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ABSTRACT

Ribosomal RNA (rRNA) genes are probably the
most frequently used data source in phylogenetic
reconstruction. Individual columns of rRNA align-
ments are not independent as a consequence of
their highly conserved secondary structures.
Unless explicitly taken into account, these correla-
tion can distort the phylogenetic signal and/or lead
to gross overestimates of tree stability. Maximum
likelihood and Bayesian approaches are of course
amenable to using RNA-specific substitution
models that treat conserved base pairs appropri-
ately, but require accurate secondary structure
models as input. So far, however, no accurate and
easy-to-use tool has been available for computing
structure-aware alignments and consensus struc-
tures that can deal with the large rRNAs. The
RNAsalsa approach is designed to fill this gap.
Capitalizing on the improved accuracy of pairwise
consensus structures and informed by a priori
knowledge of group-specific structural constraints,
the tool provides both alignments and consensus
structures that are of sufficient accuracy for routine
phylogenetic analysis based on RNA-specific sub-
stitution models. The power of the approach is
demonstrated using two rRNA data sets: a mito-
chondrial rRNA set of 26 Mammalia, and a collection
of 28S nuclear rRNAs representative of the five
major echinoderm groups.

INTRODUCTION

Ribosomal RNAs (rRNAs) are the most widely used
source of phylogenetic information, although protein-
coding genes, often derived from Expressed Sequence
Tag (EST) sequencing or from sequencing complete mito-
genomes, have provided an increasingly large amount of
new genomic data. The SSU and LSU rRNA genes have
been sequenced for thousands of taxa throughout the
metazoan kingdom, providing a much denser taxon cov-
erage than what is available for any particular protein-
coding gene. Since sequence conservation varies dramati-
cally between different regions of rRNA genes, these data
are informative on a wide range of phylogenetic time
scales, ranging from recent to ancient splits (1,2).

This variation in substitution rates, however, is also a
major technical obstacle for using rRNA in molecular
phylogenetics. The correct assignment of homologous
characters, i.e. alignment columns, is the crucial first
step in molecular systematics on which all subsequent
analyses depend. The high variability of substitution rate
along the sequence, combined with similar variations in
insertion and deletion rate, makes it impossible in practice
to construct unambiguous alignments of the more variable
regions by means of standard sequence alignment
programs.

The rRNAs, however, are highly structured, with large
parts of the molecules exhibiting very strong conservation
of their base pairing patterns. Therefore, it is natural to
improve alignment accuracy by incorporating secondary
structure conservation. Indeed, this approach has
been advocated repeatedly in the literature, e.g. (3–7).
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In practise, however, the application of this idea has
remained a hard and tedious task, mostly because of the
difficulties in obtaining a correct structural annotation. If
good structure annotations were readily available, we
could simply employ one of the alignment tools that expli-
citly incorporate secondary structure information (8–15).

The accuracy of thermodynamic folding algorithms
falls sharply as the length of the RNA increases. Second-
ary structures can be computed with acceptable precision
based on experimentally measured thermodynamic
parameters only for short fragments with a length
9100 nt (16,17). This limitation is in part due to inaccura-
cies in the ‘nearest neighbor model’ and its parameters
(18,19), in part caused by the kinetics of folding process
and tertiary interactions (20). Even more importantly, the
RNA and protein components of the ribosome are tightly
packed and thus mutually influence their folds (21). The
functional rRNA structures, therefore, cannot reasonably
be expected to be identical with the structures of isolated
rRNAs—which is what the thermodynamic folding algo-
rithms compute.

The latter effect can be captured at least in part by con-
sidering patterns of sequence covariation that provide
information on evolutionarily conserved base pairs. The
RNAalifold approach, for instance, has demonstrated
that the accuracy of biological structure predictions can be
increased to acceptable levels by using the consensus struc-
tures of a set of closely related sequences and by explicitly
taking information on base pair covariation into account
(22,23). Designed for relatively closely related sequences,
RNAalifold unfortunately requires a sequence align-
ment as input.
RNAsalsa is designed to overcome this limitation by

combining the prediction of consensus structures of clo-
sely related sequences with prior knowledge that con-
strains the set of acceptable structures. Consensus
structures for groups of related sequences are used to gen-
erate high-quality alignments by funneling structure infor-
mation into the alignment scoring function. Thus,
RNAsalsa uses both structure information for adjusting
and refining the sequence alignment and sequence infor-
mation contained in the alignment to refine the structure
predictions. We designed RNAsalsa primarily for phylo-
genetic applications. In this context, RNA secondary
structure is of importance at two levels: first, changes in
secondary structures can be useful phylogenetic markers
in their own right (24). Clearly, accurate structure predic-
tions are a necessary prerequisite to utilize structural
differences in this way. Second, knowledge about con-
served secondary structures allows the use of more
detailed models of RNA sequence evolution. In this con-
tribution we focus on the latter aspect.

RNA-specific substitution models (25–30) have been
introduced to capture the effects of covariation among
paired sites of rRNA sequences. Slightly deleterious sub-
stitutions at one side of a helix, which would disrupt the
structure, are frequently compensated by a second substi-
tution at the pairing site, so that the pairing ability (31) is
restored. This leads to a strong correlation of paired posi-
tions within rRNA sequences. The corresponding align-
ment columns, therefore, do not display independent

phylogenetic information. Since paired sites are strongly
correlated but treated as independent, phylogenetic infor-
mation is scored twice, leading to unjustified high support
for some trees and erroneously low support for alternative
trees (32,33). The application of RNA-specific substitution
models for phylogenetic analyses requires a structural
annotation of the input alignment. It is important that
in particular the regions that are treated as paired are
aligned in a structurally correct way because the effect of
substitutions is evaluated with respect to specific column
pairs.
The RNAsalsa software, which is implemented in C, is

specifically optimized for phylogenetic applications. The
source code as well as pre-compiled executables for various
platforms, together with a detailed manual providing some
guidelines for practical use, may be downloaded from
http://www.rnasalsa.zfmk.de/ and http://www.bioinf.uni-
leipzig.de/Software/RNAsalsa.

MATERIALS AND METHODS

Workflow and algorithms

RNAsalsa implements a workflow that makes use of sev-
eral well-established algorithms for both RNA secondary
structure prediction and structure enhanced alignment
(Figure 1). It consists of three major stages: (i) the deter-
mination of structural constraints for each input sequence
that emphasize the common features; (ii) the computation
of a detailed structural model for each input sequence; and
(iii) the construction of a final multiple sequence align-
ment together with a consensus structure.
The starting point for RNAsalsa is an initial alignment

A
0 of a collection {x1, . . ., xN} of homologous RNA

sequences (produced e.g. simply by clustalW) and an
a priori secondary structure constraint s for a single
sequence x0 which is contained in the alignment A

0. The
sequence x0 and its structural model are used only to initi-
alize the structure prediction and alignment process.
In the first step, RNAsalsa checks the consistency of

the initial alignment A
0 and the initial constraint s0: for

each base pair in s0, we evaluate whether the correspond-
ing aligned positions of a sufficient number of sequences in
A

0 can also pair. If so, we retain the base pair, otherwise it
is removed from the constraint. The resulting ‘relaxed’
constraint

� ¼ filterð�0jAÞ 1

can be seen as base pair-wise filtering of the initial con-
straint s0 that removes pairs from s0 that are largely
inconsistent with the initial alignment. Projecting the
relaxed constraint s separately onto each aligned sequence
(i.e. retaining only the canonical base pairs of s that can
be formed by the input sequence xi ), then produces dis-
tinct initial structure constraints for each sequence:

�i ¼ projectionð�; xijAÞ 2

Up to this point, the result heavily depends upon the initial
alignment. It may not cover the input sequences uniformly,
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in particular it will often be concentrated on the well-
conserved (and therefore properly aligned) regions.
In the second step, RNAsalsa utilizes the improved

accuracy of the predicted consensus structures. To this
end, we construct a collection of pairwise sequence align-
ments A

ij from the input sequences xi and x j. These can be
constructed in different ways, either by dynamic program-
ming alignment, or by projecting the corresponding sub-
alignment of A

0. For details we refer to the RNAsalsa
manual, which is part of the Supplementary Data. For
each of the pairwise alignments A

ij we compute the con-
sensus minimum free-energy structures

�ij ¼ RNAalifoldðAij
j�i \ �jÞ 3

using the base pairs common to the projected structures
si and sj, respespectively, as constraint. This step uses the
Vienna RNA Package library functions underlying
RNAalifold (22) to perform the constrained folding
computations.
For each sequence xi, the collection of structures

{tij, i 6¼ j} taken together defines a set of base pairs on xi

that are both thermodynamically plausible and conserved
in at least one other sequence of the input set. From this
set of pairs, we select a single secondary structure

�i ¼ majorityðf�ij; j 6¼ igÞ: 4

for sequence xi using a majority voting procedure.
RNAsalsa currently implements a simple greedy proce-
dure that selects the most frequent base pairs first and
rejects pairs that would cross previously selected ones to
avoid the formation of pseudo-knotted structures.
Alternatively, one could also use Nussinov’s Maximum
Circular Matching algorithm (34) to retrieve a maximum
weight sub-set of non-intersecting pairs. The base pairs of
ti, which by construction typically contain most of the
initial constraint-derived pairs si, are now used as a con-
straint for computing the final secondary structure
prediction

 i ¼ RNAfoldðxij�iÞ; 5

for each input sequence xi. Again, we employ the Vienna
RNA Package library here.

The purpose of the entire—rather complex and compu-
tationally expensive—procedure is to use as much infor-
mation as possible in guiding the last step, the
computation of the secondary structure models ci for
each input sequence. This guiding information is derived
from two sources: the initial structural constraint s and
the ensemble of plausible base pairs generated from all
pairwise alignments.

In the next step, the sequence–structure pairs (xi,ci) are
realigned. To this end, RNAsalsa uses a hierarchical pro-
gressive alignment based on pairwise dynamic program-
ming alignments with affine gap costs (35). The scoring
function explicitly incorporates the secondary structure
annotation: the (mis)match score s(xi, yj) of position i
from sequence x with position j from sequence y is defined
as follows:

sðxi; yjÞ ¼ b0smðxi; yjÞ þ b1snðx�ðiÞ; y�ð jÞÞ þ cspðxi; yjÞ 6

where x�(i) and y�(j) denote the pairing partners of xi and
yj in their respective secondary structures. The coefficient
b0=1 if both xi and yj are paired nucleotides. The coef-
ficient b1 is set to 1 if x and y share sufficient structural
conservation to a certain extent that overcame the pre-
cedent filtering steps and if x�(i) and y�( j) are located
either both upstream or both downstream of xi and yj,
respectively. Otherwise the structural contribution is
ignored, b1=0. Finally, if one xi or yj are unpaired,
then b0= b1=0 and c=1. In regions without structural
information we therefore use a pure nucleic acid sequence
score sp, where as in structured regions, the modified
scoring functions sm and sn are used. For instance,
within trusted structural regions A-G is scored as a
match because both may pair with U, while it is not
in regions without sufficiently trusted structural infor-
mation. Default scoring tables are listed in the manual
and Supplementary Data. The final result is a global
re-alignment B of the input sequences which integrates
all the secondary structure information obtained in the
previous steps.

The individual folds ci and the alignment B are used to
derive a consensus structure

! ¼ consensusðf igjBÞ 7
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Figure 1. Overview of the RNAsalsa workflow. Starting from an initial sequence alignment A
0 and a structure constraint s0, a relaxed consensus

constraint and then constraints for each input sequence are produced. Pairwise sequence alignments and the intersections of the two individualized
constraints are used to compute a collection of constrained pairwise consensus structures tij, from which a refined individualized structure constraint
ti is extracted by means of a majority voting procedure. Then ti is used as constraint in minimum energy folding to obtain the final structural
annotation ci for input sequence xi. The structure-annotated input sequences are now aligned with a structure-aware alignment method, resulting in
the final alignment B and a corresponding consensus structure o.
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Since we now have the trusted alignment B, we can again
employ a simple voting strategy: we start from the set of
all base pairs that appear sufficiently often in superposi-
tion of the ci. Again, we use a greedy strategy to avoid
conflicting base pairs (note that no conflicts can arise if we
consider only base pairs that occur at least N/2 times).

Several parameters can be adjusted in the process. In
particular, the stringency of the initial filtering of base
pairs, Equation (1), and the two majority voting pro-
cedures, Equations (4) and (7) can be adjusted by the
user to the peculiarities of the data sets. In each case, a
threshold for the minimum number of consistent pairs can
be specified. Some guidelines for practical use can be
found in the RNAsalsa manual.

RESULTS

Secondary structure prediction

Performance of RNAsalsa’s structure predictions was
evaluated in comparison with three other relevant meth-
ods: MXSCARNA (15) computes pairing probabilities and
considers potential stem information in the subsequent
alignment process; RNAfold (17) produces individual sec-
ondary structures of RNA sequences; and RNAalifold
(22) generates the consensus structure for a given input
alignment. We compared RNAfold predictions with
RNAsalsa’s individual predictions ci (Equation 5),
while the MXSCARNA and RNAalifold results are com-
pared with RNAsalsa’s final consensus structure o. As
a reference model we employed the mammalian 16S
rRNA secondary structure adopted from (36) (Figure 2).

The RNAsalsa secondary structure model for the
mammalian 16S rRNA sequences is highly congruent to
the Bos taurus reference model proposed by Burk et al.
(36), see Supplementary Data for an illustrating graphical
representation. In particular, 44 of the 52 helices within
the conserved core of the structure are correctly predicted.
Much of the remaining discrepancy can be explained
by differences in the stringency of rules (Figure 2A).
While the literature reference was derived with very

conservative rules, we allow more variability among the
organisms, and accept stems even if there is no direct
evidence from compensatory substitutions. MXSCARNA
and RNAalifold capture only 27 and 23 helices, respec-
tively. In contrast to RNAsalsa, they failed to detect in
particular long-range interactions.
Furthermore, to demonstrate the capabilities of con-

straints in thermodynamic folding algorithms, we com-
pared the results of unconstrained foldings by the
RNAfold software (17) only with those generated by
RNAsalsa. In both cases, we used the same thermodyna-
mical parameter sets and algorithms as implemented
in RNAfold. The only difference is the usage of folding
constraints in the case of RNAsalsa. These structure con-
straints are automatically generated and optimized for
each RNA sequence within the data set.
RNAsalsa’s predictions of the individual structures

always use an individual structure constraint that was
optimized by RNAsalsa’s procedure itself up to that
point. Therefore, they can match the reference model
much better than thermodynamic folds by RNAfold,
which have been calculated without supporting con-
straints (Figure 2B). See Supplementary Data for a set
of comparisons performed on 16S rRNA.

Structure-aware RNA sequence alignments

The impact of secondary structures on the alignments as
well as the overall performance was investigated by com-
parison with two commonly used sequence alignment
methods, the classical ClustalW (38) and the more
modern MAFFT (39) approach, and with the structural
alignment method MXSCARNA. For this purpose we
employed both simulated and real data sets.
Manually curated alignments for rRNAs are a rare

commodity. At present, only partial data sets are avail-
able. Here, we used the alignments of 26 mammalian
mitochondrial rRNAs published in (40,41). We only com-
pared the subset of alignment positions that are marked
as ‘trusted’ in these alignments. For the 16S rRNAs,
we find that all four alignment programs reproduce
97.5–99% of the ‘trusted’ pairwise (mis)matches. The
two structural alignment programs, MXSCARNA and
RNAsalsa, have a slightly increased fraction of ‘trusted’
(mis)matches, Table 1. Very similar results were observed
for the 12S mitochondrial rRNAs from the same source.
The relative quality of alignments was assessed follow-

ing the procedures outlined in (42,43). In particular, we
calculated the sum of pairs score (SPS) and the total
column score (TC) as implemented in the baliscore
software (42), as well as the structure conservation index
(SCI) (44). Both SPS and TC are similarity metrics for
multiple alignments. While SPS evaluates the number of
equivalently aligned residue pairs summed over all pairs
of sequences, TC counts the number of columns exactly
shared by the two alignments. When one of the alignments
is used as a benchmark reference, both SPS and TC can
be interpreted as measures of alignment quality. The SCI,
on the other hand, measures to what extent the aligned
sequences form a common secondary structure in such
a way that the sequence alignment also represents a
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Figure 2. Accuracy of structure prediction. Fraction of correctly pre-
dicted helices (green bars) compared with the mammalian 16S rRNA
consensus models (36). (A) RNAsalsa significantly outperforms
MXSCARNA and RNAalifold (default parameter settings; three-
sample test for equality of proportions without continuity correction;
w2=19.96, df=2, P< 0.0001). Average tree-edit distance (37) (B)
between predicted individual structures and the mammalian 16S
rRNA reference model. RNAsalsa predictions conform the consensus
model much better (paired sampled t-test; t=33.46, df=1, P< 0.0001;
N=26).

Nucleic Acids Research, 2009, Vol. 37, No. 18 6187



structural alignment. Originally introduced as a measure
of structural conservation given the alignment, it was used
in (45) to measure the ability of alignment algorithms to
reconstruct conservative consensus folds. Of course, the
SCI can only be employed to measure alignment quality
when the existence of a common global consensus struc-
ture can safely be assumed.
Simulated data were generated as reference alignments

using the new software rnasim (46). The tool takes both
a structure annotated sequence string and a pre-defined
phylogenetic tree as input and simulates the evolution
of RNA molecules with fitness constraints derived
from thermodynamic stability along the given tree. The
tool provides us with the true reference alignment of
the leaf sequences at the end of each simulation run.
Several sets of examples representing smaller and larger
RNAs (tRNAs, mammalian 12S rRNAs, and the
Saccharomyces cerevisiae 28S rRNA) were used as
roots. We used various values between 1 and 100 000 for
rnasim’s ‘branch scaling’ option -s, whereas the default
was used for all other options. Since the branch scaling
parameter has a strong influence on both sequence and
structure, we systematically analysed how various align-
ment algorithms behave as a function of divergence.
Table 2 summarizes the results of some of the RNAsim-

derived data sets. For the tRNAs, all programs except
clustalW perform similarly well. In case of the 28S
rRNA data set, which constitutes a very good example
with highly divergent sequences, RNAsalsa performs
slightly better than its competitors, albeit on a low level.
These examples illustrate a general pattern: most pro-
grams, including RNAsalsa, perform with comparable
scores on a wide range of test cases.
As a function of the branch length scaling parameter,

we observe that all alignment algorithms perform compar-
ably well or poorly in terms of the SPS, TC and SCI
values. As expected, when the alignment problem becomes
harder, i.e. for large scaling values, the performance
metrics decrease uniformly (Supplementary Data). The
resulting alignment then becomes more and more diver-
gent between different methods.
We also used the BRAliBase-II set of structural

alignments (http://projects.binf.ku.dk/pgardner/bralibase
/bralibase2.html) (42), which covers group II introns,
5S rRNA, tRNA, U5 and SRP RNA [following (42),
we did not use the SRP RNA alignments]. Again, we
observe no major differences in the performance metrics

(Supplementary Data). As in the case of the simulated
data, the alignments become more divergent between
methods as the problems become harder.

It appears that they tend to deviate from the reference in
different features. RNAsalsa avoids poorly supported
(mis)matches and instead tends to introduce more gaps
in regions where the alignment becomes ambiguous.
While this feature does not positively influence the
scores in usual performance metrics, it does have a desir-
able effect for phylogenetic reconstruction, because gap-
rich regions tend to be down-weighted or even excluded
in typical phylogenetic applications. In that sense,
RNAsalsa apparently reduces conflicting information
arising from spurious (mis)matches. The RNAsalsa align-
ments emphasize the well-supported regions, and—as we
have seen in the previous section—lead to quite accurate
assignments of the most conserved secondary structure
elements.

Exemplary applications in phylogeny reconstruction

In order to demonstrate the usefulness of RNAsalsa in
phylogenetic applications, we consider two distinct data
sets in detail. For each alignment, we performed phyloge-
netic analyses using a likelihood-based approach and com-
pared the results with the published analyses of the data
set. After individually aligning the LSU and SSU
sequences, the alignments were concatenated. Then the
program Aliscore (47), a method to identify ambigu-
ously aligned regions in multiple sequence alignments, was
used to extract the informative parts of the alignment.
Aliscore identifies ambiguously aligned regions in mul-
tiple sequence alignments based on comparisons of
aligned sequences in a sliding window and a Monte
Carlo (MC) approach. The MC re-sampling compares
the score of the originally aligned sequences in a given
window position with scores of randomly drawn
sequences of similar character composition. Maximum
likelihood (ML) analysis was conducted using the
RAxML software under a GTR+� model set up. For
further details we refer to the Supplementary Data.

Primates. Tree reconstruction results of the mammalian
data are shown in Figures 3 and 4. We focus here on the
phylogeny of primates and, in particular, on the exact

Table 2. Benchmark results for different alignment programs on

rnasim-simulated data sets initialized with tRNAs and 28S rRNAs,

respectively

Methoda tRNAs LSU rRNA

SPS TC SCI SPS TC SCIb

RNAsalsa 0.92 0.69 0.92 0.57 0.11 0.18
MAFFT 0.89 0.65 0.80 0.55 0.05 0.11
ClustalW 0.84 0.51 0.38 0.55 0.06 0.13
MXSCARNA 0.94 0.77 0.88 NA NA NAc

aAll algorithms were started with default set-ups.
bAll applied score values approach 1 as the alignments become identical
with the reference.
cWe could not get results using MXSCARNA with LSU rRNA.

Table 1. Performance of alignment algorithms compared with manually

curated mitochondrial 16S rRNAs (40,41)

Method No. of (mis)matches ‘Trusted ’ Fraction
Kjer reference 492 456 375 062 0.7616

clustalW 500 357 366 840 0.7330
MAFFT 503 628 371 031 0.7367
MXSCARNA 496 447 370 020 0.7453
RNAsalsa 491 931 365 574 0.7431

We list the total number of (mis)matches in all pairwise sub-alignments
of the multiple sequence alignment, and the subset of (mis)matches that
coincide with those marked as ‘trusted’ in the reference alignments.
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Figure 3. Bayesian tree inferred from the combined mammalian 12S rRNA and 16S rRNA. (A) Analysis with GTR+� model in simple DNA mode.
(B) Analysis with GTR+� model in RNA mode for paired positions and DNA mode for loop regions. Numbers indicate Bayesian posterior
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phylogenetic position of one of the most basal primates,
the tarsier. To this end, we re-evaluate a data set specifi-
cally compiled for this purpose (48).
Molecular studies on mitochondrial and nuclear DNA

data of primates have so far lead to incongruent results.
Nuclear DNA data favour haplorrhines (‘dry-nosed’ pri-
mates), i.e. the grouping of anthropoids (human-like apes)
and tarsier (49). This hypothesis has gained strong support
by the discovery of haplorrhine-specific SINES (50,51).
Mitochondrial data, in contrast, mostly support the
Prosimian hypothesis that postulates a sister group rela-
tionship of Tarsius and strepsirrhines (‘wet-nosed’ pri-
mates) (52,53,48).
The ML analysis based on the RNAsalsa alignment

shows well-supported monophyletic primates (Figure 4).
In contrast, primates do not appear monophyletic in anal-
yses that use other alignments. The MAFFT alignment does
not provide any phylogenetic signal to display relation-
ships between anthropoids, the strepsirrhine representa-
tive Nycticebus, Tarsius and all remaining mammalian
groups. The ClustalW analysis groups Tupaia, a scan-
dentian representative, within primates as sister taxon to
Tarsius, both forming the sister clade to Nycticebus and
anthropoids. In the MXSCARNA analysis, primates appear
paraphyletic with nested Rodentia.
Within primates, Tarsius appears as sister taxon to

anthropoids in the RNAsalsa alignments, although with
weak bootstrap support. This is also the case for the
MAFFT alignment, albeit on the background of largely
unresolved mammals. The MXSCARNA alignment leads to
well-supported haplorrhines.
Although the placement of the tarsier is only weakly

corroborated in the RNAsalsa analysis, these results
show that the inclusion of good secondary structure
models into the alignment procedure can make a signifi-
cant difference for phylogeny reconstruction. RNAsalsa
performs better than both purely sequence-based align-
ment approaches and sequence–structure alignments that
are based directly on thermodynamic structure
predictions.
The non-monophyletic appearance of primates with

nested Scandentia and Rodentia in the MAFFT,
ClustalW and MXSCARNA analyses must be interpreted
as erroneous. A few studies based on mitochondrial genes
propose paraphyletic primates with nested Dermoptera
(53,54), but this observation has been explained as an
effect of base composition bias in the mitochondrial mark-
ers (55). Scandentia or even Rodentia never appeared
within primates to our knowledge.
An analysis of the whole mitochondrial genome of

mammals revealed that heterogeneous substitution rates
among different mammalian groups lead to misleading
phylogenetic signals in mitochondrial genes (48). Their
support for the prosimian hypothesis is thus likely an
artefact. RNAsalsa apparently corrects this effect and
leads to phylogenies from mitochondrial RNAs that are
congruent with the results for nuclear genes.
We compared RNA-specific substitution models with

simpler DNA models to determine to what extent they
influence topology and/or node support of phylogenetic
trees. Unfortunately, RNA substitution models are not

implemented in any of the available ML software. They
can, however, be used in Bayesian inference software.
Here we used the parallel version of MrBayes (version
3.1.2) (56) with the GTR version of the Schoeniger and
von Haeseler RNA model as described in (25) to account
for character covariance. This model can be used to take
interdependence of stem regions in ribosomal sequences
into account. It assumes that a base pairing is converted
into another one by means of a two-step process via an
intermediate state. As this includes no double substi-
tutions, other nucleotide changes are accounted for
according to standard DNA models. Character covaria-
tion is considered, as the survival rate of a mutation
in stem positions depends on the partner nucleotide, i.e.
the substitution of the G in a UG pair by an A has a
higher survival rate than the substitution by a C. As we
understand it, this model currently represents a realistic
and applicable approach to reflect nucleotide interdepen-
dencies in rRNA sequences. We have, however, opted for
MrBayes over the alternative, PHASE (32,33,57), mostly
because MrBayes provides a parallel version, which sig-
nificantly reduces computation time in practice.

Bayesian inference results of the mammalian data set
are shown in Figure 3. Application of simple DNA
models led to a paraphyletic appearance of primates.
Tupaia is a sister taxon to the strepsirrhine Nycticebus,
both forming the first branching clade within the paraphy-
letic primates. In contrast, the application of mixed RNA/
DNA models shows monophyletic primates with at least
moderate nodal support. In both analyses, Tarsius
appears highly supported as the sister taxon to anthro-
poids, forming monophyletic haplorrhines. Again, the
monophyly of primates in the mixed model analysis can
be interpreted as a hint that this approach performs better
than the application of simple DNA models. These results
corroborate the previously proposed superiority of the
mixed model approach over simple DNA models (33).

Echinoderms. Our second example tackles the question of
inter-class relationships in Echinodermata (Figure 5). This
phylum is composed of five extant classes, the Crinoidea
(sea lilies), Ophiuroidea (brittle stars), Asteroidea (star-
fishes), Holothuroidea (sea cucumbers) and Echinoidea
(sea urchins). Monophyly in these five classes is well
founded. The relationships between the five classes
remain subject of ongoing discussion, however.

Several contradicting hypotheses of inter-class phylog-
eny in Echinodermata have been raised in the past, based
on morphological and molecular data. Nevertheless, there
is some consensus regarding major aspects of echinoderm
phylogeny (58–60). Crinoids are mostly seen as the most
basal split within Echinodermata, forming the sister
group to the four remaining classes (Eleutherozoa).
Furthermore, there is a strong support for a sister group
relationship of echinoids and holothurians (Echinozoa).
Debates on the phylogenetic position of the stellate
forms (starfishes and brittle stars) recently ended up in
two competing hypotheses: are the ophiurids alone sister
group to Echinozoa (61,62) or do asteroids and ophiur-
oids form a clade (Asterozoa), which is then the sister
taxon to Echinozoa (60)?
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Likelihood analyses based on different alignment meth-
ods are congruent only in parts of the resulting phylo-
genies. The sea lily species Florometra is the first split
within monophyletic Echinodermata, and the two sea
urchins Arbacia and Strongylocentrotus correctly appear
monophyletic with highest bootstrap support.

There are, however, striking differences in many other
aspects. The RNAsalsa alignment shows monophyletic
Echinozoa with Cucumaria as sister taxon to the two echi-
noids. The starfish Asterias appears as sister taxon to the
brittle star Ophioderma. These monophyletic Asterozoa
are the sister clade to Echinozoa. All mentioned relation-
ships gain highest bootstrap support. The MAFFT align-
ment also show monophyletic Asterozoa but with lesser
support. Furthermore, there is no phylogenetic signal to
resolve relationships between Asterozoa, Echinoidea and
Holothuroidea. The ClustalW analysis does not show
monophyletic Asterozoa and Echinozoa. Instead, there
is a closer relationship between echinoids and Asterias.
Within Eleutherozoa, the ophiuriod Ophioderma is the
first split, followed by Cucumaria and the Asterias+
Echinoidea clade.

The results of the MXSCARNA analyses are comparable
with those of RNAsalsa. Eleutherozoa, Echinozoa and
Asterozoa are monophyletic, the latter ones with lesser
support than in the RNAsalsa analyses. Compared with
the previous studies on echinoderm phylogeny, the results
of the structural alignment methods must be seen as
more reasonable. In particular, based on monophyletic
Echinozoa their superiority over the two exclusively
sequence-based alignment methods is pointed out. Both
of those fail to recover monophyletic Echinozoa and the
ClustalW alignment erroneously show Asterias as sister
taxon to the sea urchins.

Overall, we find that structure-aware alignments
yield more plausible results than purely sequence-based

alignments. RNA-specific substitution models yield
better results with the RNAsalsa alignments (which
incorporate some prior knowledge on the structure) than
structural alignments that are based entirely on uncon-
strained thermodynamic folding.

DISCUSSION

ML analyses and Bayesian inference both revealed a
remarkable influence of rRNA secondary structure con-
sideration on both the sequence alignment and on the
subsequent tree reconstruction. This phenomenon is
well-known in molecular systematics and has already led
to the development of RNA-specific substitution models.
The application of these models, however, is confined to a
few studies (3,5,32,33,63,64), mostly because of the lack of
a convenient way to construct usable secondary structure
models and alignments for newly sequenced rRNAs.
Structural inference is not only difficult but also very
tedious, and hence avoided in the overwhelming majority
of published studies.
As a tool for simultaneously computing structure anno-

tation and structure-aware sequence alignments of large
RNA molecules, RNAsalsa has been designed specifically
to overcome this barrier. While it can also be useful for
other tasks, its primary domain of application is phyloge-
netic inference. Here the relatively large computational
cost of the structure prediction (compared with other,
less accurate tools) is of little concern, since it is dwarfed
by the demands of subsequent ML or Bayesian computa-
tions. Extensive tests, and two real-world applications,
demonstrate that RNAsalsa can lead to significant
improvements in reconstructed phylogenies, positively
affecting both tree stability and tree topology. These
improvements can be traced back to two sources: align-
ments that emphasize the unambiguous regions improve
the phylogenetic signal; second, more exact automati-
cally generated consensus structures enhance the benefit
of RNA-specific substitution models. As our examples
show, both types of improvements can offset the pro-
blems incurred by unequal substitution rates and long
branches.
The modular structure of RNAsalsa lends itself to

incorporate further improvements. For example, it is
likely beneficial to use a Sankoff-style algorithm such
as foldalign (65) or locarna (13) to construct the
pairwise alignments A

ij and/or the final alignment B and
its consensus structure o. The current version of
RNAsalsa consistently generates alignments and consen-
sus structures of acceptable quality (compared with the
extremely tedious manual curation of such data). It is
therefore suitable for routine applications in molecular
phylogenetics based on structured RNAs, in particular
rRNAs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 5. Phylogenies inferred from analyses of the echinoderm 28S
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