GGL Tutorial: Graph Rewrite Rules

9
/G\
Q=09
Christoph Flamm!"* and Martin Mann?

! Institute for Theoretical Chemistry, Vienna University

» Lniversitat
5 wien

2 Bioinformatics Group, University of Freiburg

UNI
|

FREIBURG

http://www.tbi.univie.ac.at/software/GGL/

Version April 29, 2015

Built for GGL version 4.1.1

*Send comments to xtof@tbi.univie.ac.at or mmann@informatik.uni-freiburg.de

Contents

1 Graph rewrite rules

1.1 Introduction to the specification language GML
1.2 BNFoOof GML
1.3 Keys for rule specification

Chemical graph rewrite rules
2.1 General structure of a rewriterule
2.2 General steps in the derivation of writing rules
2.3 Wildcards for atom/bond label
2.4 Constraining atoms/bondso 0L
2.4.1 Constrain allowed atom labels
2.4.2 Constrain allowed bond labels
2.4.3 Forbid a certain bond
2.4.4 Constrain adjacency (or degree)
2.5 Radicals
2.6 Group placeholders within rules
2.7 Visualization of chemical rules

Copy-and-Paste operations

Examples

4.1 Bromination of a double bond
4.2 Diels-Alder reaction
4.3 Keto-enol isomerization
4.4 Aldose-Ketose transformation

1 Graph rewrite rules

This chapter explains how to describe a graph rewrite rule in term of the
Graph Modeling Language (GML). Please note, currently only undirected
graphs are supported and assumed for both the input graphs and the rewrite
patterns. Theoretically, the graph grammar library is prepared to be applied
on directed graphs too, but so far this was not tested nor applied!

1.1 Introduction to the specification language GML

Within the GGL, graphs and graph rewrite rules are specified in a language
called GML (Graph Modeling Language). Essentially, GML is composed of
hierarchical key—value pairs. Keys are usually strings (some identifiers) and
values specify the value of the corresponding key. Values are either single
values (numbers, strings, etc) or lists of key—value pairs. Lists must always
be enclosed in opening ’[" and closing ']’ brackets in GML. Nesting of lists to
arbitrary depth is allowed in GML. The general structure of a GML specification
looks as follows:

keyl [
key2 value2
key3 [
key4 valued
keyb valueb
]
key6 value6
]

In the above code snippet keys 1 and 3 have both a list as value (hence the
brackets). Keys 2, 4-6 are key—value pairs where the corresponding values
are single values such as numbers or strings.

1.2 BNF of GML
Following is the grammar specification of GML in Boyes Normal Form (BNF).

gml 1=
keyvalues ::=
keyvalue ::=
key 1=
value 1:=
real =
integer 1i=
operator ::=
string 1=
list 1=
sign 1=
digit =
mantissa ::=
instring ::=

The GML-parser in

keyvalues

keyvalue (keyvalue)*
key value
[’a’-’z’’A’=>Z’][’a’-’2°’A’-°Z°°0°-"9"]
real | integer | string | list | operator
sign? digit °’.’ digit+ mantissa?

sign? digit+

10 |

)= | 1> |)!)

In instring yno
>[’ keyvalues ’]°

140 l

)

[707_791]
(PE’ | ’e’) sign? digit+
ASCII—{’&’, 7u1} | & [’a’—’z”A’—’Z’] 7;1

GGL can parse any well formed GML file that conforms to
the above BNF grammar specification. However the parser interprets only
a subset of “known” key—value pairs (see according section) all other well-
formed key—value pairs are silently ignored (Note: a source of errors is
misspelling of known keys since the parsing is case-sensitive).

1.3 Keys for rule specification

The following table lists the relevant keys for rule specification in alphabetic
order. Keys underlayed with the color gray are used to set constraints or
copy-and-paste operations on vertices or edges (see section 2.4 and 3 for
more details). For lists the optional enclosed keys are given in brackets.

key type | keys in list comment
constrainAdj list id, op, count, (edgeLabels | define adjacency constraints
and/or nodeLabels) for a matched wvertez, either
nodeLabels or edgeLabels or
both has to be specified
constrainEdge list source, target, (op), edge- | define constraints for the al-
Labels lowed /forbidden labels for a
matched edge
constrainNoEdge | list source, target define constraints that two
matched vertices are not con-
nected via an edge

key

type

keys in list

comment

constrainNode

list

id, (op), nodeLabels

define constraints for the al-
lowed/forbidden labels for a
matched vertex

context

list

(node), (edge)

define the context-subgraph of
a rule

count

int

numeric counter for

strained rule vertex

con-

copyAndPaste

list

(edgeLabels),

source, id,
(target)

define a copy-and-paste oper-
ation for a left-side only node.
Out-edges of the source node
with the given labels (or all
if no specified) are copied to
the target verter. Optionally,
the target node of the copied
edges can be specified.

edge

list

source, target, label

define an edge.

edgelLabels

list

label

define a list of edge labels in-
cident to a constrained verter,

id

int

defines a numerical identifier
for a verterz.

label

string

defines a textual label for a
verter or an edge.

left

list

(node), (edge), (constrain-
£XXX)

define the left-subgraph of a
rule. In addition several in-
stances of constrainXXX can
be added to make the rule
matching more specific.

node

list

id, label

define a vertez

key type | keys in list comment
nodeLabels list label define a list of wvertex labels
adjacent to a constrained wver-
tex.
op char | — operator used in the logi-
cal expression for constraints
(one of {'<’,’=",7>", "I'}).
right list (node), (edge) define the right-subgraph of a
rule.
rule list rulelD, left, context, right, | define a rule.
(wildcard), (copyAnd-
Paste)
rulelD string | — define a textual name for a
rule
source int - define the source-verter of an
edge
target int — define the target-verter of an
edge
wildcard string | — an optional textual label that

defines which used labels for
a vertex or an edge is to be
matched on any other label
during the left side pattern
matching.

2 Chemical graph rewrite rules

In the following, the general structure of a graph rewrite rule is exemplified
using the special case of instances defining chemical reactions. These can
be applied to model chemical reactions based on a graph representation of

molecules.

Therein, molecules are defined by an undirected graph where

each node represents a single atom and edges correspond to bonds of a given

4

valence. Within the GGL, we assume node and edge labels to be conform with
the SMILES notation.

Since we are modelling chemical reactions, no atoms (i.e. nodes) are
allowed to vanish or appear during the reaction. Thus, no node will be
exclusively left (for vanishing nodes) or right side (appearing nodes). Label
changes are possible, i.e. a node appears with different label in the left and
right side of the rule. A possible reason for a label change is an altered charge
of an atom as a result of the reaction.

2.1 General structure of a rewrite rule

A rewrite rule is specified with the key rule. Within the list value of the rule
key 4 mandatory keys must be specified, one string valued key (ruleID) to
name the rule and three list valued keys (left, context, right) defining the
three subgraphs of a rewrite rule:

rulelD each rule must have a textual name which must be defined by this key.

left within the list value of this key, all edges are specified, which are broken
during the chemical transformation (i.e. bonds present in the educt but
absent in the product molecule(s)). Furthermore, nodes can be listed
that change their label along the reaction, thus they are listed with
different label within the right list. Finally, the matching can be further
refined listing additional constraints.

context within the list value of this key, all nodes and edges are defined, which
do not change during the chemical transformation.

right within the list value of this key, all edges are specified, which are formed
during the chemical transformation (i.e. which are “new” in the product
molecule(s)). Furthermore, nodes with changing label (i.e. also listed
in left list) are given.

The following example illustrates how a valid rewrite rule looks like. The
atoms 1-4 go into the context since chemistry is mass conserving and no
atom can vanish or can be produced out of the blue during a chemical trans-
formation. Note also that the total valence (total degree of each node) is
preserved during the chemical reaction. Total valence preservation is a cru-
cial feature of chemical transformations. The GML-parser in GGL checks each
rule to have this property and issues an error message if this is not the case!

rule [
rulelD
left [
edge
edge
]

[
L

context

node
node
node
node

]

right
edge
edge
edge

]

]

L

L
L
L

Lo B s B e B |

"Double bond bromination"

source 1 target 2 label "="]
source 3 target 4 label "-"]
[

id 1 label "C"]
id 2 label "C"]
id 3 label "Br"]
id 4 label "Br"]

source 1 target 2 label "-"]
source 1 target 3 label "-"]
source 2 target 4 label "-"]

Try to make a sketch of the above reaction and compare your result with
section 4.1. (Hint: arrange the nodes from context into a polygon and
draw only the vertices of the polygon on the left and right side of a reaction
arrow. Insert each edge from context (if any) into both graphs left and
right of the reaction arrow. Finally insert edges from left into the graph
left and those from right into the graph right of the reaction arrow).

2.2 General steps in the derivation of writing rules

It is recommended to follow the protocol below when translating reaction
mechanisms into writing rules.

1. Make a sketch of the reaction.

2. Number the atoms in the reaction mechanism.

3. Figure out which atoms/bonds are constant during the chemical trans-
formation. (These bonds/atoms go into the context of the rule.

4. Figure out which bonds are broken during the chemical transformation.
(These go into left of the rule).

5. Figure out which bonds are formed during the chemical transformation.
(These go into the right of the rule).

6. Check the action of the rule on examples and counter examples to make
sure that the rule does what you want.

2.3 Wildcards for atom/bond label

Generally, a graph rewrite rule has to be explicit, i.e. all node and edge
labels defining the pattern to match have to be given. Sometimes, however,
the specification of a dummy atom of unspecified type is more convenient to
define a chemical rewrite rule to avoid and join a large number of explicit
rules.

To this end, the GGL rule specification allows to define what label can
be matched on any other label (applied for both nodes and edges). To this
end, add the wildcard key-value to your rule specification. For instance, the
following rule

rule [

ruleID "wildcard rule"

wildcard "myWildcard"

left [node [id 1 label "myWildcard"]]
right [node [id 1 label "X"]]

]

would match on any node and change its label to “X”. Note, the label
for the wildcard can be any string as long as it is specified with the wildcard
key.

Within the chemical reaction encoding, per default the wildcard label ”*”
is defined. It can be used for both atom and bond label specification and
matches any other label. Note, this wildcard label is fixed and hardcoded
and cannot be changed within the chemical framework.

The use of wildcards within rules broadens their applicability but might
result in too general patterns. To this end, additional constraints might
be needed that restrict the generality of the wildcard usage. The currently
supported constraints are discussed in the following.

Note, wildcards are also allowed within some constraints and copy-and-
paste operations as discussed in the following.

2.4 Constraining atoms/bonds

To simplify rule formulation or to make rules more specific, it is sometimes
necessary to further constrain atoms or bonds (of the to-be-matched rule’s
left side). In the following, the available constraints are exemplified.

2.4.1 Constrain allowed atom labels

If an atom label is not explicitly specified using the wildcard character ”*” but
only a specific set of atom labels should be allowed, a node label constraint
has to be set. This can be done use the constrainNode statement.

For instance, the following constraint restricts the allowed labels for the
atom with node id 1 to carbon (C) or nitrogen (N). Otherwise, the node
could have been matched with any atom within a molecule.

context [
node [id 1 label "x"]

]
left [

constrainNode [id 1 op = nodelLabels [label "C" label "N"]]
]

We can achieve the inverse result when changing the operator to op !
which makes the given node labels the set of forbidden labels. Thus, the
contraint would enforce that the matched node shows none of the given
labels.

2.4.2 Constrain allowed bond labels

As for atom labels, the wildcard character ”*” can be used as an edge label to
enable a general matching definition. One can define constraints in a similar
way to restrict the allowed bond labels using the constrainEdge statement.

For instance, the following constraint restricts the allowed labels for the
bond between the atoms with id 1 and 2 to be a single bond (“~”) or a double
bond (“=").

context [

edge [source 1 target 2 label "x"]

]
left [
constrainEdge [source 1 target 2 op =
edgelLabels [label "-" label "="]
]
]

As for the node label constraint, we can achieve the inverse result when
changing the operator to op ! which makes the given edge labels the set of

forbidden labels. Thus, the contraint would enforce that the matched edge
shows none of the given labels.

Note, this constraint is only usefull if either no multiple parallel edges are
possible/present between the constrained source and target nodes or if all
parallel edges between these two nodes are to be constrained.

2.4.3 Forbid a certain bond

Since subgraph isomorphism focuses on the matching of present nodes and
edges, some graph rewrite rules need to explicitely state a non-existance of
a certain edge. This can be done using the constrainNoEdge statement as
exemplified in the following for the nodes with id 1 and 2.

constrainNoEdge [source 1 target 2]

2.4.4 Constrain adjacency (or degree)

Often it is of interest to constrain the adjacent nodes and edges for a given
node. Using constrainAdj a sophisticated adjacency restriction can be set.
It is based either on a given list of node or edge labels or a combination.
For each constraint the number of nodes/edges matching the given labels
is determined and evaluated according to the given operator and targeted
value.

For instance the following constrain enforces that atom with node id 1
has at least 3 adjacent single bonds (edges with label “-7).

constrainAdj [id 1 op > count 2 edgelLabels [label "-"]]

In order to specify that any edge or node label can be matched either a
wildcard label can be specified or the according list can be ommitted. Thus, if
no node or edge labels are given, all nodes/edges are taken into consideration.
If both node and edge labels are specified, only edges are counted where the
edge label and the targeted node label are among the allowed labels.

Therefore, a degree constraint can be simply expressed using

constrainAdj [id 1 op = count 2]

Note: all according nodes and edges are taken into account, i.e. also the
nodes/edges that are explicitely stated within the rule.

A good example to illustrate adjacency constraints is the Cannizzaro
reaction. The reaction involves the base-induced disproportionation (i.e. the

9

self oxydation-reduction reaction) of an aldehyde lacking a hydrogen atom in
the a-position of the carbonyl-group yielding a 50:50 product mixture of the
corresponding alcohole (reduction product) and carboxylic acid (oxydation
product).

O OH O

NaOH OH

H,0

benzoic aldehyde benzyl alcohol benzoic acid

Let us assume that the canizzarro reaction proceeds via a cyclic six-membered
“imaginary transition state” (ITS) (arranging 2 aldehydes and 1 water molecule)

8
H
c‘) o
R
H e
5 | R
0. °H
N
N
/ \
R H

than the following bond changes happen
e broken bonds: 1-2 (C=0), 3-4 (H-0) and 5-6 (C—H).
e formed bonds: 1-2 (C—-0), 2-3 (H-0), 4-5 (O—C) and 6-1 (H-C).
e constant: atoms 1-9 and bonds 1-7 (C—H), 4-8 (O—H) and 5-9 (C=0).

resulting in the rewriting rule

10

rule [
ruleID "cannizzaro reaction too general"

context [

node [id 1 label "C"]

node [id 2 label "0O"]

node [id 3 label "H"]

node [id 4 label "0O"]

node [id 5 label "C"]

node [id 6 label "H"]

node [id 7 label "H"]

node [id 8 label "H"]

node [id 9 label "0"]

edge [source 1 target 7 label "-"]
edge [source 4 target 8 label "-"]
edge [source 5 target 9 label "="]
]

left [

edge [source 1 target 2 label "="]
edge [source 3 target 4 label "-"]
edge [source 5 target 6 label "-"]
]
right [

edge [source 1 target 2 label "-"]
edge [source 2 target 3 label "-"]
edge [source 4 target 5 label "-"]
edge [source 6 target 1 label "-"]
]

]

The above rule is very general and matches any aldehyde regardless what R
actually is. However, aldehydes possessing a hydrogen at the atom adjacent
to the carbonyl group (e.g. R = CH;) form the enol tautomer under basic
conditions and cannizzaro reaction is not observed. To make the cannizzaro
rule specific for aldehydes without a hydrogen in the «a position of the car-
bonyl group, we first have to add two C atoms (10, 11) and the respective
bonds (1-10, 5-11) to the context subgraph and disallow hydrogens on atoms
10 and 11 by using a constrainAdj statement.

11

rule [
ruleID "cannizzaro restrictive"

context [

node [id 1 label "C"]

node [id 2 label "0O"]

node [id 3 label "H"]

node [id 4 label "0O"]

node [id 5 label "C"]

node [id 6 label "H"]

node [id 7 label "H"]

node [id 8 label "H"]

node [id 9 label "0"]

node [id 10 label "C"]

node [id 11 label "C"]

edge [source 1 target 7 label "-"]
edge [source 4 target 8 label "-"]
edge [source 5 target 9 label "="]
edge [source 1 target 10 label "-"]
edge [source 5 target 11 label "-"]
]

left [

edge [source 1 target 2 label "="]
edge [source 3 target 4 label "-"]
edge [source 5 target 6 label "-"]

constrainAdj [id 10 op = count O nodelLabels [label "H"]]
constrainAdj [id 11 op = count O nodelLabels [label "H"]]
]

right [
edge [source 1 target 2 label "-"]
edge [source 2 target 3 label "-"]
edge [source 4 target 5 label "-"]
edge [source 6 target 1 label "-"]

]

]

2.5 Radicals

A radical is an atom that has unpaired valence electrons or an open electron
shell, and therefore may be seen as having one or more ”dangling” cova-
lent bonds. The GGL chemistry framework “sanity checks” for rules and
produced molecules do not allow such atoms. Nevertheless, one can still rep-
resent radicals using a simple trick following the observation that radicals are
usually only intermediates of reactions and thus both created and destroyed

12

by a chemical reaction part of the reaction set applied. Therefore, radicals
are represented by atoms with according additional charge information plus
a radical specific class name. The latter ensures the distinction of radicals
encoded in such a way from normal atoms with the same charge. These spe-
cific radical labels are than used in the “destruction” reaction to replace the
radical with the according atom label.

A simple example is the reaction Cly, — Cl @ + Cle where chlorine gas
is broken down by ultraviolet light to atomic chlorine radicals. This can be
expressed using

rule [
ruleID "chlorine gas to radical"
context []
left [
node [id 1 label "C1"]
node [id 2 label "C1"]
edge [source 1 target 2
]
right [
node [id 1 label "Cl-:1"]
node [id 2 label "Cl-:1"]
]
]

where C1-:1 represents the chlorine radicals.
Note: You have to ensure, that the class identifier used to encode for
radicals (here 1) is not used for other class descriptions.

label "-"]

2.6 Group placeholders within rules

The specification of (bio)chemical reactions often requires the representation
of large (unchanged) parts of molecules in order to make the rule as specific
as the chemical reaction. A classic example is the involvement of helper
molecules like ATP, NADH, etc. that are only slightly changed but have to
be represented completely to avoid the application of the rule using similar
molecules.

To this end, the GGL supports the specification of molecular groups as
pseudo-atoms within chemical rule definitions. They allow for a much easier
and compact rule definition and avoid potential typos and mistakes.

As an example consider the lactat-dehyrogenase from the citrat-cycle
given by NAD™ + lactate — NADH + pyruvate. NADH is a large molecule
comprising 66 atoms. Thus, a complete specification would require the def-
inition of all NADH atoms and bonds together with the according parts

13

of lactate and pyruvate incorporating 76 atoms in total. Furthermore, this
would be the case for all other NADH-dependent reactions as well.

(n+ ¢
NN)
-

Figure 1: Lactat-dehydrogenase : NADT + lactate — NADH + pyruvate.
The picture exemplifies the use of group identifiers to compact the rule speci-
fication. The colors indicate if specified as context (black), left (red), or right
(green). Note, such a representation reduces the rule specification from 76
to only 23 atoms.

Using group identifiers, the definition of the lactat-dehydrogenase be-
comes much more compact as exemplified in Fig. 1. With only 23 atoms,
the whole reaction is described. Note, the rule specification uses two group
descriptors. Each is replaced during the rule GML parsing with according
molecule components/subgraphs, i.e. {CONH2} is replaced with a CONH,
group and {Ribo-ADP} with a ribose and attached adenosine.

Each group shows as interface exactly one proxy node that will replace
the pseudo atom labeled with the group ID. Thus, a rule can only change
bonds with the proxy node, the rest of the group is statically added to the
rule context. It is possible to specify label changes of the proxy node atom
but these are restricted to charge changes as exemplified below. An explicit
change of the proxy node label (e.g. make it aromatic “C” — “c”) is not
possible. Further information on how molecular groups have to be defined
etc. are given in the according tutorial “GGL Tutorial: Molecular Groups”.

left [
node [id 1 label "{GROUP}"]
]

right [
node [id 1 label "{GROUP}+"]

14

2.7 Visualization of chemical rules

The GML definition of chemical rules can become quite large and hard to read.
To ease their creation and to allow for a simple evaluation, the GGL sports
the visualization script chemrule2svg.pl within its Perl module.

Given a chemical reaction in GML notation, the script produces a graph-
ical depiction in Scalable Vector Graphics (SVG) format. Therein, a color
coding is used to highlight what parts are defined in the context (black),
left (red), or right (green) part of the rule. An example is given in Fig. 1.
The chemrule2svg.pl script uses the OpenBabel package to create the 2D
depictions of the molecules and thus requires its presence.

3 Copy-and-Paste operations

Some graph operations require the deletion of one or several nodes but need
to maintain and copy the former connectivity of the nodes to be removed.
In such cases, a copy-and-paste operation can be used, specified by the list
keyword copyAndPaste. Within the GML specification the source node to
be deleted (has to be a left-side only node) and a target node to inherit the
connectivity of the source (has to be a non-left node) are specified. Option-
ally, a set of edge labels to constrain the edges to copy can be specified. If
no edge label list is given or the wildcard is among the labels, all edges will
be copied. The edges to copy can be further specified by giving the target
node of the edges of interest.
A small example is given in the following:

rule [

ruleID "copy-and-paste"

left [node [id 1 label "A"]]

context [node [id 2 label "B"] 1]

right [node [id 3 label "C"]]

copyAndPaste [source 1 id 2]

copyAndPaste [source 1 id 3 edgelabels [label "-" 1]
copyAndPaste [source 1 id 3 edgelLabels [label "-"] target 2]
]

Within the example, node A is deleted. But beforehand, all out-edges
of A are copied to node B. In addition, all out-edges of A with the edge label
“~” are copied to the newly created node C. Note, using copy-and-paste
operations it is possible to duplicate edges if needed. This is exemplified
with the third copy-and-paste operation where all edges between node A
and B with edge label “~” are again copied to be edges between node C

15

and B, thus if existing two such edges are created in combination with the
second copy-and-paste operation.

Note, copy-and-paste operations are based on the left side pattern match-
ing, i.e. the edges copied are without the edges to add from the right-side
and including the edges from the left-side of the rule specification.

4 Examples

4.1 Bromination of a double bond

In this reaction a Br, molecule is added to a C=C bond. The reaction is
thought to go wia a 4-cyclic transition state (bracketed structure).

s 4 3 4
B 7 4
Br — Br Br Br gr 4
; é \\j 2//
rule [
ruleID "Double bond bromination"
left [
edge [source 1 target 2 label "="]
edge [source 3 target 4 label "-"]
]
context [

node [id 1 label "C"]

node [id 2 label "C"]

node [id 3 label "Br"]
[

node id 4 label "Br"]
]
right [
edge [source 1 target 2 label "-"]
edge [source 1 target 3 label "-"]
edge [source 2 target 4 label "-"]
]
]

16

4.2 Diels-Alder reaction

The Diels-Alder reaction is a [442]-cycloaddition between a conjugated diene
and an alkene, commonly termed the dienophile, to form a (substituted)
cyclohexene system.

4 4
3 =~ 5 3 5
2 \\\\ 6 . 2 6
1) 1
rule [
ruleID "Diels-Alder reaction"
left [
edge [source 1 target 2 label "="]
edge [source 2 target 3 label "-"]
edge [source 3 target 4 label "="]
edge [source 5 target 6 label "="]

constrainNoEdge [source 1 target 5]
constrainNoEdge [source 4 target 6]

]

context [
node [id 1 label "C"]
node [id 2 label "C"]
node [id 3 label "C"]
node [id 4 label "C"]
node [id 5 label "C"]
node [id 6 label "C"]

]

right [
edge [source 1 target 2 label "-"]
edge [source 2 target 3 label "="]
edge [source 3 target 4 label "-"]
edge [source 4 target 5 label "-"]
edge [source 5 target 6 label "-"]
edge [source 6 target 1 label "-"]

]

]

17

4.3 Keto-enol isomerization

The keto-enol isomerization refers to a chemical equilibrium between a keto
form (a ketone or an aldehyde) and an enol. The enol and keto forms are
said to be tautomers of each other. The interconversion of the two forms
involves the movement of a proton and the shifting of bonding electrons.

rule [
rulelD
left [

edge [source 1 target
edge [source 1 target
edge [source 2 target
constrainAdj [id 2 op

I\J—OCAJ

4
2
3

"Keto-enol isomerization forward"

label "-"]
label "-"]
label "="]

count 1 nodelLabels [label "0O"]]

]
context [
node [id 1 label "C"]
node [id 2 label "C"]
node [id 3 label "0"]
node [id 4 label "H"]
]
right [
edge [source 1 target 2 label "="]
edge [source 2 target 3 label "-"]
edge [source 3 target 4 label "-"]
]
]

18

4.4 Aldose-Ketose transformation

rule [

ruleID "Keto-enol isomerization

left [
edge [source 1 target
edge [source 2 target
edge [source 3 target
constrainAdj [id 2 op
]

context [

2
3
4

label "="]
label "-"]
label "-"]

backward"

count 1 nodelLabels [label "0"] 1]

node [id 1 label "C"]

node [id 2 label "C"]

node [id 3 label "0"]

node [id 4 label "H"]
]
right [

edge [source 1 target 4 label "-"]
edge [source 1 target 2 label "-"]
edge [source 2 target 3 label "="]
]

]

(Note that atom 2 is constrained to has only one adjacent oxygen atom.
This is done to exclude carboxyl groups (CO,H) from enolization.)

This reaction from carbohydrate chemistry, also known under the name Lo-
bry de Bruyn van Ekenstein transformation, is the base or acid cat-
alyzed transformation of an aldose into the ketose isomer or vice versa. The
transformation is thought to go wia a tautomeric enediol (bracketed struc-
ture) as reaction intermediate.

5
H
o1 4 O
M
R 7

ol 40/
>2 3<
R H

7

o) 40//
Jesfl
R H
H 5

7

Since the reaction is reversible we have to put the forward and backward
reaction into the rule file.

19

rule [
ruleID "Aldose-ketose forward"
left [

edge [source 1 target 2 label "-"]
edge [source 1 target 5 label "-"]
edge [source 2 target 6 label "-"]
edge [source 3 target 4 label "="]

constrainAdj [id 2 op = count 1 nodeLabels [label "0O"] 1]
]

context [

node [id 1 label "O"]

node [id 2 label "C"]

node [id 3 label "C"]

node [id 4 label "0O"]

node [id 5 label "H"]

node [id 6 label "H"]

node [id 7 label "H"]

edge [source 2 target 3 label "-"]
edge [source 3 target 7 label "-"]
]
right [

edge [source 1 target 2 label "="]
edge [source 3 target 4 label "-"]
edge [source 3 target 5 label "-"]
edge [source 4 target 6 label "-"]

]
]

20

rule [
ruleID "Aldose-ketose backward"
left [

edge [source 1 target 2 label "="]
edge [source 3 target 4 label "-"]
edge [source 3 target 5 label "-"]
edge [source 4 target 6 label "-"]

constrainAdj [id 2 op = count 1 nodeLabels [label "0O"] 1]

]
context [
node [id 1 label "O"]
node [id 2 label "C"]
node [id 3 label "C"]
node [id 4 label "0O"]
node [id 5 label "H"]
node [id 6 label "H"]
node [id 7 label "H"]
edge [source 2 target 3 label "-"]
edge [source 3 target 7 label "-"]
]
right [
edge [source 1 target 2 label "-"]
edge [source 1 target 5 label "-"]
edge [source 2 target 6 label "-"]
edge [source 3 target 4 label "="]
]

]

21

