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Constraint Programming
and

Protein Structure Prediction
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Can we predict protein structure?

• Molecular Dynamics on Full Atom Models

• Simpler Protein Models:
• Folding simulation
• Stochastic optimization, e.g. Genetic Algorithms
• Combinatorial optimization, e.g. Constraint Programming
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Simple Proteins: HP-Model
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Structures in the HP-Model

Sequence HPPHPH
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Constraint Programming

Constraint programming . . .

• . . . is a programming technique

• . . . describes what rather than how

• . . . i.e. it is declarative

• . . . combines logic reasoning with search

• . . . performs “intelligent” enumeration

• . . . “slays NP-hard dragons”
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Well, But What Are Constraints?

Example: Map Coloring

Constraints:
A,C ,D, I ,S ∈ {red , green, blue},
A 6= C , A 6= D, A 6= I , A 6= S ,
C 6= D, C 6= I , I 6= S

• We say only what a solution of the map coloring is

• We need not care how the problem is solved

• A solution is computed by guessing and reasoning
E.g. guess A = red implies C ,D, I , S 6= red;
then guess C = green . . .
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Another Constraints Example

Example

A mathematician forgot the last position of a number code.
She only remembers

• it’s odd

• of course, its a digit, i.e. in [0..9]

• it’s no prime number and not 1.

She can derive the digit (by constraint reasoning)!
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Commercial Impact of Constraints

Some examples
Michelin and Dassault, Renault Production planning

Lufthansa, Swiss Air, . . . Staff planning

Nokia Software configuration

Siemens Circuit verification

French National Railway Company Train schedule
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Constraint Satisfaction Problem (CSP)

Definition
A Constraint Satisfaction Problem (CSP) consists of

• variables X = {X1, . . . ,Xn},
• the domain D that associates finite domains

D1 = D(X1), . . . ,Dn = D(Xn) to X .

• a set of constraints C .

A solution is an assignment of variables to values of their domains
that satisfies the constraints.

We have already seen one example: map coloring.
I

S

A

D

C
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A Simple Example CSP

• Variables X = {X ,Y ,Z}
• Domains D(X ) = D(Y ) = D(Z ) = {1, 2, 3, 4}
• Constraints C = {X < Y ,Y < Z ,Z ≤ 2}

Remarks

• The constraint set is interpreted as the conjunction

X < Y and Y < Z and Z ≤ 2.

• The domains are interpreted as the constraint

X ∈ D(X ) and Y ∈ D(Y ) and Z ∈ D(Z ).
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The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks
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The N-Queens Problem

4-Queens: place 4 queens on 4× 4 board without attacks

Model 4-Queens as CSP (Constraint Model)

• Variables X1, . . . ,X4

Xi = j means “queen in column i, row j”

• Domains D(Xi ) = {1, . . . , 4} for i = 1..4

• Constraints (for different columns i and i ′)

no horizontal attack (Xi 6= Xi ′)

no attack in first diagonal (i − Xi 6= i ′ − Xi ′)

no attack in second diagonal (i + Xi 6= i ′ + Xi ′)
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Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 1

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!
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Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 3

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!
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Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 1,X4 = 4

inconsistent!

What’s wrong with GT?

• Redundancy

• Inconsistency local!
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Solving the CSP

Generate and Test
generate assignments and test each

X1 = 1,X2 = 1,X3 = 2,X4 = 1

inconsistent! . . . it’s getting boring.

What’s wrong with GT?

• Redundancy

• Inconsistency local!
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Overcoming GT’s weakness

Backtracking

Problems

• Thrashing

• Redundancy

• Late Detection of Inconsistency
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CP’s Answer

Consistency Techniques

• detect inconsistency much earlier

• avoid redundancy and thrashing of BT

Definition
A consistency method transforms a CSP into an equivalent,
consistent CSP.

How we will use it
Interleave consistency transformation and enumeration
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Node and Arc Consistency

• Idea: Find equivalent, consistent CSP by removing values
from the domains

• Examine one (elementary) constraint at a time

• Node consistency: unary constraints c(X )
remove values from D(X ) that falsify c

• Arc consistency: binary constraints c(X ,Y )
remove from D(X ) values that have no support in D(Y ) such
that c is satisfied and vice versa
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Node Consistency

Definition
A unary constraint c(X ) is node consistent with domain D if
X = d satisfies c(X ) for each d ∈ D(X ).

Definition
A CSP (X ,D,C ) is node consistent, iff each of the unary
constraints in C is node consistent with D.
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Node Consistency Example

Our example CSP is not node consistent (see Z)

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = D(Z ) = {1, 2, 3, 4}

Node consistent, equivalent CSP

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = {1, 2, 3, 4},D(Z ) = {1, 2}

Remark

• The 4-Queens CSP was node consistent, why?

• Computing node consistency is easy. Just look once at each
unary constraint and remove inconsistent domain values.
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Node consistent, equivalent CSP

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = {1, 2, 3, 4},D(Z ) = {1, 2}

Remark

• The 4-Queens CSP was node consistent, why?

• Computing node consistency is easy. Just look once at each
unary constraint and remove inconsistent domain values.
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Arc Consistency

Definition
A binary constraint c(X ,Y ) is arc consistent with domain D if

• for each dX ∈ D(X ) there is a dY ∈ D(Y ) s.t. c(dX , dY )

• vice versa (for each dY ∈ D(Y ) there is a dX ∈ D(X ) s.t. c(dX , dY ))

Definition
A CSP (X ,D,C ) is arc consistent, iff each of the binary
constraints in C is arc consistent with D.
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Arc Consistency Example

The following CSP is node consistent but not arc consistent

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = {1, 2, 3, 4},D(Z ) = {1, 2}

For example 4 ∈ D(Y ) and Y < Z
Arc consistent, equivalent CSP

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = D(Z ) = {}

Remark
Our 4-Queens CSP is arc consistent.
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Arc Consistency Example

The following CSP is node consistent but not arc consistent

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = {1, 2, 3, 4},D(Z ) = {1, 2}

For example 4 ∈ D(Y ) and Y < Z
Arc consistent, equivalent CSP

X < Y and Y < Z and Z ≤ 2

D(X ) = D(Y ) = D(Z ) = {}

Remark
Our 4-Queens CSP is arc consistent.
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Computing Arc Consistency

procedure REVISE(c ,X ,Y ,D)
D(X ) := { dX ∈ D(X ) such that there exists dY ∈ D(Y )

where c(dX , dY ) is satisfied }
endproc

do

D ′ := D
foreach binary constraint c ∈ C do

let X ,Y denote the variables of c
REVISE(c ,X ,Y ,D)

REVISE(c ,Y ,X ,D)

done

until D = D ′

Remark
This algorithm is called AC-1, usually one uses improved variants
of this algorithm (e.g. AC-3).
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Computing Arc Consistency

procedure REVISE(c ,X ,Y ,D)
D(X ) := { dX ∈ D(X ) such that there exists dY ∈ D(Y )

where c(dX , dY ) is satisfied }
endproc

do

D ′ := D
foreach binary constraint c ∈ C do

let X ,Y denote the variables of c
REVISE(c ,X ,Y ,D)

REVISE(c ,Y ,X ,D)

done

until D = D ′

Remark
This algorithm is called AC-1, usually one uses improved variants
of this algorithm (e.g. AC-3).
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Computing Arc Consistency

procedure REVISE(c ,X ,Y ,D)
D(X ) := { dX ∈ D(X ) such that there exists dY ∈ D(Y )

where c(dX , dY ) is satisfied }
endproc

do

D ′ := D
foreach binary constraint c ∈ C do

let X ,Y denote the variables of c
REVISE(c ,X ,Y ,D)

REVISE(c ,Y ,X ,D)

done

until D = D ′

Remark
This algorithm is called AC-1, usually one uses improved variants
of this algorithm (e.g. AC-3).
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Avoiding Redundant Work: AC-3

Q :=empty queue

foreach binary constraint c ∈ C do

push Q, (c ,X ,Y )
push Q, (c ,Y ,X )

done

while Q 6=empty queue do

(c,X,Y) := pop Q
D’:=D(X)

REVISE(c ,X ,Y ,D)

if D(X ) 6= D ′ then

for c ′∈C and Z ∈X where c ′(X ,Z ) or c ′(Z ,X ) do

push Q, (c ′,Z ,X )
done

endif

done
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Node/Arc vs. Global Consistency

1,2

1,2

1,2

X = {X ,Y ,Z}
D(X ) = D(Y ) = D(Z ) = {1, 2}
C = {X 6= Y ,Y 6= Z ,Z 6= X}

• The CSP is node and arc consistent

• The CSP is globally inconsistent
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Node/Arc vs. Global Consistency

1,2

1,2

1,2

X = {X ,Y ,Z}
D(X ) = D(Y ) = D(Z ) = {1, 2}
C = {X 6= Y ,Y 6= Z ,Z 6= X}

• The CSP is node and arc consistent

• The CSP is globally inconsistent
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Consistency Methods: Summary

• Computing local consistency = constraint propagation
• Node consistency
• Arc consistency
• (Hyper-arc consistency)
• (Bounds consistency)

• Propagation is incomplete

• Solving a CSP requires search
Combine backtracking and propagation

Complexity

• Local consistency: efficient

• CSP solving/global consistency: NP-hard
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Consistency Methods: Summary

• Computing local consistency = constraint propagation
• Node consistency
• Arc consistency
• (Hyper-arc consistency)
• (Bounds consistency)

• Propagation is incomplete

• Solving a CSP requires search
Combine backtracking and propagation

Complexity

• Local consistency: efficient

• CSP solving/global consistency: NP-hard
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Consistency Methods: Summary

• Computing local consistency = constraint propagation
• Node consistency
• Arc consistency
• (Hyper-arc consistency)
• (Bounds consistency)

• Propagation is incomplete

• Solving a CSP requires search
Combine backtracking and propagation

Complexity

• Local consistency: efficient

• CSP solving/global consistency: NP-hard
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Consistency Methods: Summary

• Computing local consistency = constraint propagation
• Node consistency
• Arc consistency
• (Hyper-arc consistency)
• (Bounds consistency)

• Propagation is incomplete

• Solving a CSP requires search
Combine backtracking and propagation

Complexity

• Local consistency: efficient

• CSP solving/global consistency: NP-hard
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Solving 4-Queens (with Constraint Propagation)

X1, . . . ,X4

D(Xi ) = {1, . . . , 4} for i = 1..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(Xi ) = {1, . . . , 4} for i = 1..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(Xi ) = {1, . . . , 4} for i = 2..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {2, 4},D(X4) = {2, 3}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {4},D(X4) = {2, 3}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 1

X1, . . . ,X4

D(X1) = {1},D(X2) = {3, 4},D(X3) = {},D(X4) = {2, 3}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(Xi ) = {1, . . . , 4} for i = 1..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(Xi ) = {1, . . . , 4} for i = 2..4

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1, 3},D(X4) = {1, 3, 4}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1},D(X4) = {3, 4}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Solving 4-Queens, X1 = 2

X1, . . . ,X4

D(X1) = {2},D(X2) = {4},D(X3) = {1},D(X4) = {3}

Xi 6= Xi ′ , i − Xi 6= i ′ − Xi ′ , i + Xi 6= i ′ + Xi ′
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Constraint Search

• Combine Enumeration (backtracking) with propagation

• In general: enumeration by binary splits

• Usually, we insert constraints of the form

X � V , � ∈ {=,≤,≥, . . . }

• Variable and value selection important!
• for size of search tree
• not for completeness/correctness
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Constraint Search

• Combine Enumeration (backtracking) with propagation

• In general: enumeration by binary splits

• Usually, we insert constraints of the form

X � V , � ∈ {=,≤,≥, . . . }

• Variable and value selection important!
• for size of search tree
• not for completeness/correctness
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Constraint Search

• Combine Enumeration (backtracking) with propagation

• In general: enumeration by binary splits

• Usually, we insert constraints of the form

X � V , � ∈ {=,≤,≥, . . . }

• Variable and value selection important!
• for size of search tree
• not for completeness/correctness
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Constraint Search

• Combine Enumeration (backtracking) with propagation

• In general: enumeration by binary splits

• Usually, we insert constraints of the form

X � V , � ∈ {=,≤,≥, . . . }

• Variable and value selection important!
• for size of search tree
• not for completeness/correctness
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Symmetry

A symmetry is a (bijective) function on solutions.
This implies a symmetry function on constraints.
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Symmetry

A symmetry is a (bijective) function on solutions.
This implies a symmetry function on constraints.
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Symmetry

A symmetry is a (bijective) function on solutions.
This implies a symmetry function on constraints.
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Symmetry Breaking Search

• Each right branch: forbid symmetries of the left branch

• By inserting a symmetric constraints for each symmetry
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Constraint Optimization

Definition
A Constraint Optimization Problem (COP) is a CSP together with
an objective function f on solutions.
A solution of the COP is a solution of the CSP that
maximizes/minimizes f .

Solving by Branch & Bound Search
Idea of B&B:

• Backtrack & Propagate as for solving the CSP

• Whenever a solution s is found, add constraint
“next solutions must be better than f (s)”.
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Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo
For example: Alice, Carol, Dave, Bob

However, they have preferences:

• Alice wants to stand next to Dave

• Bob wants to stand next to Dave and Carol

• Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.
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Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo
For example: Alice, Carol, Dave, Bob

However, they have preferences:

• Alice wants to stand next to Dave

• Bob wants to stand next to Dave and Carol

• Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.
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Application: Protein Structure Prediction

P

H P

P HH

H P

P

P



S
.W

il
l,
B
io
in
fo

II
I,
L
ei
p
zi
g
,
F
a
ll
2
0
1
3

Exact Prediction in 3D cubic & FCC

The problem

IN: sequence s in {H,P}n

HHPPPHHPHHPPHHHPPHHPPPHPPHH

OUT: self avoiding walk ω on cubic/fcc lattice with
minimal HP-energy EHP(s, ω)
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A First Constraint Model

• Variables X1, . . . ,Xn,Y1, . . . ,Yn,Z1, . . . ,Zn and HHContacts(
Xi

Yi

Zi

)
is the position of the ith monomer ω(i)

• Domains

D(Xi ) = D(Yi ) = D(Zi ) = {−n, . . . , n}

• Constraints

1. positions i and i + 1 are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to Xi ,Yi ,Zi

4.

 X1

Y1

Z1

 =

 0
0
0


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A First Constraint Model

• Variables X1, . . . ,Xn,Y1, . . . ,Yn,Z1, . . . ,Zn and HHContacts(
Xi

Yi

Zi

)
is the position of the ith monomer ω(i)

• Domains

D(Xi ) = D(Yi ) = D(Zi ) = {−n, . . . , n}

• Constraints

1. positions i and i + 1 are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to Xi ,Yi ,Zi

4.

 X1

Y1

Z1

 =

 0
0
0





S
.W

il
l,
B
io
in
fo

II
I,
L
ei
p
zi
g
,
F
a
ll
2
0
1
3

A First Constraint Model

• Variables X1, . . . ,Xn,Y1, . . . ,Yn,Z1, . . . ,Zn and HHContacts(
Xi

Yi

Zi

)
is the position of the ith monomer ω(i)

• Domains

D(Xi ) = D(Yi ) = D(Zi ) = {−n, . . . , n}

• Constraints

1. positions i and i + 1 are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to Xi ,Yi ,Zi

4.

 X1

Y1

Z1

 =

 0
0
0


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The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary
variables

Xdiffij = |Xi − Xj | Ydiffij = |Yi − Yj | Zdiffij = |Zi − Zj |

1. Positions i and i + 1 neighbored (chain)

Xdiffi(i+1) + Ydiffi(i+1) + Zdiffi(i+1) = 1

2. All positions differ (self-avoidance)

Xdiffij + Ydiffij + Zdiffij 6= 0 (for i 6= j).

3. Relate HHContacts to Xi ,Yi ,Zi

Detect HH-contact, if Xdiffij + Ydiffij + Zdiffij = 1 for
si = sj = H. Then add 1 to HHContacts.
(Technically, use reified constraints)
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The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary
variables

Xdiffij = |Xi − Xj | Ydiffij = |Yi − Yj | Zdiffij = |Zi − Zj |

1. Positions i and i + 1 neighbored (chain)

Xdiffi(i+1) + Ydiffi(i+1) + Zdiffi(i+1) = 1

2. All positions differ (self-avoidance)

Xdiffij + Ydiffij + Zdiffij 6= 0 (for i 6= j).

3. Relate HHContacts to Xi ,Yi ,Zi

Detect HH-contact, if Xdiffij + Ydiffij + Zdiffij = 1 for
si = sj = H. Then add 1 to HHContacts.
(Technically, use reified constraints)
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The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary
variables

Xdiffij = |Xi − Xj | Ydiffij = |Yi − Yj | Zdiffij = |Zi − Zj |

1. Positions i and i + 1 neighbored (chain)

Xdiffi(i+1) + Ydiffi(i+1) + Zdiffi(i+1) = 1

2. All positions differ (self-avoidance)

Xdiffij + Ydiffij + Zdiffij 6= 0 (for i 6= j).

3. Relate HHContacts to Xi ,Yi ,Zi

Detect HH-contact, if Xdiffij + Ydiffij + Zdiffij = 1 for
si = sj = H. Then add 1 to HHContacts.
(Technically, use reified constraints)
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Solving the First Model

• Model is a COP (Constraint Optimization Problem)

• Branch and Bound Search for Minimizing Energy

• Combined with Symmetry Breaking

• How good is the propagation?

• Main problem of propagation: bounds on contacts/energy
From a partial solution, the solver cannot estimate the
maximally possible number of HH-contacts well.



S
.W

il
l,
B
io
in
fo

II
I,
L
ei
p
zi
g
,
F
a
ll
2
0
1
3

Solving the First Model

• Model is a COP (Constraint Optimization Problem)

• Branch and Bound Search for Minimizing Energy

• Combined with Symmetry Breaking

• How good is the propagation?

• Main problem of propagation: bounds on contacts/energy
From a partial solution, the solver cannot estimate the
maximally possible number of HH-contacts well.



S
.W

il
l,
B
io
in
fo

II
I,
L
ei
p
zi
g
,
F
a
ll
2
0
1
3

Solving the First Model

• Model is a COP (Constraint Optimization Problem)

• Branch and Bound Search for Minimizing Energy

• Combined with Symmetry Breaking

• How good is the propagation?

• Main problem of propagation: bounds on contacts/energy
From a partial solution, the solver cannot estimate the
maximally possible number of HH-contacts well.
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Solving the First Model

• Model is a COP (Constraint Optimization Problem)

• Branch and Bound Search for Minimizing Energy

• Combined with Symmetry Breaking

• How good is the propagation?

• Main problem of propagation: bounds on contacts/energy
From a partial solution, the solver cannot estimate the
maximally possible number of HH-contacts well.
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Solving the First Model

• Model is a COP (Constraint Optimization Problem)

• Branch and Bound Search for Minimizing Energy

• Combined with Symmetry Breaking

• How good is the propagation?

• Main problem of propagation: bounds on contacts/energy
From a partial solution, the solver cannot estimate the
maximally possible number of HH-contacts well.
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The Advanced Approach: Cubic & FCC

Step 2Step 1

HP−sequence

Number of Hs

Steps

1. Core Construction

2. Mapping
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The Advanced Approach: Cubic & FCC

Step 2Step 1 Step 3

HP−sequence

LayerNumber of Hs
sequences

Steps

1. Bounds

2. Core Construction

3. Mapping
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Workflow: Predict Best Structure(s) of HP-Sequence
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Computing Bounds

• Prepares the construction of cores

• How many contacts are possible for n monomers, if freely
distributed to lattice points

• Answering the question will give information for core
construction

• Main idea: split lattice into layers
consider contacts
• within layers
• between layers
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Layers: Cubic & FCC Lattice
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Layers: Cubic & FCC Lattice
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Contacts

Contacts =
Layer contacts + Contacts between layers

• Bound Layer contacts: Contacts ≤ 2 · n − a− b

b=3

a=4

n=9

• Bound Contacts between layers

• cubic: one neighbor in next layer

Contacts ≤ min(n1, n2)

• FCC: four neighbors in next layer

i − points

x=1 x=2

2−Point

4−Point

3−Point
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Bounding Interlayer Contacts in the FCC

• Needed:
• upper bound for number of contacts between two successive

layers in FCC
• NOTE: Layers only described by parameters

(n1, a1, b1); (n2, a2, b2)

• Method:
• compute bounds for number of 1/2/3/4-points of first layer
• distribute n2 points greedily
• technical difficulty: tight bounds of 1/2/3/4-points depend on

further parameters

• Result: BFCC
ILC (n1, a1, b1, n2, a2, b2)

Recall: Bcubic
ILC (n1, a1, b1, n2, a2, b2)= min(n1, n2)
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Recursion Equation for Bounds

a1

b1

n1= + +
n2

a2

n2

a2
b1

n1
a1

b2
b2

1 2 3 4 2 3 4

B  (n−n1,n2,a2,b2)B  (n,n1,a1,b1)

B      (n1,a1,b1,n2,a2,b2)

B     (n1,a1,b1)
LC

ILC

C C

n2

• BC(n, n1, a1, b1) : Contacts of core with n elements and first
layer L1 : n1, a1, b1

• BLC(n1, a1, b1) : Contacts in L1

• BILC(n1, a1, b1, n2, a2, b2) : Contacts between E1 and
E2 : n2, a2, b2

• BC(n − n1, n2, a2, b2) : Contacts in core with n − n1 elements
and first layer E2
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Layer sequences

From Recursion:

• by Dynamic Programming: Upper bound on number of
contacts

• by Traceback: Set of layer sequences

layer sequence = (n1, a1, b1), . . . , (n4, a4, b4)
Set of layer sequences gives distribution of points to layers in all
point sets that possibly have maximal number of contacts
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Core Construction

Problem

IN: number n, contacts c

OUT: all point sets of size n with c contacts

• Optimization problem

• Core construction is a hard combinatorial problem
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Core construction: Modified Problem

Poblem

IN: number n, contacts c , set of layer sequences Sls

OUT: all point sets of size n with c contacts and layer
sequences in Sls

• Use constraints from layer sequences

• Model as constraint satisfaction problem (CSP)

(n1, a1, b1), . . . , (n4, a4, b4) Core = Set of lattice points
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Core Construction — Details

y

z

x

1

1

1

• Number of layers = length of layer sequence

• Number of layers in x , y , and z : Surrounding Cube

• enumerate numbers of layers ⇒ fix cube ⇒ enumerate points
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Workflow
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Mapping Sequences to Cores

find structure such that

• H-Monomers on core positions → hydrophobic core

• all positions differ → self-avoiding

• chain connected → walk

compact core optimal structure
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Mapping Sequence to Cores — CSP

Given: sequence s of size n and nH Hs
core Core of size nH

CSP Model

• Variables X1, . . . ,Xn

Xi is position of monomer i

Encode positions as integers

I

(
x
y
z

)
≡ x + M ∗ y + M2 ∗ z

(unique encoding for ’large enough’ M)

• Constraints

1. Xi ∈ Core for all si = H
2. Xi and Xi+1 are neighbors
3. X1, . . . ,Xn are all different
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Constraints for Self-avoiding Walks

• Single Constraints “self-avoiding” and “walk” weaker than
their combination

• no efficient algorithm for consistency of combined constraint
“self-avoiding walk”

• relaxed combination: stronger and more efficient propagation

k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding
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Putting it together

Predict optimal structures by combining the three steps

1. Bounds

2. Core Construction

3. Mapping

Some Remarks

• Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step

• Mapping to cores may fail!
We use suboptimal cores and iterate mapping.

• Approach extensible to HPNX
HPNX-optimal structures at least nearly optimal for HP.

• Approach extensible to side chains
H side chains form core.
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Putting it together

Predict optimal structures by combining the three steps

1. Bounds

2. Core Construction

3. Mapping

Some Remarks

• Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step

• Mapping to cores may fail!
We use suboptimal cores and iterate mapping.

• Approach extensible to HPNX
HPNX-optimal structures at least nearly optimal for HP.

• Approach extensible to side chains
H side chains form core.
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Putting it together

Predict optimal structures by combining the three steps

1. Bounds

2. Core Construction

3. Mapping

Some Remarks

• Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step

• Mapping to cores may fail!
We use suboptimal cores and iterate mapping.

• Approach extensible to HPNX
HPNX-optimal structures at least nearly optimal for HP.

• Approach extensible to side chains
H side chains form core.
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Putting it together

Predict optimal structures by combining the three steps

1. Bounds

2. Core Construction

3. Mapping

Some Remarks

• Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step

• Mapping to cores may fail!
We use suboptimal cores and iterate mapping.

• Approach extensible to HPNX
HPNX-optimal structures at least nearly optimal for HP.

• Approach extensible to side chains
H side chains form core.
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Time efficiency

Prediction of one optimal structure
(“Harvard Sequences”, length 48 [Yue et al., 1995])

CPSP PERM

0,1 s 6,9 min
0,1 s 40,5 min
4,5 s 100,2 min
7,3 s 284,0 min
1,8 s 74,7 min
1,7 s 59,2 min

12,1 s 144,7 min
1,5 s 26,6 min
0,3 s 1420,0 min
0,1 s 18,3 min

• CPSP: “our approach”, constraint-based

• PERM [Bastolla et al., 1998]: stochastic optimization
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Many Optimal Structures
Sequence HPPHPPPHP

. . . ?

• There can be many ...

• HP-model is degenerated

• Number of optimal structures = degeneracy
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Completeness
Predicted number of all optimal structures
(“Harvard Sequences”)

CPSP CHCC

10.677.113 1500× 103

28.180 14× 103

5.090 5× 103

1.954.172 54× 103

1.868.150 52× 103

106.582 59× 103

15.926.554 306× 103

2.614 1× 103

580.751 188× 103

• CPSP: “our approach”

• CHCC [Yue et al., 1995]: complete search with hydrophobic
cores
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Unique Folder

• HP-model degenerated

• Low degeneracy ≈ stable ≈ protein-like

• Are there protein-like, unique folder in 3D HP models?

• How to find out?
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Unique Folder
• HP-model degenerated
• Low degeneracy ≈ stable ≈ protein-like
• Are there protein-like, unique folder in 3D HP models?
• How to find out?

MC-search through sequence space

971

59

12

12 40

28

28

112

62

23

10

8

20 32

32

72

14

6

34

30

9

12

6

24

38

3

1

2

4

6

14
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Unique Folder

• HP-model degenerated

• Low degeneracy ≈ stable ≈ protein-like

• Are there protein-like, unique folder in 3D HP models?

• How to find out?

Yes: many, e.g. about 10,000 for n=27
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Software: CPSP Tools
http://cpsp.informatik.uni-freiburg.de

http://cpsp.informatik.uni-freiburg.de
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