Constraint Programming and

Protein Structure Prediction

Can we predict protein structure?

- Molecular Dynamics on Full Atom Models
- Simpler Protein Models:
- Folding simulation
- Stochastic optimization, e.g. Genetic Algorithms
- Combinatorial optimization, e.g. Constraint Programming

Simple Proteins: HP-Model

Simple Proteins: HP-Model

Simple Proteins: HP-Model

Structures in the HP-Model

Sequence HPPHPH

Constraint Programming

Constraint programming ...

- ... is a programming technique
- ... describes what rather than how
-i.e. it is declarative
- ... combines logic reasoning with search
-performs "intelligent" enumeration
- ... "slays NP-hard dragons"

Well, But What Are Constraints?

Example: Map Coloring

> Constraints:

$$
\begin{aligned}
& A, C, D, I, S \in\{\text { red, green, blue }\}, \\
& A \neq C, A \neq D, A \neq I, A \neq S \\
& C \neq D, C \neq I, I \neq S
\end{aligned}
$$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess $A=$ red implies $C, D, I, S \neq$ red; then guess $C=$ green

Well, But What Are Constraints?

Example: Map Coloring

Constraints:

$$
A, C, D, I, S \in\{\text { red, green, blue }\}
$$

$$
A \neq C, A \neq D, A \neq 1, A \neq S
$$

$$
C \neq D, C \neq I, I \neq S
$$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning
E.g. guess $A=$ red implies $C, D, I, S \neq$ red; then guess $C=$ green

Well, But What Are Constraints?

Example: Map Coloring

Constraints:
$A, C, D, I, S \in\{$ red, green, blue $\}$,
$A \neq C, A \neq D, A \neq I, A \neq S$,
$C \neq D, C \neq I, I \neq S$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning
E.g. guess $A=$ red implies $C, D, I, S \neq$ red;
then guess $C=$ green

Well, But What Are Constraints?

Example: Map Coloring

Constraints:

$$
\begin{aligned}
& A, C, D, I, S \in\{\text { red, green, blue }\}, \\
& A \neq C, A \neq D, A \neq I, A \neq S \\
& C \neq D, C \neq I, I \neq S
\end{aligned}
$$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess $A=$ red implies $C, D, I, S \neq$ red; then guess $C=$ green

Well, But What Are Constraints?

Example: Map Coloring

Constraints:

$$
\begin{aligned}
& A, C, D, I, S \in\{\text { red, green, blue }\}, \\
& A \neq C, A \neq D, A \neq I, A \neq S \\
& C \neq D, C \neq I, I \neq S
\end{aligned}
$$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess $A=$ red implies $C, D, I, S \neq \mathrm{red}$;
then guess $C=$ green

Well, But What Are Constraints?

Example: Map Coloring

Constraints:

$$
\begin{aligned}
& A, C, D, I, S \in\{\text { red, green, blue }\}, \\
& A \neq C, A \neq D, A \neq I, A \neq S \\
& C \neq D, C \neq I, I \neq S
\end{aligned}
$$

- We say only what a solution of the map coloring is
- We need not care how the problem is solved
- A solution is computed by guessing and reasoning E.g. guess $A=$ red implies $C, D, I, S \neq$ red; then guess $C=$ green ...

Another Constraints Example

Example

A mathematician forgot the last position of a number code. She only remembers

- it's odd
- of course, its a digit, i.e. in [0..9]
- it's no prime number and not 1 .

She can derive the digit (by constraint reasoning)!

Another Constraints Example

Example

A mathematician forgot the last position of a number code. She only remembers

- it's odd
- of course, its a digit, i.e. in [0..9]
- it's no prime number and not 1 .

She can derive the digit (by constraint reasoning)!

Commercial Impact of Constraints

Some examples

Michelin and Dassault, Renault	Production planning
Lufthansa, Swiss Air, ...	Staff planning
Nokia	Software configuration
Siemens	Circuit verification
French National Railway Company	Train schedule

Constraint Satisfaction Problem (CSP)

Definition
A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}$,
- the domain D that associates finite domains

$$
D_{1}=D\left(X_{1}\right), \ldots, D_{n}=D\left(X_{n}\right) \text { to } \mathcal{X}
$$

- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

Constraint Satisfaction Problem (CSP)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}$,
- the domain D that associates finite domains

$$
D_{1}=D\left(X_{1}\right), \ldots, D_{n}=D\left(X_{n}\right) \text { to } \mathcal{X}
$$

- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

Constraint Satisfaction Problem (CSP)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}$,
- the domain D that associates finite domains

$$
D_{1}=D\left(X_{1}\right), \ldots, D_{n}=D\left(X_{n}\right) \text { to } \mathcal{X}
$$

- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

We have already seen one example: map coloring.

A Simple Example CSP

- Variables $\mathcal{X}=\{X, Y, Z\}$
- Domains $D(X)=D(Y)=D(Z)=\{1,2,3,4\}$
- Constraints $C=\{X<Y, Y<Z, Z \leq 2\}$

Remarks

- The constraint set is interpreted as the conjunction $X<Y$ and $Y<Z$ and $Z \leq 2$.
- The domains are interpreted as the constraint

A Simple Example CSP

- Variables $\mathcal{X}=\{X, Y, Z\}$
- Domains $D(X)=D(Y)=D(Z)=\{1,2,3,4\}$
- Constraints $C=\{X<Y, Y<Z, Z \leq 2\}$

Remarks

- The constraint set is interpreted as the conjunction

$$
X<Y \text { and } Y<Z \text { and } Z \leq 2
$$

- The domains are interpreted as the constraint

$$
X \in D(X) \text { and } Y \in D(Y) \text { and } Z \in D(Z)
$$

A Simple Example CSP

- Variables $\mathcal{X}=\{X, Y, Z\}$
- Domains $D(X)=D(Y)=D(Z)=\{1,2,3,4\}$
- Constraints $C=\{X<Y, Y<Z, Z \leq 2\}$

Remarks

- The constraint set is interpreted as the conjunction

$$
X<Y \text { and } Y<Z \text { and } Z \leq 2
$$

- The domains are interpreted as the constraint

$$
X \in D(X) \text { and } Y \in D(Y) \text { and } Z \in D(Z)
$$

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables

$$
X_{i}=j \text { means "queen in column } \mathrm{i} \text {, row } \mathrm{j} \text { " }
$$

- Domains

$$
D\left(X_{i}\right)=\{1, \ldots, 4\} \text { for } i=1 . .4
$$

- Constraints (for different columns i and i^{\prime})
no horizontal attack

no attack in first diagonal

no attack in second diagonal

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables

$$
X_{1}, \ldots, X_{4}
$$

$$
X_{i}=j \text { means "queen in column } \mathrm{i} \text {, row } \mathrm{j} \text { " }
$$

- Domains

$$
D\left(X_{i}\right)=\{1, \ldots, 4\} \text { for } i=1 . .4
$$

- Constraints (for different columns i and i^{\prime})
no horizontal attack
no attack in first diagonal $\quad\left(i-X_{i} \neq i^{\prime}-X_{i^{\prime}}\right)$
no attack in second diagonal

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables

$$
X_{1}, \ldots, X_{4}
$$

$$
X_{i}=j \text { means "queen in column } \mathrm{i} \text {, row } \mathrm{j} \text { " }
$$

- Domains

$$
D\left(X_{i}\right)=\{1, \ldots, 4\} \text { for } i=1 . .4
$$

- Constraints (for different columns i and i^{\prime})
no horizontal attack
no attack in first diagonal $\quad\left(i-X_{i} \neq i^{\prime}-X_{i^{\prime}}\right)$
no attack in second diagonal

The N-Queens Problem

4-Queens: place 4 queens on 4×4 board without attacks

Model 4-Queens as CSP (Constraint Model)

- Variables

$$
X_{1}, \ldots, X_{4}
$$

$$
X_{i}=j \text { means "queen in column } \mathrm{i} \text {, row } \mathrm{j} \text { " }
$$

- Domains

$$
D\left(X_{i}\right)=\{1, \ldots, 4\} \text { for } i=1 . .4
$$

- Constraints (for different columns i and i^{\prime}) no horizontal attack
$\left(X_{i} \neq X_{i^{\prime}}\right)$
no attack in first diagonal
$\left(i-X_{i} \neq i^{\prime}-X_{i^{\prime}}\right)$
no attack in second diagonal $\quad\left(i+X_{i} \neq i^{\prime}+X_{i^{\prime}}\right)$

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=1, X_{4}=1
$$

Solving the CSP

Generate and Test generate assignments and test each

$$
\begin{gathered}
X_{1}=1, X_{2}=1, X_{3}=1, X_{4}=1 \\
\text { inconsistent! }
\end{gathered}
$$

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=1, X_{4}=2
$$

What's wrong with GT?

Solving the CSP

Generate and Test generate assignments and test each

$$
\begin{gathered}
X_{1}=1, X_{2}=1, X_{3}=1, X_{4}=2 \\
\text { inconsistent! }
\end{gathered}
$$

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=1, X_{4}=3
$$

What's wrong with GT?

Solving the CSP

Generate and Test generate assignments and test each

$$
\begin{gathered}
X_{1}=1, X_{2}=1, X_{3}=1, X_{4}=3 \\
\text { inconsistent! }
\end{gathered}
$$

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=1, X_{4}=4
$$

What's wrong with GT?

Solving the CSP

Generate and Test generate assignments and test each

$$
\begin{gathered}
X_{1}=1, X_{2}=1, X_{3}=1, X_{4}=4 \\
\text { inconsistent! }
\end{gathered}
$$

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=2, X_{4}=1
$$

What's wrong with GT?

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=2, X_{4}=1
$$

inconsistent! ...it's getting boring.

What's wrong with GT?

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=2, X_{4}=1
$$

What's wrong with GT?

- Redundancy
- Inconsistency local!

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=2, X_{4}=1
$$

What's wrong with GT?

- Redundancy
- Inconsistency local!

Solving the CSP

Generate and Test generate assignments and test each

$$
X_{1}=1, X_{2}=1, X_{3}=2, X_{4}=1
$$

What's wrong with GT?

- Redundancy
- Inconsistency local!

Overcoming GT's weakness

Backtracking

Overcoming GT's weakness

Backtracking

Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

Overcoming GT's weakness

Backtracking

Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

Overcoming GT's weakness

Backtracking

Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

Overcoming GT's weakness

Backtracking

Problems

- Thrashing
- Redundancy
- Late Detection of Inconsistency

CP's Answer

Consistency Techniques

- detect inconsistency much earlier
- avoid redundancy and thrashing of BT

CP's Answer

Consistency Techniques

- detect inconsistency much earlier
- avoid redundancy and thrashing of BT

Definition
A consistency method transforms a CSP into an equivalent, consistent CSP.

How we will use it
Interleave consistency transformation and enumeration

CP's Answer

Consistency Techniques

- detect inconsistency much earlier
- avoid redundancy and thrashing of BT

Definition
A consistency method transforms a CSP into an equivalent, consistent CSP.

How we will use it
Interleave consistency transformation and enumeration

Node and Arc Consistency

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (elementary) constraint at a time
- Node consistency: unary constraints $c(X)$ remove values from $D(X)$ that falsify c
- Arc consistency: binary constraints $c(X, Y)$ remove from $D(X)$ values that have no support in $D(Y)$ such that c is satisfied and vice versa

Node and Arc Consistency

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (elementary) constraint at a time
- Node consistency: unary constraints $c(X)$ remove values from $D(X)$ that falsify c
- Arc consistency: binary constraints $c(X, Y)$ remove from $D(X)$ values that have no support in $D(Y)$ such that c is satisfied and vice versa

Node and Arc Consistency

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (elementary) constraint at a time
- Node consistency: unary constraints $c(X)$ remove values from $D(X)$ that falsify c
- Arc consistency: binary constraints $c(X, Y)$ remove from $D(X)$ values that have no support in $D(Y)$ such that c is satisfied and vice versa

Node and Arc Consistency

- Idea: Find equivalent, consistent CSP by removing values from the domains
- Examine one (elementary) constraint at a time
- Node consistency: unary constraints $c(X)$ remove values from $D(X)$ that falsify c
- Arc consistency: binary constraints $c(X, Y)$ remove from $D(X)$ values that have no support in $D(Y)$ such that c is satisfied and vice versa

Node Consistency

Definition

A unary constraint $c(X)$ is node consistent with domain D if $X=d$ satisfies $c(X)$ for each $d \in D(X)$.

Definition
A CSP (\mathcal{X}, D, C) is node consistent, iff each of the unary constraints in C is node consistent with D.

Node Consistency Example

Our example CSP is not node consistent (see Z)

$$
\begin{gathered}
X<Y \text { and } Y<Z \text { and } Z \leq 2 \\
D(X)=D(Y)=D(Z)=\{1,2,3,4\}
\end{gathered}
$$

Node consistent, equivalent CSP

$$
\begin{gathered}
X<Y \text { and } Y<Z \text { and } Z \leq 2 \\
D(X)=D(Y)=\{1,2,3,4\}, D(Z)=\{1,2\}
\end{gathered}
$$

Node Consistency Example

Our example CSP is not node consistent (see Z)

$$
\begin{gathered}
X<Y \text { and } Y<Z \text { and } Z \leq 2 \\
D(X)=D(Y)=D(Z)=\{1,2,3,4\}
\end{gathered}
$$

Node consistent, equivalent CSP

$$
\begin{gathered}
X<Y \text { and } Y<Z \text { and } Z \leq 2 \\
D(X)=D(Y)=\{1,2,3,4\}, D(Z)=\{1,2\}
\end{gathered}
$$

Remark

- The 4 -Queens CSP was node consistent, why?
- Computing node consistency is easy. Just look once at each unary constraint and remove inconsistent domain values.

Arc Consistency

Definition

A binary constraint $c(X, Y)$ is arc consistent with domain D if

- for each $d_{X} \in D(X)$ there is a $d_{Y} \in D(Y)$ s.t. $c\left(d_{X}, d_{Y}\right)$
- vice versa (for each $d_{Y} \in D(Y)$ there is a $d_{X} \in D(X)$ s.t. $c\left(d_{X}, d_{Y}\right)$)

Definition
A CSP (\mathcal{X}, D, C) is arc consistent, iff each of the binary constraints in C is arc consistent with D.

Arc Consistency Example

The following CSP is node consistent but not arc consistent

$$
\begin{gathered}
X<Y \text { and } Y<Z \text { and } Z \leq 2 \\
D(X)=D(Y)=\{1,2,3,4\}, D(Z)=\{1,2\}
\end{gathered}
$$

For example $4 \in D(Y)$ and $Y<Z$
Arc consistent, equivalent CSP

$$
\begin{gathered}
X<Y \text { and } Y<Z \text { and } Z \leq 2 \\
D(X)=D(Y)=D(Z)=\{ \}
\end{gathered}
$$

Arc Consistency Example

The following CSP is node consistent but not arc consistent

$$
\begin{gathered}
X<Y \text { and } Y<Z \text { and } Z \leq 2 \\
D(X)=D(Y)=\{1,2,3,4\}, D(Z)=\{1,2\}
\end{gathered}
$$

For example $4 \in D(Y)$ and $Y<Z$
Arc consistent, equivalent CSP

$$
\begin{gathered}
X<Y \text { and } Y<Z \text { and } Z \leq 2 \\
D(X)=D(Y)=D(Z)=\{ \}
\end{gathered}
$$

Remark
Our 4-Queens CSP is arc consistent.

Computing Arc Consistency

procedure REVISE (c, X, Y, D)

$$
\begin{array}{r}
D(X):=\left\{d_{X} \in D(X) \text { such that there exists } d_{Y} \in D(Y)\right. \\
\text { where } \left.c\left(d_{X}, d_{Y}\right) \text { is satisfied }\right\}
\end{array}
$$

endproc

until $D=D^{\prime}$
Remark
This algorithm is called AC-1, usually one uses improved variants of this algorithm (e.g. AC-3).

Computing Arc Consistency

procedure REVISE (c, X, Y, D)

$$
\begin{array}{r}
D(X):=\left\{d_{X} \in D(X) \text { such that there exists } d_{Y} \in D(Y)\right. \\
\text { where } \left.c\left(d_{X}, d_{Y}\right) \text { is satisfied }\right\}
\end{array}
$$

endproc
do
$D^{\prime}:=D$
foreach binary constraint $c \in C$ do
let X, Y denote the variables of c REVISE (c, X, Y, D) $\operatorname{REVISE}(c, Y, X, D)$
done
until $D=D^{\prime}$
Remark
This algorithm is called AC-1, usually one uses improved variants
of this algorithm (e.g. AC-3).

Computing Arc Consistency

procedure REVISE (c, X, Y, D)

$$
\begin{array}{r}
D(X):=\left\{d_{X} \in D(X) \text { such that there exists } d_{Y} \in D(Y)\right. \\
\text { where } \left.c\left(d_{X}, d_{Y}\right) \text { is satisfied }\right\}
\end{array}
$$

endproc
do
$D^{\prime}:=D$
foreach binary constraint $c \in C$ do
let X, Y denote the variables of c REVISE (c, X, Y, D) $\operatorname{REVISE}(c, Y, X, D)$
done
until $D=D^{\prime}$
Remark
This algorithm is called AC-1, usually one uses improved variants of this algorithm (e.g. AC-3).

Avoiding Redundant Work: AC-3

$Q:=$ empty queue
foreach binary constraint $c \in C$ do push $Q,(c, X, Y)$ push $\mathrm{Q},(c, Y, X)$
done

```
while Q 
    (c,X,Y) := pop Q
    D':=D(X)
    REVISE(c,X,Y,D)
    if D(X)\not=\mp@subsup{D}{}{\prime}}\mathrm{ then
        for }\mp@subsup{c}{}{\prime}\inC\mathrm{ and }Z\in\mathcal{X}\mathrm{ where }\mp@subsup{c}{}{\prime}(X,Z)\mathrm{ or }\mp@subsup{c}{}{\prime}(Z,X) d
            push Q, (c', Z,X)
        done
    endif
done
```


Node/Arc vs. Global Consistency

- The CSP is node and arc consistent

Node/Arc vs. Global Consistency

- The CSP is node and arc consistent
- The CSP is globally inconsistent

Consistency Methods: Summary

- Computing local consistency $=$ constraint propagation
- Node consistency
- Arc consistency
- (Hyper-arc consistency)
- (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation
- Local consistency: efficient
- CSP solving/global consistency: NP-hard

Consistency Methods: Summary

- Computing local consistency $=$ constraint propagation
- Node consistency
- Arc consistency
- (Hyper-arc consistency)
- (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation
- Local consistency: efficient
- CSP solving/global consistency: NP-hard

Consistency Methods: Summary

- Computing local consistency $=$ constraint propagation
- Node consistency
- Arc consistency
- (Hyper-arc consistency)
- (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation
- Local consistency: efficient
- CSP solving/global consistency: NP-hard

Consistency Methods: Summary

- Computing local consistency $=$ constraint propagation
- Node consistency
- Arc consistency
- (Hyper-arc consistency)
- (Bounds consistency)
- Propagation is incomplete
- Solving a CSP requires search Combine backtracking and propagation

Complexity

- Local consistency: efficient
- CSP solving/global consistency: NP-hard

Solving 4-Queens (with Constraint Propagation)

Solving 4-Queens, $X_{1}=1$

Solving 4-Queens, $X_{1}=1$

$\begin{array}{llll}X_{1} & X_{2} & X_{3} & X_{4}\end{array}$

X_{1}, \ldots, X_{4}

$$
\begin{gathered}
D\left(X_{1}\right)=\{1\}, D\left(X_{i}\right)=\{1, \ldots, 4\} \text { for } i=2 . .4 \\
X_{i} \neq X_{i^{\prime}}, i-X_{i} \neq i^{\prime}-X_{i^{\prime}}, i+X_{i} \neq i^{\prime}+X_{i^{\prime}}
\end{gathered}
$$

Solving 4-Queens, $X_{1}=1$

X_{1}, \ldots, X_{4}

$$
\begin{aligned}
D\left(X_{1}\right)= & \{1\}, D\left(X_{2}\right)=\{3,4\}, D\left(X_{3}\right)=\{2,4\}, D\left(X_{4}\right)=\{2,3\} \\
& X_{i} \neq X_{i^{\prime}}, i-X_{i} \neq i^{\prime}-X_{i^{\prime}}, i+X_{i} \neq i^{\prime}+X_{i^{\prime}}
\end{aligned}
$$

Solving 4-Queens, $X_{1}=1$

Solving 4-Queens, $X_{1}=1$

Solving 4-Queens, $X_{1}=2$

Solving 4-Queens, $X_{1}=2$

Solving 4-Queens, $X_{1}=2$

Solving 4-Queens, $X_{1}=2$

X_{1}, \ldots, X_{4}

$$
\begin{gathered}
D\left(X_{1}\right)=\{2\}, D\left(X_{2}\right)=\{4\}, D\left(X_{3}\right)=\{1\}, D\left(X_{4}\right)=\{3,4\} \\
X_{i} \neq X_{i^{\prime}}, i-X_{i} \neq i^{\prime}-X_{i^{\prime}}, i+X_{i} \neq i^{\prime}+X_{i^{\prime}}
\end{gathered}
$$

Solving 4-Queens, $X_{1}=2$
X_{1}, \ldots, X_{4}
$D\left(X_{1}\right)=\{2\}, D\left(X_{2}\right)=\{4\}, D\left(X_{3}\right)=\{1\}, D\left(X_{4}\right)=\{3\}$

$$
X_{i} \neq X_{i^{\prime}}, i-X_{i} \neq i^{\prime}-X_{i^{\prime}}, i+X_{i} \neq i^{\prime}+X_{i^{\prime}}
$$

Constraint Search

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits

- Usually, we insert constraints of the form
- Variable and value selection important!
- for size of search tree
- not for completeness/correctness

Constraint Search

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits

- Usually, we insert constraints of the form
- Variable and value selection important!
- for size of search tree
- not for completeness/correctness

Constraint Search

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits

- Usually, we insert constraints of the form

$$
X \diamond V, \quad \diamond \in\{=, \leq, \geq, \ldots\}
$$

- Variable and value selection important! - for size of search tree
- not for completeness/correctness

Constraint Search

- Combine Enumeration (backtracking) with propagation
- In general: enumeration by binary splits

- Usually, we insert constraints of the form

$$
X \diamond V, \quad \diamond \in\{=, \leq, \geq, \ldots\}
$$

- Variable and value selection important!
- for size of search tree
- not for completeness/correctness

Symmetry

Symmetry

Symmetry

A symmetry is a (bijective) function on solutions.
This implies a symmetry function on constraints.

Symmetry Breaking Search

- Each right branch: forbid symmetries of the left branch
- By inserting a symmetric constraints for each symmetry

Constraint Optimization

Definition

A Constraint Optimization Problem (COP) is a CSP together with an objective function f on solutions.
A solution of the COP is a solution of the CSP that maximizes/minimizes f.
Solving by Branch \& Bound Search Idea of $B \& B$:

- Backtrack \& Propagate as for solving the CSP
- Whenever a solution s is found, add constraint "next solutions must be better than $f(s)$ ".

Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo
For example: Alice, Carol, Dave, Bob
However, they have preferences:

- Alice wants to stand next to Dave
- Bob wants to stand next to Dave and Carol
- Carol wants to stand next to Alice

Constraint Optimization Example: Photo Problem

Alice,Bob,Carol, and Dave want to align for a photo For example: Alice, Carol, Dave, Bob

However, they have preferences:

- Alice wants to stand next to Dave
- Bob wants to stand next to Dave and Carol
- Carol wants to stand next to Alice

Satisfy as many preferences as possible by constraint optimization.

Application: Protein Structure Prediction

Exact Prediction in 3D cubic \& FCC

The problem
IN: sequence s in $\{H, P\}^{n}$ HHPPPHHPHHPPHHHPPHHPPPHPPHH

OUT: self avoiding walk ω on cubic/fcc lattice with minimal HP-energy $E_{H P}(s, \omega)$

A First Constraint Model

- Variables $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}$ and HHContacts

$$
\left(\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i}
\end{array}\right) \text { is the position of the } i \text { th monomer } \omega(i)
$$

- Domains

$$
D\left(X_{i}\right)=D\left(Y_{i}\right)=D\left(Z_{i}\right)=\{-n, \ldots, n\}
$$

- Constraints

A First Constraint Model

- Variables $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}$ and HHContacts

$$
\left(\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i}
\end{array}\right) \text { is the position of the } i \text { th monomer } \omega(i)
$$

- Domains

$$
D\left(X_{i}\right)=D\left(Y_{i}\right)=D\left(Z_{i}\right)=\{-n, \ldots, n\}
$$

- Constraints

A First Constraint Model

- Variables $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, Z_{1}, \ldots, Z_{n}$ and HHContacts

$$
\left(\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i}
\end{array}\right) \text { is the position of the } i \text { th monomer } \omega(i)
$$

- Domains

$$
D\left(X_{i}\right)=D\left(Y_{i}\right)=D\left(Z_{i}\right)=\{-n, \ldots, n\}
$$

- Constraints

1. positions i and $i+1$ are neighbored (chain)
2. all positions differ (self-avoidance)
3. relate HHContacts to X_{i}, Y_{i}, Z_{i}
4. $\left(\begin{array}{l}X_{1} \\ Y_{1} \\ Z_{1}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$
\text { Xdiff }_{i j}=\left|X_{i}-X_{j}\right| \quad Y_{d i f f}^{i j}\left(1 Y_{i}-Y_{j} \mid \quad Z \text { diff }_{i j}=\left|Z_{i}-Z_{j}\right|\right.
$$

1. Positions i and $i+1$ neighbored (chain)

$$
X \operatorname{diff}_{i(i+1)}+\text { Vdiff }_{i(i+1)}+\text { Zdiff }_{i(i+1)}=1
$$

2. All positions differ (self-avoidance)

$$
\text { Xdiff }_{i j}+\text { Ydiff }_{i j}+\text { diff }_{i j} \neq 0 \quad(\text { for } i \neq j)
$$

3. Relate HHContacts to X_{i}, Y_{i}, Z_{i}

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$
\text { Xdiff }_{i j}=\left|X_{i}-X_{j}\right| \quad Y_{d i f f}^{i j}\left(1 Y_{i}-Y_{j} \mid \quad Z \text { diff }_{i j}=\left|Z_{i}-Z_{j}\right|\right.
$$

1. Positions i and $i+1$ neighbored (chain)

$$
X \operatorname{diff}_{i(i+1)}+\text { Vdiff }_{i(i+1)}+\operatorname{Zdiff}_{i(i+1)}=1
$$

2. All positions differ (self-avoidance)

$$
X_{d i f}^{i j} i+\text { Ydiff }_{i j}+\text { Zdiff }_{i j} \neq 0 \quad(\text { for } i \neq j)
$$

3. Relate HHContacts to X_{i}, Y_{i}, Z_{i}

(Technically, use reified constraints)

The First Model in More Detail (Cubic Lattice)

The Constraints cannot be expressed directly, i.e. we need auxiliary variables

$$
X_{d i f f}^{i j} 1=\left|X_{i}-X_{j}\right| \quad Y d i f f_{i j}=\left|Y_{i}-Y_{j}\right| \quad Z d i f f_{i j}=\left|Z_{i}-Z_{j}\right|
$$

1. Positions i and $i+1$ neighbored (chain)

$$
X_{\operatorname{dif}}^{i(i+1)}\left(\text { Vdiff }_{i(i+1)}+\text { diff }_{i(i+1)}=1\right.
$$

2. All positions differ (self-avoidance)

$$
X_{d i f} f_{i j}+\text { Ydiff }_{i j}+\text { Zdiff }_{i j} \neq 0 \quad(\text { for } i \neq j)
$$

3. Relate HHContacts to X_{i}, Y_{i}, Z_{i}

Detect HH-contact, if Xdiff $_{i j}+$ Ydiff $_{i j}+$ Zdiff $_{i j}=1$ for $s_{i}=s_{j}=H$. Then add 1 to HHContacts.
(Technically, use reified constraints)

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH -contacts well.

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH -contacts well.

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH-contacts well.

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?

Solving the First Model

- Model is a COP (Constraint Optimization Problem)
- Branch and Bound Search for Minimizing Energy
- Combined with Symmetry Breaking
- How good is the propagation?
- Main problem of propagation: bounds on contacts/energy From a partial solution, the solver cannot estimate the maximally possible number of HH -contacts well.

The Advanced Approach: Cubic \& FCC

Steps

1. Core Construction
2. Mapping

The Advanced Approach: Cubic \& FCC

Number of Hs $\xrightarrow[\text { Step 1 }]{\text { Layer }} \xrightarrow[\text { sequences }]{ }$

Steps

1. Bounds
2. Core Construction
3. Mapping

Workflow: Predict Best Structure(s) of HP-Sequence

Computing Bounds

- Prepares the construction of cores
- How many contacts are possible for n monomers, if freely distributed to lattice points
- Answering the question will give information for core construction
- Main idea: split lattice into layers consider contacts
- within layers
- between layers

Layers: Cubic \& FCC Lattice

Layers: Cubic \& FCC Lattice

Contacts

Contacts =

Layer contacts + Contacts between layers

- Bound Layer contacts: Contacts $\leq 2 \cdot n-a-b$

- Bound Contacts between layers
- cubic: one neighbor in next layer

$$
\text { Contacts } \leq \min \left(n_{1}, n_{2}\right)
$$

- FCC: four neighbors in next layer

$$
i-\text { points }
$$

Bounding Interlayer Contacts in the FCC

- Needed:
- upper bound for number of contacts between two successive layers in FCC
- NOTE: Layers only described by parameters $\left(n_{1}, a_{1}, b_{1}\right) ;\left(n_{2}, a_{2}, b_{2}\right)$
- Method:
- compute bounds for number of $1 / 2 / 3 / 4$-points of first layer
- distribute n_{2} points greedily
- technical difficulty: tight bounds of $1 / 2 / 3 / 4$-points depend on further parameters
- Result: $\mathrm{B}_{\mathrm{ILC}}^{\mathrm{FCC}}\left(n_{1}, a_{1}, b_{1}, n_{2}, a_{2}, b_{2}\right)$

Recall: $\operatorname{B}_{\text {ILC }}^{\text {cubic }}\left(n_{1}, a_{1}, b_{1}, n_{2}, a_{2}, b_{2}\right)=\min \left(n_{1}, n_{2}\right)$

Recursion Equation for Bounds

- $\mathrm{B}_{\mathrm{C}}\left(n, n_{1}, a_{1}, b_{1}\right)$: Contacts of core with n elements and first layer $L_{1}: n_{1}, a_{1}, b_{1}$
- $\operatorname{BLC}\left(n_{1}, a_{1}, b_{1}\right):$ Contacts in L_{1}
- $\mathrm{B}_{\text {ILC }}\left(n_{1}, a_{1}, b_{1}, n_{2}, a_{2}, b_{2}\right)$: Contacts between E_{1} and $E_{2}: n_{2}, a_{2}, b_{2}$
- $\mathrm{B}_{\mathrm{C}}\left(n-n_{1}, n_{2}, a_{2}, b_{2}\right)$: Contacts in core with $n-n_{1}$ elements and first layer E_{2}

Layer sequences

From Recursion:

- by Dynamic Programming: Upper bound on number of contacts
- by Traceback: Set of layer sequences

layer sequence $=\left(n_{1}, a_{1}, b_{1}\right), \ldots,\left(n_{4}, a_{4}, b_{4}\right)$
Set of layer sequences gives distribution of points to layers in all point sets that possibly have maximal number of contacts

Core Construction

Problem

> IN: number n, contacts c
> OUT: all point sets of size n with c contacts

- Optimization problem
- Core construction is a hard combinatorial problem

Core construction: Modified Problem

Poblem

IN: number n, contacts c, set of layer sequences $S_{\text {ls }}$ OUT: all point sets of size n with c contacts and layer sequences in $S_{\text {Is }}$

- Use constraints from layer sequences
- Model as constraint satisfaction problem (CSP)

$\left(n_{1}, a_{1}, b_{1}\right), \ldots,\left(n_{4}, a_{4}, b_{4}\right) \quad$ Core $=$ Set of lattice points

Core Construction - Details

- Number of layers $=$ length of layer sequence
- Number of layers in x, y, and z : Surrounding Cube
- enumerate numbers of layers \Rightarrow fix cube \Rightarrow enumerate points

Workflow

Mapping Sequences to Cores

find structure such that

- H-Monomers on core positions
- all positions differ
- chain connected
\rightarrow hydrophobic core
\rightarrow self-avoiding
\rightarrow walk

compact core

optimal structure

Mapping Sequence to Cores - CSP

Given: sequence s of size n and $n_{H} \mathrm{Hs}$
core Core of size n_{H}
CSP Model

- Variables X_{1}, \ldots, X_{n}
X_{i} is position of monomer i
Encode positions as integers

$$
\begin{aligned}
& \mathrm{I}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \equiv x+M * y+M^{2} * z \\
& \text { (unique encoding for 'large enough' } \mathrm{M} \text {) }
\end{aligned}
$$

- Constraints

1. $X_{i} \in$ Core for all $s_{i}=H$
2. X_{i} and X_{i+1} are neighbors
3. X_{1}, \ldots, X_{n} are all different

Constraints for Self-avoiding Walks

- Single Constraints "self-avoiding" and "walk" weaker than their combination
- no efficient algorithm for consistency of combined constraint "self-avoiding walk"
- relaxed combination: stronger and more efficient propagation
k-avoiding walk constraint

Example: 4-avoiding, but not 5-avoiding

Putting it together

Predict optimal structures by combining the three steps

1. Bounds
2. Core Construction
3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes Given a sequence, only perform Mapping step
- Mapping to cores may fail! We use suboptimal cores and iterate mapping.
- Approach extensible to HPNX

HPNX-optimal structures at least nearly optimal for HP.

- Approach extensible to side chains

H side chains form core.

Putting it together

Predict optimal structures by combining the three steps

1. Bounds
2. Core Construction
3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes

Given a sequence, only perform Mapping step

- Mapping to cores may fail!

We use suboptimal cores and iterate mapping.

- Approach extensible to HPNX

HPNX-optimal structures at least nearly optimal for HP.

- Approach extensible to side chains

H side chains form core.

Putting it together

Predict optimal structures by combining the three steps

1. Bounds
2. Core Construction
3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes

Given a sequence, only perform Mapping step

- Mapping to cores may fail!

We use suboptimal cores and iterate mapping.

- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains H side chains form core.

Putting it together

Predict optimal structures by combining the three steps

1. Bounds
2. Core Construction
3. Mapping

Some Remarks

- Pre-compute optimal cores for relevant core sizes

Given a sequence, only perform Mapping step

- Mapping to cores may fail!

We use suboptimal cores and iterate mapping.

- Approach extensible to HPNX HPNX-optimal structures at least nearly optimal for HP.
- Approach extensible to side chains

H side chains form core.

Time efficiency

Prediction of one optimal structure
("Harvard Sequences", length 48 [Yue et al., 1995])

CPSP	PERM
$0,1 \mathrm{~s}$	$6,9 \mathrm{~min}$
$0,1 \mathrm{~s}$	$40,5 \mathrm{~min}$
$4,5 \mathrm{~s}$	$100,2 \mathrm{~min}$
$7,3 \mathrm{~s}$	$284,0 \mathrm{~min}$
$1,8 \mathrm{~s}$	$74,7 \mathrm{~min}$
$1,7 \mathrm{~s}$	$59,2 \mathrm{~min}$
$12,1 \mathrm{~s}$	$144,7 \mathrm{~min}$
$1,5 \mathrm{~s}$	$26,6 \mathrm{~min}$
$0,3 \mathrm{~s}$	$1420,0 \mathrm{~min}$
$0,1 \mathrm{~s}$	$18,3 \mathrm{~min}$

- CPSP: "our approach", constraint-based
- PERM [Bastolla et al., 1998]: stochastic optimization

Many Optimal Structures

Sequence HPPHPPPHP

. . ?

- There can be many ...
- HP-model is degenerated
- Number of optimal structures $=$ degeneracy

Completeness

Predicted number of all optimal structures
("Harvard Sequences")

CPSP	CHCC
10.677 .113	1500×10^{3}
28.180	14×10^{3}
5.090	5×10^{3}
1.954 .172	54×10^{3}
1.868 .150	52×10^{3}
106.582	59×10^{3}
15.926 .554	306×10^{3}
2.614	1×10^{3}
580.751	188×10^{3}

- CPSP: "our approach"
- CHCC [Yue et al., 1995]: complete search with hydrophobic cores

Unique Folder

- HP-model degenerated
- Low degeneracy \approx stable \approx protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Unique Folder

- HP-model degenerated
- Low degeneracy \approx stable \approx protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

MC-search through sequence space

Unique Folder

- HP-model degenerated
- Low degeneracy \approx stable \approx protein-like
- Are there protein-like, unique folder in 3D HP models?
- How to find out?

Yes: many, e.g. about 10,000 for $n=27$

Software: CPSP Tools

http://cpsp.informatik.uni-freiburg.de

CPSP Tools

Menu

Home

HPstruct
structure pred.
HPconvert
PDB, CML, ..
HPview
3D visualization
HPdeg
degeneracy
HPnnet
neutral network
HPdesign
seq. design
LatFit
PDB to lattice
Results
direct access
Help
FAQ

CPSP Tools

Constraint-based Protein Structure Prediction
Bioinformatics Group
Albert-Ludwigs-University Freiburg
web-tools version 1.1 .1 (06.04.2011)
The CPSP-tools package provides programs to solve exactly and completely the problems typical of studies using 3D lattice protein models. Among the tasks addressed are the prediction of globally optimal and/or suboptimal structures as well as sequence design and neutral network exploration.

Choose a tool from the left for ad hoc usage
(CPSP-tools version 2.4.2) (LatPack version 1.7.2)
or
Download the full CPSP-tools or LatPack package for local usage!

If you use the CPSP-tools please cite the following publications:

