Constraint Programming
and
Protein Structure Prediction
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Can we predict protein structure?

'

e Molecular Dynamics on Full Atom Models
e Simpler Protein Models:
e Folding simulation
e Stochastic optimization, e.g. Genetic Algorithms
e Combinatorial optimization, e.g. Constraint Programming
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Simple Proteins: HP-Model
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Structures in the HP-Model
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Constraint Programming

Constraint programming . ..

e ...is a programming technique

e ...describes what rather than how

e ...i.e. itis declarative

e ...combines logic reasoning with search
e ...performs “intelligent” enumeration

e ... "slays NP-hard dragons”
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ell, but

at

re Constraints!
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ell, but

Example: Map Coloring

at

re Constraints!
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Well, But What Are Constraints?

Example: Map Coloring

Constraints:

A, C,D,I,S € {red, green, blue},
A#C, A#4D, A#1, A#S,
C#D,C#I,1#S
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Well, But What Are Constraints?

Example: Map Coloring

Constraints:

A, C,D,I,S € {red, green, blue},
A#C, A#4D, A#1, A#S,
C#D,C#I,1#S

e We say only what a solution of the map coloring is
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Well, But What Are Constraints?

Example: Map Coloring

Constraints:

A, C,D,I,S € {red, green, blue},
A#C, A#4D, A#1, A#S,
C#D,C#I,1#S

e We say only what a solution of the map coloring is

e We need not care how the problem is solved
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Well, But What Are Constraints?

Example: Map Coloring
i

Constraints:

A, C,D,I,S € {red, green, blue},
A£C A#D A#I A#£S,
\\\;s C#D,C#I,1#S

e We say only what a solution of the map coloring is
e We need not care how the problem is solved

e A solution is computed by guessing and reasoning
E.g. guess A =red implies C,D, [, S # red;
then guess C = green ...
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Another Constraints Example

Example

A mathematician forgot the last position of a number code.
She only remembers

e it's odd
e of course, its a digit, i.e. in [0..9]

e it's no prime number and not 1.
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Another Constraints Example

Example

A mathematician forgot the last position of a number code.

She only remembers
e it's odd
e of course, its a digit, i.e. in [0..9]
e it's no prime number and not 1.

She can derive the digit (by constraint reasoning)!
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Commercial Impact of Constraints

Some examples

Michelin and Dassault, Renault

Production planning

Lufthansa, Swiss Air, ...

Staff planning

Nokia

Software configuration

Siemens

Circuit verification

French National Railway Company

Train schedule

S.Will, Bioinfo Ill, Leipzig, Fall 2013



Constraint Satisfaction Problem (CSP)

Definition
A Constraint Satisfaction Problem (CSP) consists of
e variables X = {X1,..., Xy},
e the domain D that associates finite domains
D1 = D(X1),...,Dn = D(X,) to X.

e 3 set of constraints C.
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Constraint Satisfaction Problem (CSP)

Definition
A Constraint Satisfaction Problem (CSP) consists of
e variables X = {X1,..., Xn},
e the domain D that associates finite domains
D1 = D(X1),...,Dn = D(Xp,) to X.
e a set of constraints C.

A solution is an assignment of variables to values of their domains
that satisfies the constraints.
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Constraint Satisfaction Problem (CSP)

Definition
A Constraint Satisfaction Problem (CSP) consists of
e variables X = {X1,..., Xn},
e the domain D that associates finite domains
D1 = D(X1),...,Dn = D(Xp,) to X.
e a set of constraints C.

A solution is an assignment of variables to values of their domains
that satisfies the constraints.

We have already seen one example: map coloring.
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A Simple Example CSP

e Variables X = {X,Y,Z}
e Domains D(X) = D(Y) = D(Z) ={1,2,3,4}
e Constraints C={X <Y, Y <Z,Z<2}

Remarks
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A Simple Example CSP

e Variables X = {X,Y,Z}
e Domains D(X) = D(Y) = D(Z) ={1,2,3,4}
e Constraints C={X <Y, Y <Z,Z<2}

Remarks

e The constraint set is interpreted as the conjunction

X<Yand Y<Zand Z <2
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A Simple Example CSP

e Variables X = {X,Y, 7}
e Domains D(X) = D(Y) = D(Z) ={1,2,3,4}
e Constraints C={X <Y, Y <Z,Z<2}

Remarks

e The constraint set is interpreted as the conjunction
X<Yand Y<Zand Z <2

e The domains are interpreted as the constraint

X eD(X)and Y € D(Y) and Z € D(2).
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The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks
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The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks
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The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks
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The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks

S.Will, Bioinfo I, Leipzig, Fall 2013



The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks
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€ N-ueens rroblem

4-Queens: place 4 queens on 4 x 4 board without attacks

Model 4-Queens as CSP (Constraint Model)
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The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks

Model 4-Queens as CSP (Constraint Model)

e Variables X1y, Xa

X; = j means “queen in column i, row j"
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The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks

Model 4-Queens as CSP (Constraint Model)
e Variables X1, X,

X; = j means “queen in column i, row j"

e Domains D(X;))={1,...,4} fori=1.4
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The N-Queens Problem

4-Queens: place 4 queens on 4 x 4 board without attacks

Model 4-Queens as CSP (Constraint Model)

e Variables X1y Xg

X; = j means “queen in column i, row j"

* Domains D(X;) ={1,...,4} for i = 1.4
e Constraints (for different columns i and i’)
no horizontal attack (Xi # Xir)
no attack in first diagonal (i—Xi# 1" — Xir)

no attack in second diagonal (i + X; # i’ + Xj)
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D
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X%=1,X;3=1,X =1
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D
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X%=1,X;3=1,X =1

inconsistent!
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D
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X=1,X3=1,X =2
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D
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X=1,X3=1,X =2

inconsistent!
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D
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X=1,X3=1,X =3
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D
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X=1,X3=1,X =3

inconsistent!
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D
Solving the CSP

Generate and Test
generate assignments and test each

X1 = 17X2: 17X3 = 17X4:4
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D
Solving the CSP

Generate and Test
generate assignments and test each

X1 = 17X2: 17X3 = 17X4:4

inconsistent!
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e
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X=1,X3=2,X =1
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D
Solving the CSP

Generate and Test
generate assignments and test each

X1=1,X%=1,X3=2X,=1
...it's getting boring.
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S
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X=1,X3=2,X =1

What's wrong with GT?
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o
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X=1,X3=2,X =1

What's wrong with GT?

e Redundancy
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e
Solving the CSP

Generate and Test
generate assignments and test each

Xi=1,X=1,X3=2,X =1

What's wrong with GT?

e Redundancy

S.Will, Bioinfo I, Leipzig, Fall 2013
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Overcoming GT's weakness

Backtracking
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Overcoming GT's weakness

Backtracking

Problems
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Overcoming GT's weakness

Backtracking
Problems
e Thrashing



Overcoming GT's weakness

Backtracking

Problems

e Thrashing
e Redundancy
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Overcoming GT's weakness

Backtracking

Problems

e Thrashing
e Redundancy
e Late Detection of Inconsistency

S.Will, Bioinfo Ill, Leipzig, Fall 2013



!! <) !nswer

Consistency Techniques

e detect inconsistency much earlier
e avoid redundancy and thrashing of BT
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CP’s Answer

Consistency Techniques

e detect inconsistency much earlier
e avoid redundancy and thrashing of BT

Definition
A consistency method transforms a CSP into an equivalent,
consistent CSP.
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D
CP’s Answer

Consistency Techniques

e detect inconsistency much earlier
e avoid redundancy and thrashing of BT

Definition
A consistency method transforms a CSP into an equivalent,
consistent CSP.

How we will use it
Interleave consistency transformation and enumeration

S.Will, Bioinfo I, Leipzig, Fall 2013



|!o!e an! !I’C !on5|stency

e |dea: Find equivalent, consistent CSP by removing values
from the domains
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Node and Arc Consistency

e |dea: Find equivalent, consistent CSP by removing values
from the domains

e Examine one (elementary) constraint at a time
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Node and Arc Consistency

e |dea: Find equivalent, consistent CSP by removing values
from the domains

e Examine one (elementary) constraint at a time

* Node consistency: unary constraints c(X)
remove values from D(X) that falsify c
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Node and Arc Consistency

Idea: Find equivalent, consistent CSP by removing values
from the domains

Examine one (elementary) constraint at a time

Node consistency: unary constraints c(X)

remove values from D(X) that falsify c

Arc consistency: binary constraints ¢(X, Y)

remove from D(X) values that have no support in D(Y') such
that c is satisfied and vice versa

S.Will, Bioinfo Ill, Leipzig, Fall 2013



Node Consistency

Definition
A unary constraint ¢(X) is node consistent with domain D if
X = d satisfies ¢(X) for each d € D(X).

Definition
A CSP (X, D, C) is node consistent, iff each of the unary
constraints in C is node consistent with D.

S.Will, Bioinfo IlI, Leipzig, Fall 2013



Node Consistency Example

Our example CSP is not node consistent (see Z)

X<YandY<Zand Z2<2
D(X)=D(Y)=D(Z) ={1,2,3,4}

Node consistent, equivalent CSP

X<YandY<Zand Z2<2
D(X)=D(Y)={1,2,3,4},D(Z) = {1,2}

S.Will, Bioinfo I, Leipzig, Fall 2013



Node Consistency Example

Our example CSP is not node consistent (see Z)

X<YandY<Zand Z2<2
D(X)=D(Y)=D(Z) ={1,2,3,4}

Node consistent, equivalent CSP

X<YandY<Zand Z2<2
D(X)=D(Y)={1,2,3,4},D(Z) = {1,2}

Remark

e The 4-Queens CSP was node consistent, why?

e Computing node consistency is easy. Just look once at each
unary constraint and remove inconsistent domain values.
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Arc Consistency

Definition
A binary constraint ¢(X, Y) is arc consistent with domain D if
e for each dx € D(X) thereis a dy € D(Y) s.t. c(dx, dy)

e vice versa (for each dy € D(Y) there is a dx € D(X) s.t. c(dx, dy))

Definition
A CSP (X, D, C) is arc consistent, iff each of the binary
constraints in C is arc consistent with D.

S.Will, Bioinfo Ill, Leipzig, Fall 2013



Arc Consistency Example

The following CSP is node consistent but not arc consistent

X<YandY<Zand £ <2
D(X)=D(Y)=1{1,2,3,4},D(Z2) ={1,2}

For example 4 € D(Y) and Y < Z
Arc consistent, equivalent CSP

X<YandY<Zand Z2<2
D(X)=D(Y)=D(Z2)={}

S.Will, Bioinfo Ill, Leipzig, Fall 2013



Arc Consistency Example

The following CSP is node consistent but not arc consistent

X<YandY<Zand £ <2
D(X)=D(Y)=1{1,2,3,4},D(Z2) ={1,2}

For example 4 € D(Y) and Y < Z
Arc consistent, equivalent CSP

X<YandY<Zand Z2<2
D(X)=D(Y)=D(Z2)={}

Remark
Our 4-Queens CSP is arc consistent.
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Computing Arc Consistency

procedure REVISE(c, X, Y, D)
D(X) :={dx € D(X) such that there exists dy € D(Y)
where c(dx,dy) is satisfied}
endproc

S.Will, Bioinfo I, Leipzig, Fall 2013



Computing Arc Consistency

procedure REVISE(c, X,Y,D)
D(X) :={dx € D(X) such that there exists dy € D(Y)
where c(dx,dy) is satisfied}
endproc

do
D :=D
foreach binary constraint c € C do
let X,Y denote the variables of ¢
REVISE(c, X, Y, D)
REVISE(c, Y, X, D)
done
until D = D'

S.Will, Bioinfo Ill, Leipzig, Fall 2013



Computing Arc Consistency

procedure REVISE(c, X,Y,D)
D(X) :={dx € D(X) such that there exists dy € D(Y)
where c(dx,dy) is satisfied}
endproc

do
D :=D
foreach binary constraint c € C do
let X,Y denote the variables of ¢
REVISE(c, X, Y, D)
REVISE(c, Y, X, D)
done
until D = D'

Remark
This algorithm is called AC-1, usually one uses improved variants
of this algorithm (e.g. AC-3).
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Avoiding Redundant Work: AC-3

Q@ :=empty queue

foreach binary constraint c € C do
push Q, (¢, X,Y)
push Q, (c,Y,X)

done

while @ F#empty queue do
(c,X,Y) := pop @
> :=D(X)
REVISE(c, X, Y, D)
if D(X)# D’ then
for ¢/€C and Z€X where ¢'(X,Z) or ¢(Z,X) do
push Q, (¢, Z,X)
done
endif
done

S.Will, Bioinfo Ill, Leipzig, Fall 2013



Node/Arc vs. Global Consistency

X ={X,Y,Z}
D(X)=D(Y)=D(Z)={1,2}
C={X#£Y,Y£Z,Z+X)

e The CSP is node and arc consistent

S.Will, Bioinfo I, Leipzig, Fall 2013



Node/Arc vs. Global Consistency

X ={X,Y,Z}
D(X)=D(Y)=D(Z)={1,2}
C={X#£Y,Y£Z,Z+X)

e The CSP is node and arc consistent

S.Will, Bioinfo IlI, Leipzig, Fall 2013
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Consistency Methods: Summary

e Computing local consistency = constraint propagation

Node consistency
Arc consistency
(Hyper-arc consistency)

°
o
[ ]
¢ (Bounds consistency)
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Consistency Methods: Summary

e Computing local consistency = constraint propagation

e Node consistency

e Arc consistency

o (Hyper-arc consistency)
¢ (Bounds consistency)

e Propagation is incomplete
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Consistency Methods: Summary

e Computing local consistency = constraint propagation

Node consistency

Arc consistency
(Hyper-arc consistency)
(Bounds consistency)

e Propagation is incomplete

e Solving a CSP requires search
Combine backtracking and propagation
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Consistency Methods: Summary

e Computing local consistency = constraint propagation

Node consistency

Arc consistency
(Hyper-arc consistency)
(Bounds consistency)

e Propagation is incomplete

e Solving a CSP requires search
Combine backtracking and propagation

Complexity

e Local consistency: efficient

e CSP solving/global consistency: NP-hard

S.Will, Bioinfo Ill, Leipzig, Fall 2013



Solving 4-Queens (with Constraint Propagation)

X Xy Xy Xy

Xi,. .. X
D(Xi)={1,...,4} fori=1..4
Xi # X, i = Xi 20" = X, i + Xi 21+ X
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D
Solving 4-Queens, X; =1

X Xy Xy Xy

Xi,. .. X
D(Xi)={1,...,4} fori=1..4
Xi # X, i = Xi 20" = X, i + Xi 21+ X
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D
Solving 4-Queens, X; =1

X1 Xg X3 X4

X1y, Xa
D(X1) ={1},D(X;) ={1,...,4} for i =2..4
Xl'?éXiUi_Xi?éiI_Xi’;i‘i‘Xi?él./—i-Xi/
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Solving 4-Queens, X; =1

.,
X X, X3 Xy

@<
X

X

Xi,..., X
D(X1) = {1}, D(X2) = {3,4}, D(X3) = {2,4}, D(X4) = {2,3}
Xi # Xipyi = Xi 1 — X, i + Xi # i + Xy
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Solving 4-Queens, X; =1

X1y, Xa
D(X1) = {1}, D(X2) = {3,4}, D(X3) = {4}, D(X4) = {2,3}
X,'#X,'/,I'—X,';ﬁI'I—X,'/,I'—i-X,';ﬁl'/—i-X,'/
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Solving 4-Queens, X; =1

X1y, Xa
D(X1) = {1}, D(X2) = {3,4}, D(X3) = {}, D(X4) = {2,3}
Xi # X, i — Xi # I'I—X,'/,I'—i-X,' #* i’ 4+ Xir
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D
Solving 4-Queens, X; =2

X Xy Xy Xy

Xi,. .. X
D(Xi)={1,...,4} fori=1..4
Xi # X, i = Xi 20" = X, i + Xi 21+ X
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D
Solving 4-Queens, X; =2

X1 Xg X3 X4

X1y, Xa
D(X1) ={2},D(X;) ={1,...,4} for i =2..4
Xl'?éXiUi_Xi?éiI_Xi’;i‘i‘Xi?él./—i-Xi/
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Solving 4-Queens, X; = 2

.,
X X, X3 Xy

X

X

X1, Xa
D(Xl) = {2}7 D(X2) = {4}? D(X3) = {173}7 D(X4) = {17374}
Xi# X, i = Xp # 1" — X, i + Xi 1" + Xy
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Solving 4-Queens, X; = 2

X1y, Xy
D(X1) = {2}, D(X2) = {4}, D(X3) = {1}, D(Xa) = {3,4}
X,';ﬁX,'/,I'—X,'751'I—X,'/,I'+X,'75i/+X,'/
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Solving 4-Queens, X; = 2

X1y, Xy
D(X1) = {2}, D(X2) = {4}, D(Xs) = {1}, D(X4) = {3}
X,'#X,'/,I'—X,'#iI—X;/7i+Xi7él'/+X,'/
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!onstralnt !earc”

e Combine Enumeration (backtracking) with propagation

(X,D,C)

c -c

(X,D.C Ao (X,D7.C A —c)
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Constraint Search

e Combine Enumeration (backtracking) with propagation

e In general: enumeration by binary splits
(X,D,C)

(X,D.C Ao (X,D7.C A —c)
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Constraint Search

e Combine Enumeration (backtracking) with propagation

e In general: enumeration by binary splits
(X,D,C)

(& e
(X,D.C Ao (X,D7.C A —c)

e Usually, we insert constraints of the form

XoV, ce{=<,>,...}
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Constraint Search

Combine Enumeration (backtracking) with propagation

In general: enumeration by binary splits
(X,D,C)

(& e
(X,D'.C Ac) (X,D7,.C A-c)

Usually, we insert constraints of the form
XoV, oce{=<,>,...}

Variable and value selection important!

o for size of search tree
e not for completeness/correctness

S.Will, Bioinfo Ill, Leipzig, Fall 2013
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Symmetry
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Symmetry

A symmetry is a (bijective) function on solutions.
This implies a symmetry function on constraints.
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Symmetry Breaking Search

(X,D,0)

c -c A VSZﬁS(C/\C)

(X,D',C ne) (X,D",C A=cAVs:=s(CAc))

e Each right branch: forbid symmetries of the left branch

e By inserting a symmetric constraints for each symmetry

S.Will, Bioinfo I, Leipzig, Fall 2013



Constraint Optimization

Definition

A Constraint Optimization Problem (COP) is a CSP together with
an objective function f on solutions.

A solution of the COP is a solution of the CSP that
maximizes/minimizes f.

Solving by Branch & Bound Search

Idea of B&B:

e Backtrack & Propagate as for solving the CSP

e Whenever a solution s is found, add constraint
“next solutions must be better than f(s)".
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Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo
For example: Alice, Carol, Dave, Bo

However, they have preferences:
e Alice wants to stand next to Dave
e Bob wants to stand next to Dave and Carol

e Carol wants to stand next to Alice
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Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo
For example: Alice, Carol, Dave, Bob|

However, they have preferences:
e Alice wants to stand next to Dave
e Bob wants to stand next to Dave and Carol

e Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.
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Application: Protein Structure Prediction
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T rad3a

7



Exact Prediction in 3D cubic & FCC

The problem
IN: sequence s in {H, P}"
HHPPPHHPHHPPHHHPPHHPPPHPPHH

OUT: self avoiding walk w on cubic/fcc lattice with
minimal HP-energy Epp(s,w)

-
2
3
&
5
w
o

5
-3
]
3
kel
£
8
m
9



A First Constraint Model

e Variables Xi1,..., X, Y1,..., Yn, Z1, ..., Z, and HHContacts

Xi
( Y ) is the position of the ith monomer w(/)
Z;
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A First Constraint Model

e Variables Xi1,..., X, Y1,..., Yn, Z1, ..., Z, and HHContacts

Xi
( Y ) is the position of the ith monomer w(/)
Z

e Domains

D(X;) = D(Y;) = D(Z}) = {-n,...,n}
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A First Constraint Model

e Variables Xi,..., X, Y1,..., Yy Z1,...,Z, and HHContacts

Xi
< Y; > is the position of the ith monomer w(/)
Z;

e Domains

e Constraints

1. positions i and i 4 1 are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to X;, Y;, Z;
X1 0
4, Yr |=1( 0
V4] 0
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e
The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary
variables

Xdiffy = |X; — Xj|  Ydiff; = |Yi— Y| Zdiff; = |Zi — Zj|

1. Positions i and i + 1 neighbored (chain)

Xdiffyi i1y + Ydiffyjy 1) + Zdiffyisqy = 1
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The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary
variables

Xdiffy = |X; = Xj|  Ydiffy =|Y; = Y|  Zdiffy = |Zi — Zj]
1. Positions i and i + 1 neighbored (chain)
Xdiffi(i+1) + Ydiff}(,-+1) + Zdiffri(i+1) =1
2. All positions differ (self-avoidance)

Xdiff; + Ydiffj + Zdiff; #0  (for i # ).
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The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary
variables

Xdiffy = |X; — X;|  Ydiff; = |Y; - Y;| Zdiff; = |Z; — Z||

1. Positions i and i + 1 neighbored (chain)

Xdiffyj 1) + Ydiffyj 1) + Zdiffyip1) = 1
2. All positions differ (self-avoidance)

Xdiffy + Ydiffy + Zdiffy #0  (for i # j).

3. Relate HHContacts to X;, Y;, Z;
Detect HH-contact, if Xdiff; + Ydiff; + Zdiffj = 1 for
si = s; = H. Then add 1 to HHContacts.
(Technically, use reified constraints)
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!o|vmg t!e !|rst |!lo!e|

e Model is a COP (Constraint Optimization Problem)
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Solving the First Model

e Model is a COP (Constraint Optimization Problem)
e Branch and Bound Search for Minimizing Energy
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Solving the First Model

e Model is a COP (Constraint Optimization Problem)
e Branch and Bound Search for Minimizing Energy
e Combined with Symmetry Breaking
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Solving the First Model

Model is a COP (Constraint Optimization Problem)
Branch and Bound Search for Minimizing Energy

Combined with Symmetry Breaking

How good is the propagation?
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Solving the First Model

Model is a COP (Constraint Optimization Problem)
Branch and Bound Search for Minimizing Energy
Combined with Symmetry Breaking

How good is the propagation?

Main problem of propagation: bounds on contacts/energy

From a partial solution, the solver cannot estimate the
maximally possible number of HH-contacts well.
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The Advanced Approach: Cubic & FCC

HP—sequence

Number of Hs —)— ‘ s

L

Steps
1. Core Construction

2. Mapping
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The Advanced Approach: Cubic & FCC

HP—sequence

Number of Hs —_ Layer
Step 1 sequences Step 2 Step 3

Steps
1. Bounds
2. Core Construction

3. Mapping
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m = HH-contacts
of optimal H-core

$

)3
@ Yes
2

Workflow: Predict Best Structure(s) of HP-Sequence

No Yes
m=m-1
¥ v ‘o
Next H-core with
m HH-contacts
of size k
Yes
Formulate CSP e‘&«’%
using H-core oz&.
No '
Solve CSP
Yes
No

Optimal structure
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Computing Bounds

Prepares the construction of cores

How many contacts are possible for n monomers, if freely
distributed to lattice points

Answering the question will give information for core
construction

Main idea: split lattice into layers

consider contacts

e within layers
e between layers
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Layers: Cubic & FCC Lattice
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Contacts

Contacts =
Layer contacts + Contacts between layers

e Bound Layer contacts: Contacts <2-n—a—b

} -

n=9
H_J
a=4

e Bound Contacts between layers

e cubic: one neighbor in next layer

Contacts < min(ny, np)

e FCC: four neighbors in next layer

i — points
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Bounding Interlayer Contacts in the FCC

e Needed:

e upper bound for number of contacts between two successive
layers in FCC

e NOTE: Layers only described by parameters
(n1, a1, br); (n2, a2, by)

e Method:

e compute bounds for number of 1/2/3/4-points of first layer

e distribute ny points greedily

e technical difficulty: tight bounds of 1/2/3/4-points depend on
further parameters

e Result: BFLCCC(nl, a1, b1, n, az, bo)

Recall: Bffgic(nl, ai, bl, no, az, bg): min(nl, n2)
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Recursion Equation for Bounds

a2 b,
T = Alg + +
By c(nl.albl)

BILC("l ,al,bl,n2,a2,b2)

Bc(n.nl.albl) Bc(n—n].n2,a2,b2)

Bc(n, n1, a1, by) : Contacts of core with n elements and first
Iayer L1 L n,ar, b1

BLc(nl, ai, bl) : Contacts in L4

BiLc(n1, a1, b1, n2, a2, bp) : Contacts between E; and

E2 . No,an, b2

Bc(n — n1,n2, a2, b2) : Contacts in core with n — n; elements
and first layer E;
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Layer sequences

From Recursion:

e by Dynamic Programming: Upper bound on number of
contacts

e by Traceback: Set of layer sequences

layer sequence = (ny1, a1, b1), ..., (na, as, bs)
Set of layer sequences gives distribution of points to layers in all
point sets that possibly have maximal number of contacts
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Core Construction

Problem

IN: number n, contacts ¢

OUT: all point sets of size n with ¢ contacts

e Optimization problem

e Core construction is a hard combinatorial problem
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Core construction: Modified Problem
Poblem

IN: number n, contacts c, set of layer sequences S

OUT: all point sets of size n with ¢ contacts and layer
sequences in Sig

e Use constraints from layer sequences
e Model as constraint satisfaction problem (CSP)

(ni,a1,b1),...,(na,as,bs)  Core = Set of lattice points
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Core Construction — Details

e Number of layers = length of layer sequence
e Number of layers in x, y, and z: Surrounding Cube

e enumerate numbers of layers = fix cube = enumerate points
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m = HH-contacts
of optimal H-core

Workflow

Yes

No

e

No
m=m-1
Next H-core with
m HH-contacts
of size k
Yes
Formulate CSP
using H-core
No '

Solve CSP

Yes Yes

Optimal structure

No
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Mapping Sequences to Cores

find structure such that

e H-Monomers on core positions — hydrophobic core
e all positions differ —  self-avoiding
e chain connected —  walk

o
F -

compact core optimal structure
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Mapping Sequence to Cores — CSP

Given: sequence s of size n and ny Hs
core Core of size ny

CSP Model

e Variables Xi,..., X,
X; is position of monomer |

Encode positions as integers

b%
I(y > =x+Msxy+ M xz
z

(unique encoding for 'large enough’ M)
e Constraints

1. X; € Core foralls; = H
2. X; and Xj;1 are neighbors
3. Xi,...,X, are all different
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e
Constraints for Self-avoiding Walks

e Single Constraints “self-avoiding” and "walk” weaker than
their combination

¢ no efficient algorithm for consistency of combined constraint
“self-avoiding walk”

e relaxed combination: stronger and more efficient propagation

k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding
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Putting it together

Predict optimal structures by combining the three steps
1. Bounds
2. Core Construction

3. Mapping

Some Remarks

e Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step
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Putting it together

Predict optimal structures by combining the three steps
1. Bounds
2. Core Construction

3. Mapping

Some Remarks
e Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step

e Mapping to cores may faill
We use suboptimal cores and iterate mapping.
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Putting it together

Predict optimal structures by combining the three steps
1. Bounds
2. Core Construction

3. Mapping

Some Remarks

e Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step

e Mapping to cores may faill
We use suboptimal cores and iterate mapping.

e Approach extensible to HPNX

HPNX-optimal structures at least nearly optimal for HP.
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Putting it together

Predict optimal structures by combining the three steps
1. Bounds
2. Core Construction

3. Mapping

Some Remarks
e Pre-compute optimal cores for relevant core sizes
Given a sequence, only perform Mapping step

e Mapping to cores may faill
We use suboptimal cores and iterate mapping.

e Approach extensible to HPNX
HPNX-optimal structures at least nearly optimal for HP.

e Approach extensible to side chains
H side chains form core.
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Time efficiency

Prediction of one optimal structure
(“Harvard Sequences”, length 48 [Yue et al., 1995])

CPSP PERM
0,1s 6,9 min
0,1s 40,5 min
45s 100,2 min
7,3s 284,0 min
18s 74,7 min
1,7 s 59,2 min

12,1s 1447 min
15s 26,6 min
0,3s 1420,0 min
0,1s 18,3 min

e CPSP: "our approach”, constraint-based

e PERM [Bastolla et al., 1998]: stochastic optimization
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Many Optimal Structures
Sequence HPPHPPPHP

o There can be many ...
o HP-model is degenerated

o Number of optimal structures = degeneracy
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Completeness

Predicted number of all optimal structures
(“Harvard Sequences”)

CPSP CHCC
10.677.113 1500 x 103
28.180 14 x 103
5.090 5x 103

1.954.172 54 x 103
1.868.150 52 x 103
106.582 59 x 103
15.926.554 306 x 103

2.614 1x 103
580.751 188 x 103

e CPSP: “our approach”

e CHCC [Yue et al., 1995]: complete search with hydrophobic

cores
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Unique Folder

HP-model degenerated

Low degeneracy = stable ~ protein-like

Are there protein-like, unique folder in 3D HP models?
How to find out?
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Unique Folder

HP-model degenerated
Low degeneracy = stable = protein-like

Are there protein-like, unique folder in 3D HP models?
How to find out?

MC-search through sequence space
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Unique Folder

HP-model degenerated
e Low degeneracy = stable & protein-like
e Are there protein-like, unique folder in 3D HP models?

e How to find out?

Yes: many, e.g. about 10,000 for n=27
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Software: CPSP Tools

http://cpsp.informatik.uni-freiburg.de

CPSP Tools
H:
ome CPSP Tools
HPstruct Ci int-based Protein F
structure pred.
Bioinformatics Group
e Albert-Ludwigs-University Freiburg
PDB, CML, ...
HPview web-tools version 1.1.1 (06.04.2011)

3D visualization

The CPSP-tools package provides programs to solve exactly and completely the problems typical of studies

HPdeg using 3D lattice protein models. Among the tasks addressed are the prediction of globally optimal and/or
degeneracy i as well as design and neutral network exploration.
HPnnet )
neutral network 54
HPdesian Choose a tool from the left for ad hoc usage i
___ sed.desion ( CPSP-tools version 2.4.2 ) ( LatPack version 1.7.2) k]
LatFit ki
PDB to lattice or =
Results Download the full CPSP-tools or LatPack package for local usage! 2
direct access %
Help E,
FAQ If you use the CPSP-tools please cite the following publications: 5_

o Martin Mann, Sebastian Will, and Rolf Backofen.


http://cpsp.informatik.uni-freiburg.de
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