
Sequence analysis and Genomics

October 12th – November 23rd
2 PM – 5 PM

Prof. Peter Stadler
Dr. Katja Nowick

Katja: group leader TFome and Transcriptome Evolution
Bioinformatics group
Paul-Flechsig-Institute for Brain Research
www. nowicklab.info
nowick@bioinf.uni-leipzig.de

Sequence analysis and genomics

1. Alignments

Dr. Katja Nowick

Group leader TFome and Transcriptome Evolution
Bioinformatics group

Paul-Flechsig-Institute for Brain Research
www. nowicklab.info

nowick@bioinf.uni-leipzig.de

• Arranging sequences in a way to identify regions of similarity

• DNA, RNA, protein sequences

• Gaps are inserted, so that identical characters are in the same column

• The more common letters in the sequences the higher their similarity

• The number of non-matches is the edit sequence

• Goal: find the longest common subsequence or minimize number of necessary edits

• In example: 4 matches, edit distance = 3 (delete J, TR, add N)

JAEHTE
AEHREN

JAEHTE-

-AEHREN

What is an alignment?

• To see if two sequence are similar

 might have the same ancestor (evolution)

 might have a similar structure or functional

Why making alignments?

Reconstructing evolutionary history

If two sequences in an alignment share a common ancestor, mismatches can be interpreted as
point mutations and gaps as indels (that is, insertion or deletion mutations) introduced in one
or both lineages since the time they diverged from one another

The degree of similarity between amino acids at a particular position in the sequence can be
interpreted as a rough measure of how conserved a particular region or sequence motif is

The absence of substitutions, or the presence of only very conservative substitutions suggest
that this region has structural or functional importance

Identification of similar structures

Similar sequences can indicate conserved domains

ATCTCGAG
ATCTCCGAG

ATCCGAG
AGCTCGAG

ATCT-CGAG
ATCTCCGAG

ATC--CGAG
AGCT-CGAG

A simple example

Editing: Introducing of substitutions, insertion, deletions

Global vs. Local Alignments

• treat the two sequences as potentially
equivalent

• attempt to align every residue in every
sequence

• most useful when the sequences in the
query set are similar and of roughly equal
size

• Can still have gaps
• e.g. for homologous genes

• Sequences may or not be related
• Attempts to find similar parts (substring)

in a sequence
• more useful for dissimilar sequences that

are suspected to contain regions of
similarity or similar sequence motifs
within their larger sequence context.

• e.g. looking for conserved domains or
finding a sequence in the genome

With sufficiently similar sequences, there is no difference between local and global alignments

• Hybrid method
• Two sequences of different lengths
• attempts to find the best possible alignment that includes the start and end

of one or the other sequence (Is the shorter sequence contained within the
longer one?)

• Useful when the downstream part of one sequence overlaps with the
upstream part of the other sequence. In this case, neither global nor local
alignment is entirely appropriate: a global alignment would attempt to
force the alignment to extend beyond the region of overlap, while a local
alignment might not fully cover the region of overlap

Semiglobal (“glocal”)

ATATCGACGTC
 GACGTCATTTG

Pairwise alignment methods

3 main methods:

1. Dot matrix
2. Dynamic programming
3. Word methods

• To align two sequences

1. Dot matrix

C T G C A T C

C

T

C

C

A

G

C

The two sequences are written along the top row and leftmost column of a two-
dimensional matrix and a dot is placed at any point where the characters in the
appropriate columns match

C T G C A T C

C

T

C

C

A

G

C

1. Dot matrix
The two sequences are written along the top row and leftmost column of a two-
dimensional matrix and a dot is placed at any point where the characters in the
appropriate columns match

1. Dot matrix
If aligning a sequence to itself, you get the diagonal
and you can see repetitive regions in your sequence (regions with self-similarity): lines parallel
to the diagonal

e.g. CTAG

A C T A G C G C T A G T C T A

A

C

T

A

G

C

G

C

T

A

G

T

C

T

A

1. Dot matrix
If aligning two similar sequence with repetitive regions in your sequence (regions with self-
similarity): lines off the diagonal

e.g. Hsp 22 vs. Hsp 23

1. Dot matrix
Other features to visually identify with dot matrices:
e.g. insertions/deletions, inverted repeats

1. Dot matrix

Problems with dot matrices:

• Noise
• Lack of clarity
• Non-intuitiveness
• Difficult to extract match summary statistics and matched positions in the two sequences

Wasted space: most of the actual area of the plot is taken up by either empty space or noise
 where the match data is inherently duplicated across the diagonal
• Limited to two sequences

2. Dynamic Programming (DP)
• A method to solve a complex problem by splitting it into simpler sub-problems (recursion):

• Solve the smallest sub-problem first
• Then go back to solve increasingly bigger sub-problems until the problem is solved
• Result of the bigger sub-problems depend on the previous results of the smaller sub-problems

• Only works for problems that can be split into smaller sub-problems and when sub-problems

can be nested recursively into larger problems
• Only works if there is a relation between the result of the larger and the smaller problems

• Each sub-problem is only solved once and then the solution is stored (memorized)
• Next time the same sub-problem occurs, the solution is looked up instead of computed again
• This makes the computation faster

• e.g. Alignments: align increasingly larger sub-sequences until the whole sequences are aligned

2. Dynamic Programming
for alignments

• Calculate the whole alignment from alignments of increasing substrings

• Need a scoring function to evaluate the quality of the alignment:
• Idea: perfect matches get a high score
 similar letters get a moderate score
 gaps get a low score

• Make all possible alignments and pick the one with the highest score

• The dynamic programming method is guaranteed to find an optimal alignment given a

particular scoring function
• However, identifying a good scoring function is often an empirical rather than a

theoretical matter

• e.g. Needleman-Wunsch algorithm for global alignments
 Smith-Waterman algorithm for local alignments

Scoring alignments

• Substitution matrix to assign scores to matches or mismatches:
 for amino acids, different substitutions are usually rated differently (see next slide)
 for DNA and RNA, in practice often simply assign a positive match and a negative mismatch score

• Gap penalty for matching an amino acid/nucleotide in one sequence to a gap in the other

• The score of an alignment is the sum of the scores for each position plus gap costs

Are all amino acid changes equally likely?

Scoring matrices for protein alignments: PAM (Point accepted mutations)
 BLOSUM (Block substitution matrix)

Scoring protein alignments

Scoring matrix

Problem components:

• An alphabet
e.g., { A, C, G, T } (DNA
e.g., { M, A, L, ..., } (protein)

• Two input strings

• Scoring matrix (costs for editing):
 insert value for match, mismatch, or gap
 e.g. match = 1
 mismatch = -1
 gap = -2

A C T G gap

A 1 -1 -1 -1 -2

C -1 1 -1 -1 -2

T -1 -1 1 -1 -2

G -1 -1 -1 1 -2

gap -2 -2 -2 -2 1

A C T G gap

A 1 -1 -1 -1 -2

C -1 1 -1 -1 -2

T -1 -1 1 -1 -2

G -1 -1 -1 1 -2

gap -2 -2 -2 -2 1

String 1: A C A
String 2: A C G

Costs: 1 1 -1 => alignment score = 1

Problem components:

• An alphabet
e.g., { A, C, G, T } (DNA
e.g., { M, A, L, ..., } (protein)

• Two input strings

• Scoring matrix (costs for editing):
 insert value for match, mismatch, or gap
 e.g. match = 1
 mismatch = -1
 gap = -2

Scoring matrix

• Contribute to the overall score of alignments

• The size of the gap penalty affects the alignment that is finally selected

• Selecting a higher gap penalty will cause less favorable characters to be aligned, to avoid

creating as many gaps

Gap penalties

ACTGA--
AC--ACT
11-2-21-2-2 =-5

ACTGA
ACACT
11-1-1-1=-1

ACTGA—
AC--ACT
11-1-11-1-1 =-1

ACTGA
ACACT
11-2-2-2 =-4

Match: 1
Mismatch: -1
Gap: -2

Match: 1
Mismatch: -2
Gap: -1

Needleman–Wunsch algorithm

• global alignment on two sequences

• Saul B. Needleman and Christian D. Wunsch 1970

• the first application of dynamic programming to biological sequence comparison

Needleman–Wunsch algorithm

$ A T T

$ 0

T

G

Example:

String 1: TG
String 2: ATT

Scoring matrix:
match = 1
mismatch = -1
gap = -2

String 2

St
rin

g
1

i = 0 1 2 3

j =
 2

1

 0

a0, 0 = 0 Rules for filling in the matrix:

Needleman–Wunsch algorithm

$ A T T

$ 0 -2 -4 -6

T -2

G -4

Example:

String 1: TG
String 2: ATT

Scoring matrix:
match = 1
mismatch = -1
gap = -2

a0, 0 = 0
a0, j = a0, j-1 + gappenalty
ai, 0 = ai-1, 0 + gappenalty

Rules for filling in the matrix:

String 2

St
rin

g
1

i = 0 1 2 3

j =
 2

1

 0

Needleman–Wunsch algorithm

$ A T T

$ 0 -2 -4 -6

T -2 -1 -1 -3

G -4 -3 -2 -2

Example:

String 1: TG
String 2: ATT

Scoring matrix:
match = 1
mismatch = -1
gap = -2

a0, 0 = 0
a0, j = a0, j-1 + gappenalty
ai, 0 = ai-1, 0 + gappenalty
ai, j = max (ai-1, j + gappenalty, ai, j-1 + gappenalty, ai-1, j-1 + equal(i, j))

Rules for filling in the matrix:

String 2

St
rin

g
1

i = 0 1 2 3

j =
 2

1

 0

Needleman–Wunsch algorithm

$ A T T

$ 0 -2 -4 -6

T -2 -1 -1 -3

G -4 -3 -2 -2

Example:

String 1: TG
String 2: ATT

Scoring matrix:
match = 1
mismatch = -1
gap = -2

The values in each cell represent the similarity of the alignment of the subsequences
The value in the bottom right corner represents the similarity of the two complete sequences: -2

Reconstructing the alignment = Backtracking: Where did I come from?
Go backwards always to the field with the highest value
Moving diagonally means match/mismatch
Moving left means insertion in string 1
Moving up means insertion in string 2

String 1: -TG
String 2: ATT
Score: -2 1 -1 = -2

String 2

St
rin

g
1

i = 0 1 2 3

j =
 2

1

 0

Needleman–Wunsch algorithm

Example:

String 1: JAEHTE
String 2: AEHREN

Scoring matrix:
match = 3
mismatch = 0
gap = -1

 $ A E H R E N

$ 0 -1 -2 -3 -4 -5 -6

J -1 0 -1 -2 -3 -4 -5

A -2 2 1 0 -1 -2 -3

E -3 1 5 4 3 2 1

H -4 0 4 8 7 6 5

T -5 -1 3 7 8 7 6

E -6 -2 2 6 7 11 10

JAEHTE-

-AEHREN

A C T G gap

A 1 -2 -1 -1 -2

C -2 2 -1 -1 -2

T -1 -1 3 -4 -6

G -1 -1 -4 1 -2

gap -2 -2 -6 -2

Needleman–Wunsch algorithm

“Costs” for matches, mismatches, and gaps can be different (asymmetric)
 e.g. when certain substitutions occur more or less frequent
 (see e.g. PAM or BLOSSUM matrix)

String 1: A T T
String 2: A T G T

Costs: 1 3 -4 -6 => alignment score = 1

Smith-Waterman algorithm

• Local alignment of two sequences

• Temple F. Smith and Michael S. Waterman in 1981

• An example of dynamic programming

Smith-Waterman algorithm

H i, 0 = 0
H 0, j = 0

Rules for filling in the matrix:

- A C A C A C T A

-

A

G

C

A

C

A

C

A

String 2
i = 0 1 2 3 4 5 6 7 8

j =
 8

 7

 6

 5

 4

 3

 2

 1

 0

St

rin
g

1

Example:

String 1: AGCACACA
String 2: ACACACTA

Scoring matrix:
match = 2
mismatch = -1
gap = -1

Smith-Waterman algorithm

- A C A C A C T A

- 0 0 0 0 0 0 0 0 0

A 0

G 0

C 0

A 0

C 0

A 0

C 0

A 0

String 2

St
rin

g
1

i = 0 1 2 3 4 5 6 7 8

j =
 8

 7

 6

 5

 4

 3

 2

 1

 0

H i, 0 = 0
H 0, j = 0

Rules for filling in the matrix:

Example:

String 1: AGCACACA
String 2: ACACACTA

Scoring matrix:
match = 2
mismatch = -1
gap = -1

Smith-Waterman algorithm

H i, 0 = 0
H 0, j = 0
Hi, j = max (Hi-1, j + gappenalty, Hi, j-1 + gappenalty, Hi-1, j-1 + equal(i, j))

Rules for filling in the matrix:

- A C A C A C T A

- 0 0 0 0 0 0 0 0 0

A 0 2 1 2

G 0 1 1 1

C 0 0 3 2

A

C

A

C

A

String 2
i = 0 1 2 3 4 5 6 7 8

j =
 8

 7

 6

 5

 4

 3

 2

 1

 0

St

rin
g

1

Example:

String 1: AGCACACA
String 2: ACACACTA

Scoring matrix:
match = 2
mismatch = -1
gap = -1

Smith-Waterman algorithm

H i, 0 = 0
H 0, j = 0
Hi, j = max (Hi-1, j + gappenalty, Hi, j-1 + gappenalty, Hi-1, j-1 + equal(i, j))

Rules for filling in the matrix:

- A C A C A C T A

- 0 0 0 0 0 0 0 0 0

A 0 2 1 2 1 2 1 0 2

G 0 1 1 1 1 1 1 0 1

C 0 0 3 2 3 2 3 2 1

A 0 2 2 5 4 5 4 3 4

C 0 1 4 4 7 6 7 6 5

A 0 2 3 6 6 9 8 7 8

C 0 1 4 5 8 8 11 10 9

A 0 2 3 6 7 10 10 10 12

String 2
i = 0 1 2 3 4 5 6 7 8

j =
 8

 7

 6

 5

 4

 3

 2

 1

 0

St

rin
g

1

Example:

String 1: AGCACACA
String 2: ACACACTA

Scoring matrix:
match = 2
mismatch = -1
gap = -1

Smith-Waterman algorithm

Example:

String 1: AGCACACA
String 2: ACACACTA

Scoring matrix:
match = 2
mismatch = -1
gap = -1

- A C A C A C T A

- 0 0 0 0 0 0 0 0 0

A 0 2 1 2 1 2 1 0 2

G 0 1 1 1 1 1 1 0 1

C 0 0 3 2 3 2 3 2 1

A 0 2 2 5 4 5 4 3 4

C 0 1 4 4 7 6 7 6 5

A 0 2 3 6 6 9 8 7 8

C 0 1 4 5 8 8 11 10 9

A 0 2 3 6 7 10 10 10 12

String 2
i = 0 1 2 3 4 5 6 7 8

j =
 8

 7

 6

 5

 4

 3

 2

 1

 0

St

rin
g

1

Reconstructing the alignment:

Start at the position with the highest value: here 12
Go backwards always to the field with the highest value
Moving diagonally means match/mismatch
Moving left means insertion in string 1
Moving up means insertion in string 2

String 1: AGCACAC-A
String 2: A-CACACTA
Score: 2-122222-12 = 12

Smith-Waterman algorithm
The main differences to the Needleman–Wunsch algorithm:

Backtracking does not need to start at the bottom right corner
Instead starts at the highest scoring matrix cell and proceeds until a cell with score zero is
encountered yielding the highest scoring local alignment

If alignments get too expensive, just start a new alignment:
If the value of a cell was negative, set it to zero
Therefore change the recurrence to:
Hi, j = max (0, Hi-1, j + gappenalty, Hi, j-1 + gappenalty, Hi-1, j-1 + equal(i, j))

- N N N N N N N N

- 0 0 0 0 0 0 0 0 0

N 0 0

N 0

N 0

N 0 0 0

N 0 0

N 0

N 0

N 0

Contribute to the overall score of alignments
The size of the gap penalty affects the alignment that is finally selected
Selecting a higher gap penalty will cause less favorable characters to be aligned, to avoid
creating as many gaps

• Constant gap penalty
The simplest type of gap penalty
The only parameter, d, is added to the alignment score when the gap is first opened. This means that
any gap receives the same penalty, regardless of its size

• Linear gap penalty
The parameter d is a penalty per unit length of gap
This is almost always negative, so that the alignment with fewer gaps is favored over the alignment with
more gaps
The overall penalty for one large gap is the same as for many small gaps

• Affine gap penalty
Use a gap opening penalty, o, and a gap extension penalty, e
A gap of length l is then given a penalty o + (l-1)e
o is almost always negative to discourage gaps
E is negative but almost always less negative than o to encourage gap extension, rather than gap
introduction.
Makes sense, because a biological sequence is much more likely to have one big gap of length 10, due to
a single insertion or deletion event, than it is to have 10 small gaps of length 1.

Gap penalties

AAAA AAAA
A-A- A--A
 more likely

3. Word based methods

• Heuristic method
• Not guaranteed to find an optimal alignment solution
• But significantly more efficient than dynamic programming

• Useful in large-scale database searches where it is understood that a large proportion

of the candidate sequences will have essentially no significant match with the query
sequence

• Implementation in the database search tools like FASTA and BLAST
 … to be continued

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

