sequencing adaptor at the end of the frag‑
ments are being sequenced and can introduce methyl‑
ated Cs into the sequencing reads. This effect can also 
be detected using M bias plots, and it is mitigated by 
trimming DNA sequences that align to the sequencing 
adaptor38. Third, some protocols carry out bisulphite 
treatment before adaptor ligation. In this case, half of 
the methylation-specific C‑to‑T conversions take the 
form of G‑to‑A substitutions38 and require special han‑
dling during bisulphite alignment as well as during the 
inference of absolute DNA methylation levels. Fourth, 
DNA sequencers that use two-base encoding (such as 

Table 1 (cont.) | Software tools for the analysis and interpretation of DNA methylation data 

Software Description URL Refs

Interpreting differences in DNA methylation

AnnotationModules Web-based tool for enrichment analysis based on genomic regions and 
using a diverse set of genome annotations

http://web.bioinformatics.cicbiogune.es/
AM/AnnotationModules.php

117

EpiExplorer Web-based tool for live exploration and interactive analysis of 
genomic region data in the context of public reference epigenome 
data sets

http://epiexplorer.mpi-inf.mpg.de 110

EpiGRAPH Web-based tool for enrichment analysis based on genomic regions and 
using a diverse set of genome annotations

http://epigraph.mpi-inf.mpg.de 116

EVORA R package for quantifying variation in DNA methylation as a cancer 
biomarker

http://cran.r‑project.org/web/packages/
evora

132

Galaxy Widely used Web-based tool for genomic data processing and analysis http://main.g2.bx.psu.edu 111

Genomic 
HyperBrowser

Web-based tool for statistical hypothesis testing based on genomic 
data sets

http://hyperbrowser.uio.no 112

GREAT Web-based tool for Gene Ontology enrichment analysis based on 
genomic regions

http://great.stanford.edu 115
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R/Bioconductor
A powerful command-line tool 
for data processing, statistical 
analysis and visualization of 
biological data sets.

β-values
An alternative term for the 
absolute DNA methylation 
levels, which stems from  
the observation that the 
distribution of DNA 
methylation levels across  
the genome resembles  
a β-distribution.

ABI SOLiD) instead of the more common single-base 
encoding (such as Illumina, Ion Torrent and Roche 
454) pose bioinformatic challenges that are only par‑
tially solved37–40. Fifth, double counting of the same 
DNA fragments must be avoided to prevent bias. It is 
therefore common practice to discard putative PCR 
duplicates by retaining only one read per start and end 
position in the reference genome and to trim the over‑
lapping part of paired-end reads. Finally, the sensitivity 
and specificity of the bisulphite conversion should be 
monitored, ideally by control DNA with known levels 
of DNA methylation levels that is added before bisul‑
phite treatment (for example, spike‑in oligomers with 
0%, 50% and 100% DNA methylation). Elevated lev‑
els of observed CpC methylation can also provide an 
indication of incomplete bisulphite conversion because 
CpC dinucleotides are rarely methylated in mammalian 
cells41,42.

Processing bisulphite microarray data. Specialized 
microarrays have been developed for high-throughput 
profiling of bisulphite-converted DNA. These microar‑
rays quantify the DNA methylation levels of a predefined 
subset of Cs, each of which is represented by dedicated 
probes on the microarray. The Illumina Infinium assay is 
by far the most widely used bisulphite microarray, and it 
has been the focus of substantial bioinformatic methods 
development. The latest version of the Infinium assay 
comprises slightly more than 450,000 covered CpGs43. It 
uses two different probe types with distinct experimen‑
tal characteristics, thus requiring careful normalization 
to minimize technical bias44–46. The genomic coverage 
of the Infinium assay is more limited than that of most 
bisulphite-sequencing protocols (1.5% of CpGs in the 
human genome are present on the Infinium 450k micro‑
array), but the compatibility with existing genotyping 
pipelines makes it an attractive assay for measuring DNA 
methylation in large sample cohorts.

Like other types of microarray (for example, for geno‑
typing and transcription profiling), the bioinformatic pro‑
cessing of Infinium data comprises image processing and 
data normalization as its key steps. Image processing is  
almost always carried out using the vendor-provided 
Illumina BeadScan software (TABLE 1), whereas several 
options exist for normalizing the probe intensity data 
and for inferring absolute DNA methylation levels. The 
commercial Illumina GenomeStudio software (TABLE 1) 
provides a basic algorithm for signal normalization and 
background subtraction using positive and negative 
control probes, and a similar algorithm is implemented 
in R/Bioconductor47 as a part of the open-source packages 
minfi and methylumi (TABLE 1). In addition, recent studies 
have shown that more sophisticated normalization steps 
can improve data quality and can reduce technical varia‑
tion44–46,48. The SWAN method45 for subset quantile nor‑
malization is now available as a part of the minfi package, 
and RnBeads (TABLE 1) provides a user-friendly pipeline 
for the normalization and quality control of Infinium data 
in R/Bioconductor. The main result of data normaliza‑
tion (FIG. 1b) is a table of β-values (and, optionally, M values)  
that serves as the starting point for further analyses 
(FIG. 1c). β-values are conceptually equivalent to the abso‑
lute DNA methylation levels calculated from bisulphite- 
sequencing data, whereas M values are logistically trans‑
formed β-values and exhibit a distribution that is better 
suited for use with some common statistical tests49.

Despite the use of normalization algorithms for 
reducing technical artefacts, several sources of bias tend 
to persist in normalized Infinium data. Most impor‑
tantly, it seems that batch effects are almost always 
present in large-scale Infinium data sets50, and they 
can introduce severe bias during subsequent analy‑
sis steps if no adequate countermeasures are taken51. 
Batch effects are particularly problematic when there 
is strong confounding between sources of technical bias 
and the phenotype of interest (for example, if all cases 
are processed in one week, and all control samples are 
processed in another week). Such a setup makes it dif‑
ficult to distinguish between undesirable technical varia‑
tion and meaningful biological differences. It is therefore 

Box 1 | Methods for DNA methylation mapping

Because DNA methylation patterns are erased by PCR amplification, current 
sequencing and microarray technologies cannot directly distinguish between 
methylated and unmethylated Cs. This limitation may eventually be overcome  
by single-molecule sequencing using nanopores or real-time monitoring of  
DNA polymerases140,143. But at the moment, an extra step is needed to convert DNA 
methylation information into readily assayable DNA sequence information. Various 
methods have been developed and are extensively reviewed14,19,20 and benchmarked64–66 
elsewhere. Three approaches currently stand out as the most useful and popular: 
bisulphite sequencing, bisulphite microarrays and enrichment-based methods.

Bisulphite sequencing
Chemical treatment of the DNA with sodium bisulphite gives rise to methylation- 
specific sequence variants, which can be mapped and quantified by next-generation 
sequencing. Key advantages of this technology are its comprehensive genomic 
coverage, high quantitative accuracy and excellent reproducibility. Disadvantages 
include the high cost of whole-genome resequencing and the difficulty of 
discriminating between 5‑methylcytosine (5mC) and 5‑hydroxymethylcytosine 
(5hmC)144,145. Bisulphite sequencing can be combined with enrichment strategies using 
restriction enzymes (in reduced-representation bisulphite sequencing (RRBS)146) or 
DNA fragment capture147,148 to target bisulphite sequencing to a specific fraction of the 
genome and thereby to reduce the per-sample cost of sequencing.

Bisulphite microarrays
Bisulphite treatment in combination with specially designed genotyping microarrays 
makes it possible to measure DNA methylation levels at a preselected fraction of Cs 
throughout the genome. One key advantage of this approach is the (currently) lower 
per-sample cost compared with whole-genome bisulphite sequencing. Furthermore, 
bisulphite microarrays can be processed with the same infrastructure as genotyping 
microarrays, and the experimental procedures are somewhat easier and faster to carry 
out than the preparation of DNA sequencing libraries. Disadvantages include the lack 
of discrimination between 5mC and 5hmC, limited genomic coverage and high setup 
cost for designing custom microarrays. Bisulphite microarrays are commercially 
available only for the human genome.

Enrichment-based methods
DNA-methylation-specific antibodies, methyl-binding domain proteins or restriction 
enzymes are used to enrich for a fraction of highly methylated (or unmethylated) DNA 
fragments, and the enrichment of specific fragments is quantified by next-generation 
sequencing. The two key advantages of enrichment-based methods are the relatively 
low cost of achieving genome-wide coverage (albeit with a low statistical power in 
CpG-poor genomic regions64) and the ability to distinguish between different forms of 
DNA methylation: for example, using antibodies that specifically recognize 5hmC but 
not 5mC. However, these advantages come at the cost of relatively low resolution and 
high susceptibility to experimental biases.
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M values
Logistically transformed 
β-values. The transformation 
mitigates some statistical 
problems of the β-value 
(namely, limited value range 
and strongly bimodal 
distribution) at the cost of 
reduced biological 
interpretability.

Batch effects
Systematic biases in the data 
that are unrelated to the 
research question but that 
arise from undesirable (and 
often unrecognized) differences 
in sample handling.

Confounding
A nonrandom relationship 
between the phenotype of 
interest and external factors 
(for example, batch effects or 
population structure) that can 
give rise to spurious 
associations.

advisable to process samples in an order that minimizes 
confounding between potential sources of batch effects 
(for example, processing date and microarray batch) 
and the phenotype of interest (for example, cases ver‑
sus controls) and to use tools for batch effect removal, 
which can substantially increase robustness and statis‑
tical power50,52,53. Other common biases in bisulphite 
microarray data include nonspecific binding of DNA 
fragments to multiple probes (which has been shown to 
cause false positives for sex-specific DNA methylation 
on the autosomes54) and the presence of genetic vari‑
ants affecting probe binding or read-out. The impact of 
these technical issues can be minimized by removing all 
probes that exhibit a high sequence identity with mul‑
tiple genomic regions as well as those overlapping with 
common genetic variants.

Processing enrichment-based data. Enrichment-based 
assays for DNA methylation mapping use various meth‑
ods for enriching DNA in a methylation-specific manner. 

Methylated DNA can be enriched using methylation- 
specific antibodies (in methylated DNA immuno
precipitation coupled with high-throughput sequencing 
(MeDIP–seq)), methyl-CpG-binding domain (MBD) 
proteins (in MBD sequencing (MBD-seq)) or a restric‑
tion enzyme that specifically cuts methylated DNA (in 
methylation-dependent restriction enzyme sequencing 
(McrBC-seq)). Alternatively, unmethylated DNA can be 
enriched using restriction enzymes that specifically cut 
unmethylated DNA (for example, in HpaII tiny fragment 
enrichment by ligation-mediated PCR coupled with 
sequencing (HELP–seq)). Next-generation sequencing 
of the resulting DNA libraries counts the frequency of 
specific DNA fragments in each library and provides 
the raw data from which DNA methylation levels can be 
inferred. In contrast to bisulphite sequencing, the DNA 
methylation information is not contained in the read 
sequence but in the enrichment or depletion of sequenc‑
ing reads that map to specific regions of the genome. 
As a result, enrichment-based methods require careful 
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a  Setup of the example 

b  Wild-card alignment

CCGATGATGTCGCTGACGCACGA

YYGATGATGTYGYTGAYGYAYGA

100% 50% 50% 0%

ACGT,ATGA,ATGA,ATGT,
TCGA,TCGA,TCGT,TTGT

DNA fragmentation, selective
conversion of unmethylated
Cs into Ts, DNA sequencing

Genomic DNA sequence
DNA methylation level

Bisulphite-sequencing reads

TCGA
TCGA

TCGT
TTGT

ACGT
ATGT

ATGA
ATGA

ATGT

c  Three-letter alignment

TTGATGATGTTGTTGATGTATGA

TtGA
TtGA

TtGA
TtGA

TtGT
TTGT

AtGTAtGT
ATGT

ATGA
ATGA

ATGT

50% N/A 0%N/A

50% 100% 0%100%

Reference sequence

Reference sequence

Read alignment

DNA methylation level

DNA methylation level

Read alignment

Figure 2 | Two alternative strategies for bisulphite 
alignment.  a | An illustrative example of bisulphite 
sequencing for a DNA fragment with known DNA 
methylation levels at four CpGs and a total of eight 
bisulphite-sequencing reads. For easier visualization, 
the sequencing reads are four bases long (realistic 
numbers would be 50 to 200 bases), and the size of the 
genomic DNA sequence is just 23 bases (3 gigabases 
would be a realistic number for the human genome).  
b | Alignment of the bisulphite-sequencing reads 
(centre) to the reference sequence (top) using a 
wild-card aligner that tolerates zero mismatches and 
zero gaps. The aligner replaces each C in the reference 
sequence by the wild-card letter Y, which can match 
both C and T in the read sequences. Reads with more 
than one perfect alignment with the reference sequence 
are discarded (greyed out), and for each CpG in the 
genomic DNA sequence, the DNA methylation level 
(bottom) is calculated as the percentage of aligning Cs 
among all uniquely mapped reads. Note that the third 
CpG is incorrectly assigned a DNA methylation level of 
100%, which is due to the fact that the unmethylated 
read was discarded as ambiguous, whereas the 
methylated read could be uniquely mapped. c | The 
same alignment carried out by a three‑letter aligner, 
which also tolerates zero mismatches and zero gaps. 
The aligner replaces each C in the reference sequence 
by an upper-case T and each C in the sequencing  
reads by a lower-case t, with no distinction being made 
between upper-case T and lower-case t during the 
alignment. As a result of the reduced sequencing 
complexity with only three letters remaining, a larger 
number of reads align to more than one position in the 
reference sequence and are discarded. The three-letter 
alignment avoids incorrect results in this example, but 
it fails to provide any values for the first and third CpG. 
(As an alternative to discarding ambiguous reads, it is 
also possible to assign them randomly to one of the 
best-matching positions; in the current example,  
the wild-card alignment would provide correct results 
50% of the time, whereas the three‑letter alignment 
exhibits higher uncertainty and would be correct only 
6.25% of the time.)
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Enrichment scores
The relative enrichment of 
DNA fragments from a given 
genomic region compared  
to a control experiment  
(such as sequencing of  
unenriched DNA).

Tiling map
Segmentation of the genome 
into tiling windows of a fixed 
and typically small size  
(for example, 100 bases).

Logistic regression model
A type of regression model 
used for modelling the 
relationship between a binary 
outcome variable and one or 
more predictor variables.

handling of batch effects because any fluctuations in 
DNA-sequencing coverage will directly affect the DNA 
methylation measurement. Furthermore, to obtain abso‑
lute DNA methylation measurements, it is necessary to 
statistically correct for region-specific differences in 
CpG density.

The first step in the analysis of enrichment-based 
DNA methylation data is reference genome align‑
ment, which can be done using a standard aligner, 
such as the BWA55 or Bowtie33. On the basis of the 
alignment, relative enrichment scores are calculated 
by extending the sequencing reads to the estimated 
DNA fragment size and counting the number of 
unique reads that overlap with each CpG or with the 
genomic regions of interest (typically a tiling map  
of the reference genome). These enrichment scores are 
indicative of regional DNA methylation levels, but they 
are heavily confounded by the uneven distribution of 
CpGs throughout mammalian genomes. For example, 
a region with a high CpG density and moderate levels 
of DNA methylation can give rise to higher enrichment 
scores than a region with a low CpG density but with 

high levels of DNA methylation, and a region without 
any aligning reads can result either from the absence 
of DNA methylation or from difficulties in sequencing 
or aligning reads originating from this region. Several 
algorithms have been proposed for correcting this bias 
and for inferring absolute DNA methylation levels at a 
single-base resolution. The BATMAN algorithm56 uses 
a Bayesian method, which provides accurate results but 
becomes impractically slow when applied to large data 
sets. The MEDME method uses a logistic regression model 
for data normalization, but it is rarely used owing to the 
need for calibration using a fully methylated reference 
sample57. The MEDIPS software combines concepts 
from BATMAN and MEDME into a data normalization 
and analysis pipeline that is sufficiently fast and easy to 
use to be practical for routine processing of MeDIP–seq 
and related data types58. Finally, MeQA59 and MeDUSA60 
both provide convenient wrapper pipelines around BWA 
and MEDIPS, thus allowing semi-automated processing 
of enrichment-based data sets, and Repitools is a pack‑
age for the R statistics software that facilitates quality  
control of enrichment-based data sets61.

Table 2 | Quality control of DNA methylation data

Category Common problems and data 
quality issues

Background Potential solutions

Study 
cohort

Genotyping data indicate 
systematic genetic differences 
(population structure) between 
cases and controls

DNA methylation levels are correlated with 
the DNA sequence and can differ significantly 
between haplotypes

Carry out stratified sampling to reduce the impact 
of population structure and/or to statistically 
correct for unavoidable population structure

Sample 
material

DNA quality, quantity and 
sample homogeneity are 
unsatisfactory or dissimilar 
between cases and cohorts

Standards for quality control of sample 
material have been established in the context 
of transcription analysis152, and many of these 
points also apply to DNA methylation analysis

Bisulphite sequencing can provide more robust 
results than other technologies, especially 
when DNA amounts are small and of low 
quality. Bioinformatic analysis can, under 
some circumstances, correct for sample 
heterogeneity130,153

Sample 
handling

Evidence of sample mix-ups 
based on genotype, presence 
of the Y chromosome and/or 
X-chromosome inactivation 
status inferred from DNA 
methylation data

Sample mix-ups seem to occur with rates 
above 1% in essentially any large study. 
Genotype and sex can be inferred from 
sequencing and microarray data to identify 
and to resolve mix-ups

If genotype data are available for each individual, 
reconstruct the correct sample annotations by 
matching of unique genotypes. Otherwise, discard 
all potentially problematic samples or try to 
resolve mix-ups using quantitative trait locus (QTL) 
analysis154

Batch 
effects

Systematic differences 
between samples processed, 
for example, on different days, 
by different people or on 
different machines

Batch effects are hard to avoid in any genomic 
study, but they can in part be corrected using 
statistical methods, especially if potential 
sources of bias are documented and if there is 
little confounding between the batch effect 
and the phenotype of interest

ComBat can effectively correct for known or 
suspected batch effects52, whereas the SVA 
algorithm tries to infer batch effects directly from 
the data53. Depending on the characteristics of the 
data set, one or the other approach may work better

Repetitive 
DNA

A large percentage of 
high-ranking differentially 
methylated regions (DMRs) 
overlap with repetitive regions

Repetitive DNA elements can cause 
cross-hybridization for microarray-based 
methods and inaccurate alignments for 
sequencing-based methods

By aligning all microarray probe sequences or 
sequencing reads to the reference genome and 
keeping track of multiple hits, it is possible to 
identify and flag problematic probes, reads and 
genomic regions54,155,156

Bisulphite 
conversion

Evidence of incomplete 
bisulphite conversion of 
unmethylated Cs (<99%), as 
indicated by unmethylated 
spike‑in controls or by high 
levels of CpC methylation; 
alternatively, over-conversion 
of methylated Cs (>1%), as 
indicated by methylated 
spike‑in controls

Although bisulphite conversion kits typically 
give rise to excellent results, difficult 
samples (for example, formalin-fixed, 
paraffin-embedded material) may require 
extensive optimization. Furthermore, 
overestimation or underestimation of DNA 
methylation levels may arise from sequencing 
into the constitutively methylated 
adaptor and from the use of constitutively 
unmethylated Cs during end repair

Extended or repeated bisulphite treatment 
increases the conversion rate of unmethylated Cs 
but at the cost of increased DNA degradation and 
over-conversion of methylated Cs146,157,158. Problems 
with adaptor sequences can be identified using 
FastQC and countered by aggressive adaptor 
trimming. Biases due to end repair can be identified 
using M bias plots37 and can be resolved by trimming 
affected reads positions
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CpG methylation table
A data table that contains  
DNA methylation levels (and, 
optionally, confidence scores) 
for each assayed CpG in each 
sample after normalization and 
quality control.

Although the described normalization algorithms 
were originally developed for MeDIP–seq data, they 
are also useful for other methods that enrich for meth‑
ylated DNA, including MBD-seq and McrBC-seq. 
By contrast, protocols that use restriction enzymes 
for enriching unmethylated DNA require a different 
approach. These restriction enzymes cleave unmeth‑
ylated DNA at specific recognition sites (for example, 
unmethylated CCGG for the widely used HpaII restric‑
tion enzyme), resulting in fragment pools that depend 
at the same time on the genomic distribution of DNA 
methylation and on the genomic distribution of the tar‑
geted restriction sites. Bayesian networks have been used 
for inferring absolute DNA methylation levels for single 
CpGs from the complex fragment distributions62, and a 
bioinformatic analysis pipeline has been described for 
processing data obtained with the HELP–seq assay63. 
Unfortunately, methods that enrich for unmethylated 
DNA were not included in any of the recent technol‑
ogy comparisons64–66, but an earlier study based on tiling 
microarrays showed that their genomic coverage is fairly 
limited compared with alternative methods67.

Data visualization and statistical analysis
For bisulphite-based protocols — and with appropri‑
ate normalization also for enrichment-based methods 
— the results of data processing can be summarized in 
a table containing absolute DNA methylation levels for 
each covered CpG in each analysed sample (FIG. 1b). This 
CpG methylation table constitutes the basis for subsequent 
analysis steps (FIG. 1c), and it decouples them from the 
experimental assay. The usefulness of separating data 
processing from data analysis is underlined by experi‑
ences from genome-wide association studies, which 
maintain standardized genotype tables in the variant 
call format (VCF) for analysing genotype data of various 
sources (for example, genotyping microarrays by differ‑
ent vendors or low-coverage genome sequencing). The 
definition of a similar ‘methylation call format’ (MCF) 
could facilitate the visualization and analysis of DNA 
methylation data using the methods outlined below.

Visualizing DNA methylation data. As the first step of 
DNA methylation analysis, it is useful to inspect a selec‑
tion of genomic regions visually in a genome browser, 
including candidate genes for which biologically mean‑
ingful differences are suspected but also a set of ran‑
domly selected regions. To prepare for effective visual 
inspection, the CpG methylation tables derived during 
data processing (FIG. 1b) are converted into a file format 
that allows dynamic visualization of large data sets over 
the Internet. The bigBed format supports the visuali‑
zation of single CpGs with a colour coding according 
to their DNA methylation levels64; alternatively, the 
bigWig format can represent DNA methylation levels 
of single CpGs by the heights of interspersed vertical 
bars68. These binary files are created from text-only BED 
and WIG files using specialized tools that reformat the 
data in a way that allows efficient extraction of region-
specific information69. The resulting files are uploaded 
to a Web-accessible directory and imported into a  

Web-based genome browser for visualization (for exam‑
ple, UCSC Genome Browser70, Ensembl71 or WashU 
Human Epigenome Browser72). Alternatively, desktop 
genome browsers, such as IGV73 and IGB74, can be used 
for visual inspection of DNA methylation data. These 
locally running genome browsers tend to be somewhat 
faster but require the user to download and to import 
additional genome annotations that are available by 
default in Web-based genome browsers.

Complementarily to region-specific visualization 
with genome browsers, various types of diagrams can be 
used to obtain a more global view on DNA methylation 
data. Box plots and violin plots visualize the distribution 
of DNA methylation across the genome and can iden‑
tify global changes (for example, genome-wide demeth‑
ylation in differentiating erythrocytes75 or widespread 
gain of DNA methylation in cultured cell lines76). The 
Hilbert curve method compresses genome-wide maps 
into compact, two-dimensional diagrams77, and these are 
useful for detecting spatial patterns in the distribution of 
DNA methylation. Tree-like diagrams of DNA methyla‑
tion across all classes of repeat elements in the reference 
genome highlight global trends in the epigenetic regula‑
tion of repetitive DNA64. Finally, scatter plots of DNA 
methylation levels provide a comprehensive picture of 
similarity and differences between sample pairs; because 
of their level of detail, such scatter plots constitute useful 
supplementary figures for convincing the reader of the 
quality and reproducibility of a data set78,79. All of these 
diagrams are fairly straightforward to generate using  
R/Bioconductor.

The most common goal of DNA methylation map‑
ping is the identification of systematic differences 
between groups of samples, such as between patients 
afflicted by a disease and a healthy control group. 
Towards this goal, it is often useful to carry out hier‑
archical clustering on all relevant DNA methylation 
maps and to visualize the relative similarity among the 
samples by a clustering tree. For example, this approach 
successfully identified epigenetically and phenotypi‑
cally distinct patient subsets in several cancers80,81. Most 
researchers carry out hierarchical clustering using stand‑
ard methods that are available in their preferred statis‑
tical software package, such as ‘hclust’ and ‘heatmap’ 
in R. Moreover, specialized clustering algorithms have 
been developed82–84 that account for the characteristic 
bimodal distribution of DNA methylation data and may 
give rise to more robust results than standard methods. 
Altogether, the described methods provide great flex‑
ibility for visualizing DNA methylation data, but in the 
absence of specialized graphical analysis software it is 
currently necessary to be familiar with a command-line 
tool — such as R/Bioconductor — to carry out effective 
visual analysis of DNA methylation data.

Identifying differentially methylated regions. After an 
initial analysis of global trends in a DNA methylation 
data set, the typical next step is the identification of 
differentially methylated regions (DMRs) that exhibit 
consistently different DNA methylation levels between 
sample groups (for example, cases versus controls). 
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False discovery rate
(FDR). A measure of 
significance that corrects for a 
large number of statistical tests 
being carried out on the same 
data set.

Effect size
A measure for the strength of 
association between two 
variables that provides 
important complementary 
information to P values and 
false discovery rates.

These DMRs can be as small as a single C or as large 
as an entire gene locus, depending on the biological 
question of interest and on the bioinformatic methods 
used for their identification. Although a single methyl‑
ated CpG may occasionally be linked to gene expres‑
sion regulation85 and may affect disease risk86,87, the 
vast majority of DMRs reported in the literature fall 
within a size range of a few hundred to a few thousand 
bases. This range coincides with typical sizes of gene- 
regulatory regions, and it is widely believed that DMRs 
can control cell-type-specific transcriptional repression 
of an associated gene1,3,88.

DMR detection is commonly carried out on CpG 
methylation tables (FIG. 1c) — except for enrichment-
based methods, which may profit from having the analy‑
sis carried out directly on read count data. In the most 
basic form of DMR detection, t tests or Wilcoxon rank-
sum tests compare the DNA methylation levels of each C 
with sufficient data between two sample groups89. Several 
more advanced methods have been described that aim 
to improve DMR detection using mixture models90, 
Shannon entropy91, logistic M values49, feature selec‑
tion92, stratification of t tests93, aggregation of genomic 
regions by type94, statistical correction for copy-number 
aberrations95 or linear regression in combination with 
batch effect removal and peak detection96. Although the 
conceptual arguments behind each of these methods are 
plausible, in the absence of a systematic benchmarking 
study, it remains difficult to predict which methods will 
work best for real-world DNA methylation data sets.

Importantly, any statistical method that tests for 
differences in DNA methylation at a large number of 
genomic loci needs to correct for multiple hypothesis 
testing. This correction is almost exclusively done by 
controlling the false discovery rate (FDR). To that end, 
the distribution of uncorrected P values is analysed, 
and an FDR is inferred for each DMR. The inference 
is often made using the q value method available in  
R/Bioconductor97. Furthermore, an alternative method 
has recently been proposed to increase statistical power 
by modelling the dependence between statistical tests 
carried out for neighbouring CpGs98. Because of the 
large number of CpGs in the genome, only the strongest 
single-CpG differences tend to remain significant after 
multiple testing corrections. The result is often a high 
false-negative rate, especially when sample numbers and 
effect sizes are small.

Two complementary methods can be used to improve 
the statistical power for detecting weak differences in 
DNA methylation. First, statistical comparisons can be 
carried out on larger genomic regions rather than on 
single CpGs, such that neighbouring CpGs with similar 
differences in DNA methylation reinforce each other 
and give rise to more significant results (FIG. 3). This 
method can be applied to a genome-wide tiling map 
of the genome to support unconstrained genome-wide 
DMR discovery, or it can be focused on a preselected 
set of candidate genomic regions64; the latter approach 
substantially increases the statistical power for detect‑
ing those DMRs that are located among the candi‑
date regions, but at the cost of missing out on DMRs 

elsewhere. Second, hierarchical models are useful for 
addressing the problem that small standard deviations 
frequently arise by chance and can result in highly sig‑
nificant but often spurious results99. By estimating the 
standard deviation of a given CpG or genomic region 
as the average of observed and expected values, more 
robust P values can be obtained for DNA methylation 
comparisons with many measurements and few samples 
per sample group.

Validation and interpretation
Statistical comparison between sample groups typi‑
cally results in a list of DMRs (FIG. 1c), which provides 
the basis for validation and biological interpretation  
of the observed differences (FIG. 1d). Importantly, statisti‑
cal significance does not prove biological significance, 
and before proceeding to validation and interpretation, 
it is often useful to rank significant DMRs by a broader 
measure for the strength of association (for example, 
incorporating not only observed P values but also the 
relative and absolute differences in DNA methylation 
between sample groups). In a well-designed and suc‑
cessful study, it would be expected that experimental 
validation rates and biologically meaningful enrichment 
scores are highest for the first quartile of top-ranking 
DMRs and gradually decrease for the second, third and 
fourth quartiles of lower-ranking but still significant 
DMRs, thus providing a useful indicator of data quality 
and interpretability.

Verifying and validating differences in DNA methyla-
tion. After a ranked list of DMRs has been established, 
its accuracy and reproducibility should be confirmed 
by a combination of computational and experimental 
methods. As a first step, it is usually advisable to inspect 
the strongest DMRs manually in a genome browser and 
to look for warning signs that are indicative of technical 
artefacts. Common issues include excessive overlap of 
top-ranking DMRs with regions of repetitive DNA and 
unexplained clustering of DMRs in certain parts of the 
genome (TABLE 2). The manual inspection of individual 
DMRs should be complemented by quality-control 
plots visualizing global properties of the DMR list. For 
example, volcano plots show the relationship between 
statistical significance and the magnitude of differences 
in DNA methylation between sample groups, as in a 
recent study on EVI1‑associated leukaemia100; Q–Q plots 
are useful for identifying global biases that can lead to 
inflated P values; and Manhattan plots demonstrate the 
distribution of DMRs across the genome101,102.

When the computational analysis indicates that a 
data set is of sufficient quality to proceed, additional 
verification and/or validation experiments are useful 
for confirming the accuracy and reproducibility of the 
observed DMRs. In this context, verification refers to 
the experimental confirmation of DNA methylation 
measurements on the same set of samples using a dif‑
ferent assay, which establishes the technical accuracy of 
the measurement; by contrast, validation is carried out in 
a new sample cohort with similar characteristics, and it 
aims to confirm the biological reproducibility of a DMR. 
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Figure 3 | Effective identification of differentially methylated regions in a highly annotated genome.   
a | An illustrative example of differences in DNA methylation within the promoter region of a gene and at an upstream 
enhancer. For easier visualization, DNA methylation data are shown for only three cases and three controls (a realistic 
number would be hundreds of samples) and for ten CpGs in total (dozens to hundreds of CpGs are realistic numbers for a 
typical promoter region). b | When the DNA methylation levels between cases and controls are compared at the resolution 
of single CpGs, all multiple-testing-corrected q values exceed 0.05 and are therefore considered to be insignificant.  
c | When combining statistical evidence from neighbouring CpGs over a fixed distance (tiling regions highlighted in green), 
one region is identified as being significantly more highly methylated among the cases compared to the controls  
(q value = 0.048). d | When combining statistical evidence across all CpGs that can be assigned to the same functional 
element on the basis of external genome annotation data, two regions are identified as being differentially methylated: 
the upstream enhancer (highlighted in purple) is significantly more highly methylated in the cases (q value = 0.024), and the 
promoter region (in orange) is significantly more highly methylated in the controls (q value = 0.045). The figure is based on 
the following statistical methods. Differences in DNA methylation at single CpGs (in b) are identified by unpaired, 
one-sided t tests, which assess whether or not the DNA methylation levels at the specific CpG are significantly higher 
among the cases than among the controls, and vice versa. The reason for using two separate one-sided tests lies in the 
ability to combine their results as described below; nevertheless, one two-sided test works equally well if no combination 
of P values is intended. For the tiling region analysis (in c), the locus is segmented into equally spaced regions, and the 
statistical significance for each of these regions is assessed using a generalization of Fisher’s method151. This method 
combines the P values of all single CpGs that fall into the region while accounting for linear correlations between 
neighbouring CpGs (which are estimated to be at or below 0.8 on the basis of empirical observations for genome-wide 
bisulphite-sequencing data). The annotated genome analysis (in d) uses external genome annotation data to focus the 
statistical analysis on those combinations of CpGs that are likely to work together as an epigenetic switch: for example, by 
deactivating a known promoter or enhancer element. In all three cases, q values are calculated as estimates of the multiple-
testing-corrected false discovery rate (FDR)97, and a q value of 0.05 is used as the significance threshold for each direction 
of the comparison. Note that in this example the analysis of tiling regions increases the statistical power because 
neighbouring CpGs exhibit correlated changes in DNA methylation, and the incorporation of genome annotation data 
leads to further improvements, because the CpGs in the enhancer as well as those in the promoter exhibit a coordinated 
switch of their DNA methylation levels.
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Bisulphite pyrosequencing
A locus-specific method for 
accurate quantification of DNA 
methylation levels at a small 
number of CpGs in many 
samples.

Combined bisulphite 
restriction analysis
(COBRA). A method that 
combines bisulphite treatment 
with sequence-specific 
restriction enzymes for 
locus-specific analysis of DNA 
methylation.

Methylation-specific PCR
(MSP). A method for highly 
sensitive detection of 
locus-specific DNA methylation 
using PCR amplification of 
bisulphite-converted DNA.

MethyLight
A variant of methylation- 
specific PCR that is highly 
quantitative and practical for 
measuring locus-specific DNA 
methylation levels in many 
samples.

EpiTYPER
An assay for measuring 
locus-specific DNA methylation 
in many samples on the basis 
of a combination of bisulphite 
treatment and mass 
spectrometry.

Verification and validation are usually done using locus-
specific DNA methylation assays103,104, thereby reducing 
the cost of studying large validation cohorts. Software 
tools are available to support assay design and data anal‑
ysis for the most widely used protocols. For example, 
MethMarker105 provides a graphical user interface for 
designing and validating locus-specific DNA methyla‑
tion assays based on bisulphite pyrosequencing, combined 
bisulphite restriction analysis (COBRA), methylation-specific 
PCR (MSP) and MethyLight. The MassArray R package 
supports assay design and data analysis for the mass-
spectrometry-based Sequenom EpiTYPER assay106, and 
PRIMEGENS107, in combination with BiQ Analyzer 
HT108, provides user-friendly support for deep bisulphite 
sequencing of selected loci, which is currently the valida‑
tion method with the highest quantitative accuracy109.

If DNA methylation mapping is carried out with the 
sole purpose of identifying a few interesting DMRs, then 
it is usually sufficient to validate the reproducibility of 
hand-picked DMRs in a second sample cohort. However, 
if the goal is to validate a large list of DMRs as a commu‑
nity resource, it is necessary to select DMRs randomly 
for validation to avoid biases due to manual selection of 
validation candidates. Whenever possible, researchers 
should report not only P values but also cross-validated 
sensitivity and specificity values to support the strength 
of the validated association. A carefully conducted vali‑
dation study can make technical verification in the origi‑
nal cohort dispensable, especially when working with 
well-established DNA methylation assays.

Interpreting differences in DNA methylation. Although 
the biological conclusions drawn from a genome-
wide DNA methylation data set ultimately depend 
on the researcher’s understanding of the investigated 

phenotype, the process of data interpretation can be 
assisted by computational tools. For example, the Web-
based EpiExplorer software facilitates hypothesis gen‑
eration by allowing live exploration and interactive 
analysis of DMR lists in the context of public reference 
epigenome data sets110, and genome analysis tools such 
as Galaxy111 and the Genomic HyperBrowser112 simplify 
the comparison of DMR data with other genomic data 
sets that are available online. Furthermore, researchers 
frequently apply gene set enrichment and pathway anal‑
ysis tools113 to identify biologically meaningful trends in 
lists of DMRs, as shown by a recent study of shared DNA 
methylation patterns in ageing and in bladder cancer114. 
Because most enrichment analysis tools require gene 
names as an input, DMRs need to be mapped to neigh‑
bouring genes before the enrichment analysis is carried 
out. Alternatively, we can use the GREAT Web server115, 
which internally maps genomic regions to genes and sta‑
tistically controls for the fact that genes differ in size and 
in their relative distance to each other.

Given that the correlation between promoter- 
associated DNA methylation and gene expression dif‑
ferences is modest in magnitude (Pearson correlation 
coefficients of around −0.3 are commonly observed37,79), 
gene-based enrichment analysis should be comple‑
mented with an enrichment analysis that is done directly 
on genomic regions116,117. For example, using a collection 
of genomic region sets obtained from Cistrome118 and 
other public data sources, it has recently been shown that 
DMRs associated with in vivo differentiation of adult 
stem cells are much more strongly enriched for cell-
type-specific transcription factor binding than for any 
functional gene annotations79. Despite the effectiveness 
of such analyses for identifying significant associations 
between DMRs and other types of genomic regions, it 
is important to keep in mind that correlation does not 
necessarily imply any causal relationship. Most DMRs 
exhibit moderate CpG densities119 and therefore tend to 
co‑locate with genomic regions that fall into a similar 
range of CpG densities, including weak CpG islands120, 
CpG island shores119 and other putative gene-regulatory 
elements. The risk of over-interpreting spurious associa‑
tions can be reduced by selecting suitable control sets 
(for example, DMRs for other comparisons within the 
same study) and by using statistical models that explicitly  
control for CpG density as a confounding factor.

The interpretation of DNA methylation maps is 
further complicated by diverse sources of biologi‑
cal variation. First, inter-individual variation in DNA 
methylation is common among healthy individuals and 
appears to be heavily influenced by underlying genetic 
differences121–125. Before we can hope to correct for this 
source of variation statistically, it will be necessary to 
establish a comprehensive map of genetic quantitative trait 
loci (QTLs) that affect DNA methylation126–128. Second, 
different cell types in the same tissue or organ tend to 
exhibit highly characteristic DNA methylation pro‑
files79,129, which can lead to spurious DMRs if the cell 
composition is different between cases and controls. To 
address this issue, an algorithm has been developed for 
inferring the cell composition of whole blood on the 

Box 2 | Accessing public reference epigenome data sets

Several large-scale initiatives are currently producing DNA methylation maps for a 
broad range of cell types and diseases. The International Human Epigenome 
Consortium (IHEC) is establishing comprehensive epigenome maps for 1,000 
biomedically relevant human cell populations16 — a task that has been distributed 
across multiple contributing projects. For example, the US Reference Epigenome 
Mapping Centers (REMC) project focuses on stem cells and primary tissue samples from 
healthy donors149, the European BLUEPRINT project analyses various blood cell types 
and their associated diseases150, and the German DEEP project investigates cell  
types that are relevant for metabolic and inflammatory diseases. All IHEC data are 
being distributed via the global bioinformatic hubs of the US National Center for 
Biotechnology Information (with its Gene Expression Omnibus (GEO) database) and the 
European Bioinformatics Institute (EBI; with its European Genome–Phenome Archive 
(EGA) database). Additional portals hosting IHEC data include the Epigenome Atlas  
at the Baylor College of Medicine, the Roadmap Epigenomics Visualization Hub at 
Washington University and the Ensembl Regulatory Build at the EBI. Complementarily 
to the focus of the IHEC on primary cell types, the Encyclopedia of DNA Elements 
(ENCODE) project provides extensive epigenome data for cultured cell lines. These 
data are available through the US National Institutes of Health GEO database, and they 
can also be browsed and downloaded from the ENCODE portal at the University of 
California, Santa Cruz. Finally, the International Cancer Genome Consortium (ICGC) 
establishes not only genome and transcriptome profiles but also epigenome maps of 50 
different cancer types. Aggregated data are freely accessible from the ICGC Data 
Portal, whereas an application is required to access raw sequencing data and genotype 
information of individual patients.
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basis of aggregated DNA methylation maps130. Third, 
variation in DNA methylation within a tissue appears 
to be elevated in cancer samples37,131,132, which may have 
important implications for cancer therapy133,134. Fourth, 
allele-specific DNA methylation is widespread in mam‑
malian genomes, and bioinformatic methods have been 
developed for identifying affected genomic regions on 
the basis of genetic differences between alleles135 or sta‑
tistical evidence for a mixture of two allelic distributions 
underlying the observed DNA methylation levels136,137. 
Finally, the interpretation of EWAS results is compli‑
cated by the hybrid role of DNA methylation combining  
aspects of a genotype (that is, a heritable mark that can 
influence disease risk) with aspects of a cellular phe‑
notype (that is, a molecular mechanism that can be 
affected by diseases), which makes it difficult to distin‑
guish whether DNA methylation differences influence 
the phenotype of interest or vice versa. The concept of 
two-step Mendelian randomization has been suggested as 
a potential solution for this problem138, but its validation 
in practice is still pending and will probably require large 
sample sets.

Future directions
The experimental and bioinformatic methods are now 
available for applying genome-wide DNA methylation 
mapping to a broad range of phenotypes, diseases and 
biological questions. Over the coming years, we will 
witness a surge of epigenomes being generated by indi‑
vidual laboratories and by public consortia (BOX 2). DNA 
methylation mapping will often complement genome 
sequencing and transcriptome mapping, as in the studies  
of the International Cancer Genome Consortium139. 
Furthermore, comprehensive mapping of histone modi‑
fications, nucleosome positioning, transcription factor 
binding and chromosomal organization will be carried 
out in those cell types that can be obtained in sufficient 

quantities, but for practical reasons they will be done at a 
much smaller scale than we will observe for DNA meth‑
ylation mapping. These developments pose major chal‑
lenges for computational epigenetics. Most importantly, 
we need to establish powerful and efficient tools for inte‑
grative data analysis to distil biologically relevant find‑
ings from the steeply growing heap of epigenome data.  
These tools will routinely combine user-generated  
data sets for a specific research question with publicly 
available reference epigenomes, they will detect common 
pathways as well as sample-specific deviations, and they 
will help users to derive biologically relevant hypotheses 
for experimental follow‑up. Large parts of the bioin‑
formatic analysis infrastructure will be operated using 
Web-based tools, but there will also be increasing pres‑
sure to ensure data privacy as DNA methylation map‑
ping follows personal genome sequencing into the clinic.

Despite unprecedented progress in our ability to 
map and to analyse DNA methylation, we are far from 
understanding the causes and consequences of the dif‑
ferences in DNA methylation that we observe, and a host 
of new questions is already on the horizon. For exam‑
ple, what will we see when nanopore sequencing enables 
us to observe the chemical modifications of the DNA 
throughout the genome140? What is the functional rel‑
evance of the recently discovered variants of DNA meth‑
ylation, including 5‑hydroxymethylcytosine (5hmC), 
5‑formylcytosine and 5‑carboxylcytosine141? Will hyper‑
variable DNA methylation emerge as a new hallmark of  
cancer133,134? Can we predict the future behaviour of cells 
on the basis of their epigenomes? How can we design 
epigenetic combination therapies that will make a dif‑
ference in the clinic142? It is likely that a comprehensive 
effort in functional epigenomics will be required to 
answer these questions and to interpret the large-scale 
epigenome maps that are currently being generated. 
These are exciting times for computational epigenetics!

Cross-validation
A method for estimating the 
predictive power of a 
differentially methylated region 
or biomarker by carrying out 
training and validation on 
different portions of the same 
data set.

Quantitative trait loci
(QTLs). Genomic regions that 
control a phenotype of 
interest, such as the DNA 
methylation levels of another 
genomic region.

Mendelian randomization
Epidemiological method for 
assessing the causal role of an 
exposure for a phenotype of 
interest, using genetic variants 
that are affected neither by the 
exposure nor by the 
phenotype.
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