Constraint Programming and Protein Structure Prediction

Can we predict protein structure?

- Molecular Dynamics on Full Atom Models
- Simpler Protein Models:
 - Folding simulation
 - Stochastic optimization, e.g. Genetic Algorithms
 - Combinatorial optimization, e.g. Constraint Programming

Simple Proteins: HP-Model

Simple Proteins: HP-Model

Simple Proteins: HP-Model

Structures in the HP-Model

Sequence HPPHPH

Constraint Programming

Constraint programming ...

- ... is a programming technique
- ... describes what rather than how
- ...i.e. it is declarative
- ... combines logic reasoning with search
- ... performs "intelligent" enumeration
- . . . "slays NP-hard dragons"

Example: Map Coloring

Constraints: $A, C, D, I, S \in \{red, green, blue\},$ $A \neq C, A \neq D, A \neq I, A \neq S,$ $C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints: $A, C, D, I, S \in \{red, green, blue\},$ $A \neq C, A \neq D, A \neq I, A \neq S,$ $C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints:

- $\begin{array}{l} A, C, D, I, S \in \{ \textit{red}, \textit{green}, \textit{blue} \}, \\ A \neq C, A \neq D, A \neq I, A \neq S, \\ C \neq D, C \neq I, I \neq S \end{array}$
- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints:

 $\begin{array}{l} A, C, D, I, S \in \{ \textit{red}, \textit{green}, \textit{blue} \}, \\ A \neq C, A \neq D, A \neq I, A \neq S, \\ C \neq D, C \neq I, I \neq S \end{array}$

• We say only what a solution of the map coloring is

- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints:

- $\begin{array}{l} \textit{A, C, D, I, S \in \{red, green, blue\},} \\ \textit{A \neq C, A \neq D, A \neq I, A \neq S,} \\ \textit{C \neq D, C \neq I, I \neq S} \end{array}$
- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess A = red implies C, D, I, S ≠ red; then guess C = green ...

Example: Map Coloring

Constraints:

- $\begin{array}{l} A, C, D, I, S \in \{ \textit{red}, \textit{green}, \textit{blue} \}, \\ A \neq C, \ A \neq D, \ A \neq I, \ A \neq S, \\ C \neq D, \ C \neq I, \ I \neq S \end{array}$
- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning
 E.g. guess A = red implies C, D, I, S ≠ red;
 then guess C = green . . .

Another Constraints Example

Example

A mathematician forgot the last position of a number code. She only remembers

- it's odd
- of course, its a digit, i.e. in [0..9]
- it's no prime number and not 1.

She can derive the digit (by constraint reasoning)!

Another Constraints Example

Example

A mathematician forgot the last position of a number code. She only remembers

- it's odd
- of course, its a digit, i.e. in [0..9]
- it's no prime number and not 1.

She can derive the digit (by constraint reasoning)!

Commercial Impact of Constraints

Some examples

Michelin and Dassault, Renault	Production planning	
Lufthansa, Swiss Air,	Staff planning	
Nokia	Software configuration	
Siemens	Circuit verification	
French National Railway Company	Train schedule	

Constraint Satisfaction Problem (CSP)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X} = \{X_1, \ldots, X_n\}$,
- the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to \mathcal{X} .
- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

Constraint Satisfaction Problem (CSP)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X} = \{X_1, \ldots, X_n\}$,
- the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to \mathcal{X} .
- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

Constraint Satisfaction Problem (CSP)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X} = \{X_1, \ldots, X_n\}$,
- the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to \mathcal{X} .
- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

We have already seen one example: map coloring.

A Simple Example CSP

- Variables $\mathcal{X} = \{X, Y, Z\}$
- Domains $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$
- Constraints $C = \{X < Y, Y < Z, Z \le 2\}$

Remarks

• The constraint set is interpreted as the conjunction

$$X < Y$$
 and $Y < Z$ and $Z \leq 2$.

• The domains are interpreted as the constraint

 $X \in D(X)$ and $Y \in D(Y)$ and $Z \in D(Z)$.

A Simple Example CSP

- Variables $\mathcal{X} = \{X, Y, Z\}$
- Domains $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$
- Constraints $C = \{X < Y, Y < Z, Z \le 2\}$

Remarks

• The constraint set is interpreted as the conjunction

$$X < Y$$
 and $Y < Z$ and $Z \leq 2$.

• The domains are interpreted as the constraint

 $X \in D(X)$ and $Y \in D(Y)$ and $Z \in D(Z)$.

A Simple Example CSP

- Variables $\mathcal{X} = \{X, Y, Z\}$
- Domains $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$
- Constraints $C = \{X < Y, Y < Z, Z \le 2\}$

Remarks

• The constraint set is interpreted as the conjunction

$$X < Y$$
 and $Y < Z$ and $Z \leq 2$.

• The domains are interpreted as the constraint

$$X \in D(X)$$
 and $Y \in D(Y)$ and $Z \in D(Z)$.

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \dots, X_4
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4
- Constraints (for different columns *i* and *i'*) no horizontal attack $(X_i \neq X_{i'})$ no attack in first diagonal $(i - X_i \neq i' - X_{i'})$ no attack in second diagonal $(i + X_i \neq i' + X_{i'})$

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \dots, X_4 $X_i = j \text{ means "queen in column i, row j"}$
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4
- Constraints (for different columns *i* and *i'*) no horizontal attack $(X_i \neq X_{i'})$ no attack in first diagonal $(i - X_i \neq i' - X_{i'})$ no attack in second diagonal $(i + X_i \neq i' + X_{i'})$

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \ldots, X_4 $X_i = j$ means "queen in column i, row j"
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4

• Constraints (for different columns *i* and *i'*) no horizontal attack $(X_i \neq X_{i'})$ no attack in first diagonal $(i - X_i \neq i' - X_i)$ no attack in second diagonal $(i + X_i \neq i' + X_i)$

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables X_1, \dots, X_4 $X_i = j$ means "queen in column i, row j"
- Domains $D(X_i) = \{1, ..., 4\}$ for i = 1..4
- Constraints (for different columns *i* and *i'*) no horizontal attack $(X_i \neq X_{i'})$ no attack in first diagonal $(i - X_i \neq i' - X_{i'})$ no attack in second diagonal $(i + X_i \neq i' + X_{i'})$

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 2$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 2$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 3$$

inconsistent!

- Redundancy
- Inconsistency local!
Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 3$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 4$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 1, X_4 = 4$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent! ...it's getting boring.

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Generate and Test

generate assignments and test each

$$X_1 = 1, X_2 = 1, X_3 = 2, X_4 = 1$$

inconsistent!

- Redundancy
- Inconsistency local!

Backtracking

Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

Backtracking

Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

Backtracking

Problems

Thrashing

- Redundancy
- Late Detection of Inconsistency

Backtracking

Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

Backtracking

Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

CP's Answer

Consistency Techniques

- detect inconsistency much earlier
- avoid redundancy and thrashing of BT

Definition

A consistency method transforms a CSP into an equivalent, consistent CSP.

How we will use it

Interleave consistency transformation and enumeration

CP's Answer

Consistency Techniques

- detect inconsistency much earlier
- avoid redundancy and thrashing of BT

Definition

A consistency method transforms a CSP into an equivalent, consistent CSP.

How we will use it

Interleave consistency transformation and enumeration

CP's Answer

Consistency Techniques

- detect inconsistency much earlier
- avoid redundancy and thrashing of BT

Definition

A consistency method transforms a CSP into an equivalent, consistent CSP.

How we will use it

Interleave consistency transformation and enumeration

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (elementary) constraint at a time
- Node consistency: unary constraints c(X) remove values from D(X) that falsify c
- Arc consistency: binary constraints c(X, Y) remove from D(X) values that have no support in D(Y) such that c is satisfied and vice versa

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (elementary) constraint at a time
- Node consistency: unary constraints c(X) remove values from D(X) that falsify c
- Arc consistency: binary constraints c(X, Y) remove from D(X) values that have no support in D(Y) such that c is satisfied and vice versa

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (elementary) constraint at a time
- Node consistency: unary constraints c(X) remove values from D(X) that falsify c
- Arc consistency: binary constraints c(X, Y) remove from D(X) values that have no support in D(Y) such that c is satisfied and vice versa

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (elementary) constraint at a time
- Node consistency: unary constraints c(X) remove values from D(X) that falsify c
- Arc consistency: binary constraints c(X, Y) remove from D(X) values that have no support in D(Y) such that c is satisfied and vice versa

Node Consistency

Definition

A unary constraint c(X) is node consistent with domain D if X = d satisfies c(X) for each $d \in D(X)$.

Definition

A CSP (\mathcal{X}, D, C) is node consistent, iff each of the unary constraints in C is node consistent with D.

Node Consistency Example

Our example CSP is not node consistent (see Z)

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$

Node consistent, equivalent CSP

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = \{1, 2, 3, 4\}, D(Z) = \{1, 2\}$

Remark

- The 4-Queens CSP was node consistent, why?
- Computing node consistency is easy. Just look once at each unary constraint and remove inconsistent domain values.

Node Consistency Example

Our example CSP is not node consistent (see Z)

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = D(Z) = \{1, 2, 3, 4\}$

Node consistent, equivalent CSP

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = \{1, 2, 3, 4\}, D(Z) = \{1, 2\}$

Remark

- The 4-Queens CSP was node consistent, why?
- Computing node consistency is easy. Just look once at each unary constraint and remove inconsistent domain values.

Arc Consistency

Definition

A binary constraint c(X, Y) is arc consistent with domain D if

- for each $d_X \in D(X)$ there is a $d_Y \in D(Y)$ s.t. $c(d_X, d_Y)$
- vice versa (for each $d_Y \in D(Y)$ there is a $d_X \in D(X)$ s.t. $c(d_X, d_Y)$)

Definition

A CSP (\mathcal{X}, D, C) is arc consistent, iff each of the binary constraints in C is arc consistent with D.

Arc Consistency Example

The following CSP is node consistent but not arc consistent

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = \{1, 2, 3, 4\}, D(Z) = \{1, 2\}$

For example $4 \in D(Y)$ and Y < ZArc consistent, equivalent CSP

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = D(Z) = \{\}$

Remark

Our 4-Queens CSP is arc consistent.

Arc Consistency Example

The following CSP is node consistent but not arc consistent

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = \{1, 2, 3, 4\}, D(Z) = \{1, 2\}$

For example $4 \in D(Y)$ and Y < ZArc consistent, equivalent CSP

$$X < Y$$
 and $Y < Z$ and $Z \le 2$
 $D(X) = D(Y) = D(Z) = \{\}$

Remark

Our 4-Queens CSP is arc consistent.

Computing Arc Consistency

$\begin{array}{l} \textbf{procedure } \text{REVISE}(c,X,Y,D) \\ D(X) := \{ \, d_X \in D(X) \, \, \text{such that there exists } \, d_Y \in D(Y) \\ & \quad \text{where } \, c(d_X,d_Y) \, \, \text{is satisfied} \, \} \end{array}$

endproc

do

D' := D

```
foreach binary constraint c \in C do
```

let X, Y denote the variables of cREVISE(c, X, Y, D)REVISE(c, Y, X, D)

done

until D = D'

Remark

This algorithm is called AC-1, usually one uses improved variants of this algorithm (e.g. AC-3).

Computing Arc Consistency

```
\begin{array}{l} \textbf{procedure } \text{REVISE}(c,X,Y,D) \\ D(X) := \{ \, d_X \in D(X) \, \, \text{such that there exists } \, d_Y \in D(Y) \\ & \quad \text{where } \, c(d_X,d_Y) \, \, \text{is satisfied} \, \} \end{array}
```

endproc

do

```
D' := D
foreach binary constraint c \in C do
let X, Y denote the variables of c
REVISE(c, X, Y, D)
REVISE(c, Y, X, D)
done
```

until D = D'

Remark

This algorithm is called AC-1, usually one uses improved variants of this algorithm (e.g. AC-3).

Computing Arc Consistency

```
\begin{array}{l} \textbf{procedure } \text{REVISE}(c,X,Y,D) \\ D(X) := \set{d_X \in D(X) \text{ such that there exists } d_Y \in D(Y) \\ & \quad \text{where } c(d_X,d_Y) \text{ is satisfied} \end{array}
```

endproc

do

D' := Dforeach binary constraint $c \in C$ do let X, Y denote the variables of cREVISE(c, X, Y, D)REVISE(c, Y, X, D)done

until D = D'

Remark

This algorithm is called AC-1, usually one uses improved variants of this algorithm (e.g. AC-3).

Avoiding Redundant Work: AC-3

```
Q := empty queue
foreach binary constraint c \in C do
  push Q, (c, X, Y)
  push Q, (c, Y, X)
done
while Q \neq \text{empty} queue do
  (c,X,Y) := pop Q
  D' := D(X)
  REVISE(c, X, Y, D)
  if D(X) \neq D' then
    for c' \in C and Z \in \mathcal{X} where c'(X, Z) or c'(Z, X) do
       push Q, (c', Z, X)
    done
  endif
done
```

Node/Arc vs. Global Consistency

$$\mathcal{X} = \{X, Y, Z\}$$
$$D(X) = D(Y) = D(Z) = \{1, 2\}$$
$$C = \{X \neq Y, Y \neq Z, Z \neq X\}$$

- The CSP is node and arc consistent
- The CSP is globally inconsistent

Node/Arc vs. Global Consistency

$$\mathcal{X} = \{X, Y, Z\}$$
$$D(X) = D(Y) = D(Z) = \{1, 2\}$$
$$C = \{X \neq Y, Y \neq Z, Z \neq X\}$$

- The CSP is node and arc consistent
- The CSP is globally inconsistent

- Computing local consistency = constraint propagation
 - Node consistency
 - Arc consistency
 - (Hyper-arc consistency)
 - (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

- Local consistency: efficient
- CSP solving/global consistency: NP-hard

- Computing local consistency = constraint propagation
 - Node consistency
 - Arc consistency
 - (Hyper-arc consistency)
 - (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

- Local consistency: efficient
- CSP solving/global consistency: NP-hard

- Computing local consistency = constraint propagation
 - Node consistency
 - Arc consistency
 - (Hyper-arc consistency)
 - (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

- Local consistency: efficient
- CSP solving/global consistency: NP-hard

- Computing local consistency = constraint propagation
 - Node consistency
 - Arc consistency
 - (Hyper-arc consistency)
 - (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

- Local consistency: efficient
- CSP solving/global consistency: NP-hard
Solving 4-Queens (with Constraint Propagation)

 $X_i \neq X_{i'}, i - X_i \neq i' - X_{i'}, i + X_i \neq i' + X_{i'}$

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits

• Usually, we insert constraints of the form

 $X \diamond V, \qquad \diamond \in \{=, \leq, \geq, \dots\}$

- Variable and value selection important!
 - for size of search tree
 - not for completeness/correctness

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits

• Usually, we insert constraints of the form

 $X \diamond V, \qquad \diamond \in \{=, \leq, \geq, \dots\}$

- Variable and value selection important!
 - for size of search tree
 - not for completeness/correctness

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits

• Usually, we insert constraints of the form

$$X \diamond V, \qquad \diamond \in \{=, \leq, \geq, \dots\}$$

- Variable and value selection important!
 - for size of search tree
 - not for completeness/correctness

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits

• Usually, we insert constraints of the form

$$X \diamond V, \qquad \diamond \in \{=, \leq, \geq, \dots\}$$

- Variable and value selection important!
 - for size of search tree
 - not for completeness/correctness

Symmetry

Symmetry

Symmetry

A symmetry is a (bijective) function on solutions. This implies a symmetry function on constraints.

Symmetry Breaking Search

- Each right branch: forbid symmetries of the left branch
- By inserting a symmetric constraints for each symmetry

Constraint Optimization

Definition

A Constraint Optimization Problem (COP) is a CSP together with an objective function f on solutions.

A solution of the COP is a solution of the CSP that maximizes/minimizes f.

Solving by Branch & Bound Search Idea of B&B:

- Backtrack & Propagate as for solving the CSP
- Whenever a solution *s* is found, add constraint "next solutions must be better than *f*(*s*)".

Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo For example: Alice, Carol, Dave, Bob

However, they have preferences:

- Alice wants to stand next to Dave
- Bob wants to stand next to Dave and Carol
- Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization

Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo For example: Alice, Carol, Dave, Bob

However, they have preferences:

- Alice wants to stand next to Dave
- Bob wants to stand next to Dave and Carol
- Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.

Application: Protein Structure Prediction

S.Will, Bioinfo III, Leipzig, Fall 2013

Exact Prediction in 3D cubic & FCC

The problem

IN: sequence s in $\{H, P\}^n$ HHPPPHHPHHPPHHPPHHPPHHPPHH OUT: self avoiding walk ω on cubic/fcc lattice with minimal HP-energy $E_{HP}(s, \omega)$

A First Constraint Model

• Variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$ and *HHContacts* $\begin{pmatrix} X_i \\ Y_i \\ Z_i \end{pmatrix}$ is the position of the *i*th monomer $\omega(i)$

• Domains

$$D(X_i) = D(Y_i) = D(Z_i) = \{-n, ..., n\}$$

• Constraints

- 1. positions i and i + 1 are neighbored (chain)
- 2. all positions differ (self-avoidance)
- 3. relate *HHContacts* to X_i, Y_i, Z_i

4.
$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

A First Constraint Model

• Variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$ and *HHContacts*

$$\left(\begin{array}{c} X_i \\ Y_i \\ Z_i \end{array}\right) \text{ is the position of the } i\text{th monomer } \omega(i)$$

Domains

$$D(X_i) = D(Y_i) = D(Z_i) = \{-n,\ldots,n\}$$

Constraints

- 1. positions i and i + 1 are neighbored (chain)
- 2. all positions differ (self-avoidance)
- 3. relate *HHContacts* to X_i, Y_i, Z_i

4.
$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

A First Constraint Model

• Variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$ and *HHContacts*

$$\left(\begin{array}{c} X_i \\ Y_i \\ Z_i \end{array}\right) \text{ is the position of the ith monomer $\omega(i)$}$$

Domains

$$D(X_i) = D(Y_i) = D(Z_i) = \{-n,\ldots,n\}$$

- Constraints
 - 1. positions *i* and i + 1 are neighbored (chain)
 - 2. all positions differ (self-avoidance)
 - 3. relate *HHContacts* to X_i, Y_i, Z_i

4.
$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The First Model in More Detail (Cubic Lattice) The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$Xdiff_{ij} = |X_i - X_j|$$
 $Ydiff_{ij} = |Y_i - Y_j|$ $Zdiff_{ij} = |Z_i - Z_j|$

1. Positions *i* and i + 1 neighbored (chain)

$$Xdiff_{i(i+1)} + Ydiff_{i(i+1)} + Zdiff_{i(i+1)} = 1$$

2. All positions differ (self-avoidance)

 $Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} \neq 0$ (for $i \neq j$).

3. Relate *HHContacts* to X_i , Y_i , Z_i Detect HH-contact, if $Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} = 1$ for $s_i = s_j = H$. Then add 1 to *HHContacts*. (Technically, use reified constraints) The First Model in More Detail (Cubic Lattice) The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$Xdiff_{ij} = |X_i - X_j|$$
 $Ydiff_{ij} = |Y_i - Y_j|$ $Zdiff_{ij} = |Z_i - Z_j|$

1. Positions *i* and i + 1 neighbored (chain)

$$Xdiff_{i(i+1)} + Ydiff_{i(i+1)} + Zdiff_{i(i+1)} = 1$$

2. All positions differ (self-avoidance)

$$Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} \neq 0$$
 (for $i \neq j$).

3. Relate *HHContacts* to X_i, Y_i, Z_i Detect HH-contact, if $Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} = 1$ for $s_i = s_j = H$. Then add 1 to *HHContacts*. (Technically, use reified constraints) The First Model in More Detail (Cubic Lattice) The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$Xdiff_{ij} = |X_i - X_j|$$
 $Ydiff_{ij} = |Y_i - Y_j|$ $Zdiff_{ij} = |Z_i - Z_j|$

1. Positions *i* and i + 1 neighbored (chain)

$$Xdiff_{i(i+1)} + Ydiff_{i(i+1)} + Zdiff_{i(i+1)} = 1$$

2. All positions differ (self-avoidance)

$$Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} \neq 0$$
 (for $i \neq j$).

 Relate HHContacts to X_i, Y_i, Z_i Detect HH-contact, if Xdiff_{ij} + Ydiff_{ij} + Zdiff_{ij} = 1 for s_i = s_j = H. Then add 1 to HHContacts. (Technically, use reified constraints)

• Model is a COP (Constraint Optimization Problem)

- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

The Advanced Approach: Cubic & FCC

Steps

- 1. Core Construction
- 2. Mapping
The Advanced Approach: Cubic & FCC

Steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

Workflow: Predict Best Structure(s) of HP-Sequence

Computing Bounds

- Prepares the construction of cores
- How many contacts are possible for *n* monomers, if freely distributed to lattice points
- Answering the question will give information for core construction
- Main idea: split lattice into layers consider contacts
 - within layers
 - between layers

Layers: Cubic & FCC Lattice

Layers: Cubic & FCC Lattice

Contacts

Contacts =

Layer contacts + Contacts between layers

• Bound Layer contacts: Contacts $\leq 2 \cdot n - a - b$

- Bound Contacts between layers
 - cubic: one neighbor in next layer
 Contacts ≤ min(n₁, n₂)
 - FCC: **four** neighbors in next layer *i* - points

Bounding Interlayer Contacts in the FCC

- Needed:
 - upper bound for number of contacts between two successive layers in FCC
 - NOTE: Layers only described by parameters (*n*₁, *a*₁, *b*₁); (*n*₂, *a*₂, *b*₂)
- Method:
 - compute bounds for number of 1/2/3/4-points of first layer
 - distribute n₂ points greedily
 - technical difficulty: tight bounds of 1/2/3/4-points depend on further parameters
- **Result:** $B_{ILC}^{FCC}(n_1, a_1, b_1, n_2, a_2, b_2)$

Recall: $B_{ILC}^{cubic}(n_1, a_1, b_1, n_2, a_2, b_2) = \min(n_1, n_2)$

Recursion Equation for Bounds

- B_C(n, n₁, a₁, b₁) : Contacts of core with n elements and first layer L₁ : n₁, a₁, b₁
- $B_{LC}(n_1, a_1, b_1)$: Contacts in L_1
- $B_{ILC}(n_1, a_1, b_1, n_2, a_2, b_2)$: Contacts between E_1 and E_2 : n_2, a_2, b_2
- B_C(n − n₁, n₂, a₂, b₂) : Contacts in core with n − n₁ elements and first layer E₂

Layer sequences

From Recursion:

- by Dynamic Programming: Upper bound on number of contacts
- by Traceback: Set of layer sequences

layer sequence = $(n_1, a_1, b_1), \dots, (n_4, a_4, b_4)$ Set of layer sequences gives distribution of points to layers in all point sets that possibly have maximal number of contacts

Core Construction

Problem

IN: number *n*, contacts *c*

OUT: all point sets of size n with c contacts

- Optimization problem
- Core construction is a hard combinatorial problem

Core construction: Modified Problem

Poblem

IN: number *n*, contacts *c*, set of layer sequences S_{ls} OUT: all point sets of size *n* with *c* contacts and layer sequences in S_{ls}

- Use constraints from layer sequences
- Model as constraint satisfaction problem (CSP)

 $(n_1, a_1, b_1), \ldots, (n_4, a_4, b_4)$ Core = Set of lattice points

Core Construction — Details

- Number of layers = length of layer sequence
- Number of layers in x, y, and z: Surrounding Cube
- enumerate numbers of layers \Rightarrow fix cube \Rightarrow enumerate points

Workflow

Mapping Sequences to Cores

find structure such that

- H-Monomers on core positions
- all positions differ
- chain connected

- \rightarrow hydrophobic core
- \rightarrow self-avoiding
- \rightarrow walk

Mapping Sequence to Cores — CSP

Given: sequence s of size n and n_H Hs core *Core* of size n_H

CSP Model

Variables X₁,..., X_n
 X_i is position of monomer i

Encode positions as integers

$$\mathsf{I}\left(\begin{array}{c}x\\y\\z\end{array}\right) \equiv x + M * y + M^2 * z$$

(unique encoding for 'large enough' M)

Constraints

- 1. $X_i \in Core$ for all $s_i = H$
- 2. X_i and X_{i+1} are neighbors
- 3. X_1, \ldots, X_n are all different

Constraints for Self-avoiding Walks

- Single Constraints "self-avoiding" and "walk" weaker than their combination
- no efficient algorithm for consistency of combined constraint "self-avoiding walk"
- relaxed combination: stronger and more efficient propagation k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Predict optimal structures by combining the three steps

- 1. Bounds
- 2. Core Construction
- 3. Mapping

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Time efficiency

Prediction of one optimal structure ("Harvard Sequences", length 48 [Yue *et al.*, 1995])

CPSP	PERM
0,1 s	6,9 min
0,1 s	40,5 min
4,5 s	100,2 min
7,3 s	284,0 min
1,8 s	74,7 min
1,7 s	59,2 min
12,1 s	144,7 min
1,5 s	26,6 min
0,3 s	1420,0 min
0,1 s	18,3 min

- CPSP: "our approach", constraint-based
- PERM [Bastolla et al., 1998]: stochastic optimization

Many Optimal Structures

Sequence HPPHPPHP

- There can be many ...
- HP-model is degenerated
- Number of optimal structures = degeneracy

Completeness

Predicted number of all optimal structures ("Harvard Sequences")

CPSP	CHCC
10.677.113	$1500 imes 10^3$
28.180	$14 imes10^3$
5.090	$5 imes 10^3$
1.954.172	$54 imes10^3$
1.868.150	$52 imes10^3$
106.582	$59 imes10^3$
15.926.554	$306 imes10^3$
2.614	$1 imes 10^3$
580.751	$188 imes 10^3$

- CPSP: "our approach"
- CHCC [Yue *et al.*, 1995]: complete search with hydrophobic cores

Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

MC-search through sequence space

Unique Folder

- HP-model degenerated
- Low degeneracy pprox stable pprox protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Yes: many, e.g. about 10,000 for n=27

Software: CPSP Tools

http://cpsp.informatik.uni-freiburg.de

CPSP Tools

Menu	
<u>Home</u>	CPSP Tools
HPstruct	Constraint-based Protein Structure Prediction
structure pred.	Bioinformatics Group Albert-Ludwigs-University Freiburg
PDB, CML, HPview	web-tools version 1.1.1 (06.04.2011)
3D visualization HPdeg degeneracy	The CPSP-tools package provides programs to solve exactly and completely the problems typical of studies using 3D lattice protein models. Among the tasks addressed are the prediction of globally optimal and/or suboptimal structures as well as sequence design and neutral network exploration.
HPnnet neutral network	
HPdesign seq. design	Choose a tool from the left for ad hoc usage (CPSP-tools version 2.4.2) (LatPack version 1.7.2)
LatFit PDB to lattice	or
Results direct access	Download the full <u>CPSP-tools</u> or <u>LatPack package</u> for local usage!
<u>Help</u>	
FAQ	If you use the CPSP-tools please cite the following publications:
	 Martin Mann, Sebastian Will, and Rolf Backofen.