Sequence analysis and genomics

5. Introduction to Phylogenetics

Dr. Katja Nowick

Group leader TFome and Transcriptome Evolution
Bioinformatics group
Paul-Flechsig-Institute for Brain Research
www. nowicklab.info
nowick@bioinf.uni-leipzig.de

4. Add on to HMMs

Alice and Bob

Alice and Bob to lk together daily over the telephone about what they did that day. Bob is on vinterested in three activities: walking in the park, shopping, and cleaning hiapartment. What he does depend on the weather:
emission_probability = \{ 'Rainy' : \{'walk': 0.1, 'shop': 0.4, 'clean': 0.5\}, 'Sunny' : \{'walk': 0.6, 'shop': 0.3, 'clean': 0.1\} \}

Alice has no definite information (information is hidden) about the weather where Bob lives, but she knows general trends.:

```
transition_probability = { 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
    'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6}
    }
```

Based on what Bob tells her he did each day, Alice tries to guess what the weather must have been like.

The occasional dishonest casino

States: Fair, Loaded
Transition probabilities: 0.05, 0.1
Emission probabilities:
in fair state all have 1/6
in loaded state: 6 has 50\%

Rolls: 31511624644664424531143631656626566666511664531326512456366646316 ... Die: FFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFFFFLLLLLLLLLLLL ...

Would be useful to know when the loaded dice is in play to bet for the 6

CpG islands

Hall mark of promoter regions, rich in CG dinucleotides
States: CpG island non-CpG island
$+$
-

Transition probabilities: higher to go from CpG island to non-CpG island Emission probabilities: how often a certain nucleotide is followed by another one in CpG island C often followed by G

Based on how often we observe CG dinucleotides, we can guess if we are in a CpG island

Alice and Bob

Alice and Bob to lk together daily over the telephone about what they did that day. Bob is on vinterested in three activities: walking in the park, shopping, and cleaning hiapartment. What he does depend on the weather:
emission_probability = \{ 'Rainy' : \{'walk': 0.1, 'shop': 0.4, 'clean': 0.5\}, 'Sunny' : \{'walk': 0.6, 'shop': 0.3, 'clean': 0.1\} \}

Alice has no definite information (information is hidden) about the weather where Bob lives, but she knows general trends.:

```
transition_probability = { 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
    'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6}
    }
```

Based on what Bob tells her he did each day, Alice tries to guess what the weather must have been like.

Alice and Bob

emission_probability = \{ 'Rainy' : \{'walk': 0.1, 'shop': 0.4, 'clean': 0.5$\}$, 'Sunny' : \{'walk': 0.6, 'shop': 0.3, 'clean': 0.1\} \}
transition_probability = \{ 'Rainy' : \{'Rainy': 0.7, 'Sunny': 0.3\}, 'Sunny' : \{'Rainy': 0.4, 'Sunny': 0.6\}

Alice and Bob

Just another way to represent the model:

Profile HMMs

Most frequent application of HMMs in biological data Good for domain finding

e.g. Find all ZNF genes in the platypus genome

Let's assume you have all human and mouse ZNF genes

```
ECGECGKSSSSNVNLKGHQRI HTGERPY
EC GECGKSFSQNV MLKHHQRI HT GERPY
ECGECGKKSFSWNVLLKKSHQRI HTGERPY
KCGECGKKSFSSNMKLKLHQRIHTGERPY
EC GEC GK S F S S N V HL K P HQ R I HTGGERP Y
KCGECEKSFSRKR GLSIHQRIHTEVRPY
KCGECEKSFSI KPSLSMHQRIHTEVRPY
KCGECEKSFSLKPPPLSKHQRIHTEVRPY
KCGE C D K S F S V K P T L G Y HQR I HTE V R P Y
KCGECEKSFSRKPRRLSEHQRIHTEVRPY
KCGECGKSYIS KGHLLRRHQRMHTGERPY
KCGECGGKS Y I P K G S L R I HQR M HTGGERP Y
KCGECGKKSYI HKGT L R THQRMHTGERPY
KCGECGKSYYILKGHLRGHQRMHTGERPY
KC G E C GK S Y I S K GLLR I HQ R M HT GERP Y
KCGDCGGKSFNEKGI LRS HQRV HTTEERPY
KCGDC GKSFNWKGHLR Y HQ Q V HTT ERPPY
KCGDCGKKSFNEKGPLRWHQRVHTTERPY
KCGD C GKSFNY K GLLR S HQ R V HT T ER P Y
KCGDCGKSFNGKGKLRLHQRVHTTERPY
```


We could use the known ZNF genes to BLAST for homologues in the platypus genome Or make PW alignments with all platypus genes both might miss platypus specific / highly diverged ZNF genes

Profile HMMs

Or we could make a model of the family of ZNF domains and screen the genome for this model

	A	C	D
$\mathbf{1}$	-1789	911	-1713
$\mathbf{2}$	-1075	-662	-1597
$\mathbf{3}$	-12231	5880	-11456
$\mathbf{4}$	-1505	71	-244
$\mathbf{5}$	-1624	-246	189
6	-12231	5880	-11456
7	-1719	-668	-514

PSSM
(Position Specific
Scoring Matrix):
Some rule to convert frequencies to scores
$2^{\text {nd }}$ and $5^{\text {th }}$ position always C $18^{\text {th }}$ and $22^{\text {nd }}$ position always H End often something like GERPY

Profile HMMs

1. MSA: Bat: AG---C

Rat: A-AG-C
Cat: AG-AA-
Gnat: --AAAC
Goat: AG---C
12... 3
2. Decide which columns to mark as match states
(e.g. all columns with more less than 50% deletions; here 1,2,3)
3. Start making the HMM
(matches are the states in our HMM; here M1-M3

residues are the emissions, have certain probability according to MSA)
4. Add deletions to HMM
(are states that do not emit any residue; here D1-D3 you can go from any residue to any other residue
 by using a sequence of deletions)
5. Add insertions to HMM
(they are treated as new states; here I1-15
can emit any residue, probability usually taken from background distribution $\mathrm{beg} \rightarrow \mathrm{M} \rightarrow \sim \mathrm{and}$ there can be multiple insertions)

Profile HMMs

1. MSA: Bat: AG---C

Rat: A-AG-C
Cat: AG-AA-
Gnat: --AAAC
Goat: AG---C
12... 3

Model position: $0 \quad 1 \quad 2 \quad 3$
6. Get transition and emission probabilities (count/observe transitions and emissions from MSA; to avoid zero probabilities add pseudocountes, e.g. add 1 to each observation; here without pseudocounts)

		0	1	2	3
	A	-	4	0	0
	C	-	0	0	4
	G	-	0	3	0
	T	-	0	0	0
	A	0	0	6	0
	C	0	0	0	0
	G	0	0	1	0
	T	0	0	0	0
State transitions	M-M	4	3	2	4
	M-D	1	1	0	0
	M-I	0	0	1	0
	I-M	0	0	2	0
	I-D	0	0	1	0
	I-I	0	0	4	0
	D-M	-	0	0	1
	D-D	-	1	0	0
	D-I	-	0	2	0

Profile HMMs

e.g. Find all ZNF genes in the platypus genome

Let's assume you have all human and mouse ZNF genes Use them to build/train your HMM
E C G E C G K S F S S N V N L K G H Q R I

| | | 0 | 1 | \ldots | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Scan the translated platypus genome with this HMM
Finds everything that looks like a ZNF domain, hence also diverged and platypus specific ZNF proteins

How do we get the transition and emission probabilities if the path is unknown?

- In the ZNF example the path was known, so we could just count observations
- In the casino example the path is unknown ...

Typically split data in training set and test set
Baum-Welch algorithm:
Training:
Initialization: Start the HMM with some arbitrary model parameters
Recurrence:
Set all transition A and emission E variables to their pseudocounts or to zero
For each sequence $\mathrm{j}=1$.. n
Calculate how likely is j given the current HMM
Calculate how much j contributes to current A and E
Calculate new model parameters using maximum likelihood estimation: $a_{k l}=\frac{A_{k l}}{\sum_{r} A_{k k^{\prime}}}$ and $e_{k}(b)=\frac{E_{k}(b)}{\sum_{b^{\prime}} E_{k}\left(b^{\prime}\right)}$
Calculate new log likelihood of the model
Stop: when change in log likelihood is less than a predefined threshold
or when predefined maximum number of iterations in reached

How do we get the transition and emission probabilities if the path is unknown?

Would be useful to know when the loaded dice is in play to bet for the 6

Estimated model based on 300 rolls:

Rolls: 31511624644664424531143631656626566666511664531326512456366646316 ... Die: FFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFFFFLLLLLLLLLLLL ... Est: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFFFFLLLLLLLLLLLL ...

How do we get the transition and emission probabilities if the path is unknown?

Would be useful to know when the loaded dice is in play to bet for the 6

Model estimate:

Collected observations of $\mathbf{3 0 0}$ rolls

Collected observations of $\mathbf{3 0 . 0 0 0}$ rolls

The more observations the better the model

HMMER

Sequence analysis and genomics

5. Introduction to Phylogenetics

Dr. Katja Nowick

Group leader TFome and Transcriptome Evolution
Bioinformatics group
Paul-Flechsig-Institute for Brain Research
www. nowicklab.info
nowick@bioinf.uni-leipzig.de

What is a tree?

Tree = a biological organism
= a mathematical structure

Trees reflect how similar/related things are Leaves $=$ Things
Branches show relationship of the things

Examples:
Species tree - how similar are species Gene trees - how similar are genes

A species tree

Haeckel's tree of life: another species tree

Tree of life: Another species tree

Another visualization of a species tree

Another visualization of a species tree

Tree of human populations

Africans

Bushmen

Tree of human species

A family tree

A gene tree

Another gene tree

A tree of gene expression patterns in multiple tissues

A tree of Gene Ontology groups

The first drawn tree (Darwin)

Topic today: Evolutionary trees / phylogenetic trees

All in life is related by common ancestry
Phylogenetics refers to the evolutionary relatedness of organisms (species, populations ...)
But all the following methods can be used for any type of data as long as characters have more than one state

Terminology

Tree = a mathematical structure

Trees reflect how similar/related things are Things = nodes in the tree, e.g. species

Terminal nodes (leaves) = species (for which we have data) Internal nodes = inferred ancestors Branches (edges) show relationship Length of the branch can reflect evolutionary time (weighted trees)

Terminology differs between disciplines
Usually data for ancestors are sparse (only fossils), so the evolutionary history has to be reconstructed based on living species

Branches can be freely rotated

Unrooted vs rooted trees

Unrooted

Rooted

Choosing different branches as roots

Only rooted trees have an evolutionary direction

Resolved vs unresolved trees

Polytomy = when a node has more than 3 branches (more than 1 ancestor + two descendants) Either the lineages really diverged at the same time (or very rapidly) or we don't know what the real divergence pattern is

Example of a star tree:
Radiation of Darwin finches

Newick format

Newick format used by many computer programs:

$$
(((\mathrm{F}, \mathrm{G}), \mathrm{A}),(\mathrm{B}, \mathrm{C}), \mathrm{D})
$$

Different types of trees

Cladogram

Most simple tree

Just shows relative recency
Branch length has no meaning

Phylogram

Additive tree

Branch length reflects number of changes

Dendrogram

Ultrametric tree
Special form of a phylogram
All tips equal length from root Axis = divergence time assuming molecular clock

Homoplasy

Homoplasy: similarity acquired independently, i.e. not by descent

Parallel evolution

Same characters from the same ancestral condition cichlids in Lake Malawi and Lake Tanganyika

Phyla grouping

Monophyletic:

All birds and reptiles are believed to have descended from a single common ancestor (yellow).

Paraphyletic:

"Modern reptile" (cyan) is a grouping that contains a common ancestor, but does not contain all descendants of that ancestor (birds are excluded).

Polyphyletic:

A grouping such as warm-blooded animals would include only mammals and birds (red/orange); members of this grouping do not include the most recent common ancestor

Gene tree and species tree do not always agree

Homology:

1. Orthologous genes created by speciation event
2. Paralogous genes
created by gene duplication

\rightarrow To learn about species relationship use only orthologous genes

Characters for trees

Traditionally, morphological characters have been used to infer phylogenies
For any phylogenetic analysis, always need to look at many characters:
For example, birds and bats have wings, while crocodiles and humans do not. If these were the only data available, we would tend to group crocodiles with humans, and birds with bats

Molecular phylogenetics uses DNA, protein sequence characters

Characters for trees

You can take any kind of character, as long as it has more than one state, e.g. eye color: blue, brown

What about gray and green eyes? Make an extra attribute/character state or put them together with blue or brown depending on what is more similar

Character states for DNA: AGTC for protein: A,C,G,K,L,H,...

How to treat missing data, e.g. an animal has no eyes, or the color is unknown for whatever reason?
Usually put a "?" or "-" or "X", or "N", the latter things are common for sequence data

Characters states can be ordered

If going from one state to another requires more than one step: e.g. cannot go directly from simple brain in cnidaria to complex brain in humans with a lot of different brain regions, gyri, sulci ; or dorsal vs ventral nervous system

(a) Cnidarian

(d) Annelid

(b) Echinoderm

(e) Arthropod

(c) Flatworm

(f) Mollusk

(g) Chordate

Characters states changes can be weighted

Give more weight to changes that are less common:
e.g. transversions (A-C, A-T, G-C, G-T changes) are less common than transitions changes in $3^{\text {rd }}$ codon position are more common than in $1^{\text {st }}$ or $2^{\text {nd }}$ (might be neutral)

adenine

guanine

cytosine

thymine

uracil

Look at more than one character

Idea: if two species share a trait that is not in a third, the two are more related to each other

Group dolphin and giraffe because they have a placenta
Or group fish and dolphin because they live in water (parallel evolution)
So depending on the character, we might end up with a different tree
\rightarrow Need to find the optimal tree taking into account all parameters

Number of possible trees can be enormous

All possible trees of 4 species (rooted / unrooted)
A

в

Each taxon represents a new sample for every character, but, more importantly, it (usually) represents a new combination of character states Ten species gives over two million possible unrooted trees \rightarrow How to find the right tree?

It's a NP-complete problem (NP= non-deterministic polynomial) i.e. for any reasonable number of characters it is often impossible to find the optimal tree \rightarrow We need some heuristics ("quick and dirty")
\rightarrow Different methods might produce different tress

Tree building methods

Sequences

sites

	1234	6
© 1	T T A T	A A
¢ 2	A T T	A A
만	AA A A	T A
4	AA A A	A T

Discrete method
e.g. Parsimony tree

The 7 substitutions are placed on the 5 branches

Distances

Distance method e.g. Neighbor-joining tree

The 7 substitutions are apportioned over the 5 branches

Tree building methods

Clustering methods

Start with three species
Add the others in a step-wise fashion

Easy to implement
Fast, good for large datasets
Produce only one tree

Not possible to evaluate the resulting trees compared to alternatives

Information about which sites contribute to branch length missing
e.g. Neighbor-joining tree

Optimality criteria

Make all possible trees

Evaluate (score) trees to find the tree that best explains the data $=$ the tree with the fewest number of evolutionary steps

Computationally intense
Provides information about which sites contribute to branch length missing
e.g. Maximum Parsimony tree Maximum Likelihood

Neighbor-joining method

Clustering method
Distance method
Start by making a distance matrix:

Sequences

sites

		1	2	3	4	5	6

	12

sequences

Algorithm:

1. Based on the current distance matrix calculate the matrix Q (defined below).
2. Find the pair of taxa in Q with the lowest value. Create a node on the tree that joins these two taxa (i.e., join the closest neighbors, as the algorithm name implies).
3. Calculate the distance of each of the taxa in the pair to this new node.
4. Calculate the distance of all taxa outside of this pair to the new node.
5. Start the algorithm again, considering the pair of joined neighbors as a single taxon and using the distances calculated in the previous step.

Neighbor-joining method

1. Based on the current distance matrix calculate the matrix Q

Distance matrix

Neighbor-joining method

2. Find the pair of taxa in Q with the lowest value. Create a node on the tree that joins these two taxa (i.e., join the closest neighbors, as the algorithm name implies).

Q matrix

| | A | B | C | D |
| :--- | :---: | :---: | :---: | :---: |\quad Join taxa A and B to a new node: u

Neighbor-joining method

3. Calculate the distance of each of the taxa in the pair to this new node.

Distance matrix
Distance of A and B to the new node:

$$
\begin{aligned}
& d(f, u)=\frac{1}{2} d(f, g)+\frac{1}{2(r-2)}\left[\sum_{k=1}^{r} d(f, k)-\sum_{k=1}^{r} d(g, k)\right] \\
& \text { AB AB AC AD AB BC BD } \\
& \text { A: } d(A, u)=1 / 2 * 7+1 / 2(4-2) *[(7+11+14)-(7+6+9)] \\
& =3.5+1 / 4 *[32-22] \\
& =3.5+2.5 \\
& =6
\end{aligned}
$$

	A	B	C	D
A	0	7	11	14
B	7	0	6	9
C	11	6	0	7
D	14	9	7	0

$\mathrm{u}=$ the new node
$\mathrm{f}, \mathrm{g}=$ the joined taxa (A, B)

$$
\begin{gathered}
d(g, u)=d(f, g)-d(f, u) \\
\mathrm{B}: \mathrm{d}(\mathrm{~B}, \mathbf{u})=7-\mathbf{6}=1
\end{gathered}
$$

Neighbor-joining method

4. Calculate the distance of all taxa outside of this pair to the new node.

Distance of C and D to the new node:
$d(u, k)=\frac{1}{2}[d(f, k)+d(g, k)-d(f, g)]$
$C: d(u, C)=1 / 2 *[11+6-7]$
$=1 / 2 * 10$
$=5$
$D: d(u, D)=1 / 2 *[14+9-7]$
$=1 / 2 * 16$
$=8$
$\mathrm{u}=$ the new node
$k=$ taxa to calculate distance for (C,D)
Distance matrix

A	B	C	D

A	0	7	11	14

B	7	0	6	9

C	11	6	0	7

D $\begin{array}{llll}14 & 9 & 7 & 0\end{array}$

New Distance matrix

	AB	C	D
AB	0	5	8
C	5	0	7
D	8	7	0

Neighbor-joining method

5. Start the algorithm again, considering the pair of joined neighbors as a single taxon and using the distances calculated in the previous step.

New Distance matrix

	AB	C	D		AB	C	D
AB	0	5	8	AB	0	-20	-20
C	5	0	7	C	-20	0	-20
D	8	7	0	D	-20	-20	0
$Q(i, j)=(r-2) d(i, j)-\sum_{k=1}^{r} d(i, k)-\sum_{k=1}^{r} d(j, k)$							$\text { a: now } 3$ $a(A B, C, D)$
$A B-C: Q(A B, C)=(3-2) * *^{A B-C}-(5+8)$							
$A B-D: Q(A B, D)=(3-2) * 8-(5+8)-(8+7)$							$\begin{aligned} & =8-13-15 \\ & =-20 \end{aligned}$

Neighbor-joining method

Join C to $A B$
New Distance matrix

ABC D

ABC 0
D 50

Distance A to AB was 6
Distance B to $A B$ was 1

Distance $A B$ to $A B C$ is 3
Distance C to $A B C$ is 2
Distance D to $A B C$ is 5
Algorithm produces tree with the shortest total branch length unrooted, but outgroup can be added root $=$ where the edge of the outgroup meets the tree no molecular clock assumed
uses a greedy algorithm: solve one problem at the time, then the next problems (stepwise adding of the next nodes)
it's computationally efficient but might not find the optimal tree (but often it finds the optimal tree or something close)

Tree building methods

Clustering methods

Optimality criteria

Start with three species
Add the others in a step-wise fashion

Easy to implement
Fast, good for large datasets
Produce only one tree

Not possible to evaluate the resulting trees compared to alternatives

Information about which sites contribute to branch length missing
e.g. Neighbor-joining tree

Make all possible trees

Evaluate (score) trees to find the tree that best explains the data $=$ the tree with the fewest number of evolutionary steps

Computationally intense
Provides information about which sites contribute to branch length missing
e.g. Maximum Parsimony tree Maximum Likelihood

Maximum parsimony

- Small parsimony problem

Tree is given
Only one character is analyzed
Goal: find out what the ancestor at each node was

- Large parsimony problem

Tree is unknown
Multiple characters
Goal: find the tree and ancestors

Small parsimony problem

Fitch algorithm:
Calculate the minimal number of mutations that explains the evolution given a particular tree
Because every character is independent, this can be calculated for each character

1
23

4

5

1. Start with leaves and go to root

Assign to each node v a letter of the alphabet: if v is a leaf $S(v)=\left\{v_{c}\right\} ; v_{c}=$ character of node v if v is an intermediate node of nodes u and w
if $S(u) \cap S(w) \neq\{ \}: S(v)=S(u) \cap S(w)$
if $S(u) \cap S(w)=\{ \}: S(v)=S(u) \cup S(w)$

2. Start at root and go to leaves to solve intermediate nodes Assign to each node (except leaves) a letter of the alphabet if v follows u and $u_{c} \in S(v): v_{c}=u_{c}$ otherwise $v_{c}=$ random $\in S(v)$

Large parsimony problem

- For a multiple characters (e.g. the whole sequence)

Method:

1. Make all possible trees
2. Score them by the total number of character state changes required (= "evolutionary steps") to explain distribution of each character
3. Pick the tree that infers the least steps/number of changes = the most parsimonious

For the first site, Tree 1:
(two examples of what the ancestral version (internal node) could have looked like)

Only one change required
= more parsimonious

Five change required

Large parsimony problem

For the first site:

For the other sites:

Total length of the tree $L=$ total \# evolutionary changes/steps $=$ sum of length I of each site k; here: $1+1+2+1+0=5$

Large parsimony problem

$\mathbf{1}$	ATATT
$\mathbf{2}$	ATCGT
$\mathbf{3}$	GCAGT
$\mathbf{4}$	GCCGT

Alternative trees:

$2+2+1+1+0=6$

$1+1+2+1+0=5$
$2+2+2+1+0=7$

Tree with shortest total branch length
= most parsimonious tree

Large parsimony problem

After scoring all trees find the most-parsimonious trees (MPTs)
often exist a number of equally MPTs
if too many, maybe because of too many missing data; insufficient data to resolve the tree completely
often only parts of the tree (sub trees) differ between the MPTs, e.g. a few taxa jump around
can make a consensus tree

Large parsimony problem

Finding the optimal tree (the tree with the best score) is computationally expensive \rightarrow a possibility is to start with one good tree, perturb it and see if the score gets better \rightarrow Or make a tree for each character and then a consensus tree

Trees are unrooted, but you can chose an outgroup

Trees do not reflect divergence times

Maximum parsimony

Are all changes equally likely?
e.g. transversions are rarer than transitions, i.e. less likely
\rightarrow Assign higher costs to transversions; e.g. 1 transversion counts as 2 steps

	A	C	G	T
A	0	2	1	2
C	2	0	2	1
G	1	2	0	2
\mathbf{T}	2	1	2	0

$1+1+4+1+0=7$

\rightarrow Now tree 1 and 2 are equally parsimonious

Maximum parsimony

Are all changes equally likely?

Substitution matrices for protein alignments: PAM, BLOSUM

Maximum parsimony

Are all changes equally likely?

Some sites might be highly conserved (e.g. functional domains of a protein) while others might be rapidly changing (e.g. intronic sites)
Rapidly changing sites might be saturated and therefore misleading for the tree
\rightarrow Give sites different weights
This will affect the total length of the tree:

$$
L=\sum_{i=1}^{k} I_{i} \longrightarrow L=\sum_{i=1}^{k} w_{i} * I_{i}
$$

How well supported is the tree?

Bootstrap method:

Randomly pick characters from your dataset (e.g. columns in the alignment)
Make a random dataset that has the same size as your real dataset
Characters are picked with replacement
Do this multiple times, typically 1000 times
How often do you find a certain branch among the random trees?
More suitable for Neighbor-joining than Maximum Parsimony, because computationally intense

 \title{
Commonly used phylogenetic programs
}
 \title{
Commonly used phylogenetic programs
}

Phylip (PHYLogeny Inference Package)
PAUP (Phylogenetic Analysis Using Parsimony)
Clustal

