
[16:44 5/2/2010 Bioinformatics-btp680.tex] Page: 610 610–616

BIOINFORMATICS ORIGINAL PAPER Vol. 26 no. 5 2010, pages 610–616
doi:10.1093/bioinformatics/btp680

Structural bioinformatics Advance Access publication December 16, 2009

RNAsnoop: efficient target prediction for H/ACA snoRNAs
Hakim Tafer1,2,3,∗, Stephanie Kehr2,3, Jana Hertel2,3, Ivo L. Hofacker1 and
Peter F. Stadler1−6

1Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria,
2Bioinformatics Group, Department of Computer Science, 3Interdisciplinary Center for Bioinformatics, University of
Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, 4Max Planck Institute for Mathematics in the Sciences,
Inselstrasse 22, 5RNomics Group, Fraunhofer Institut for Cell Therapy and Immunology, Perlikstraße 1,D-04103
Leipzig, Germany and 6The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, USA
Associate Editor: Anna Tramontano

ABSTRACT

Motivation: Small nucleolar RNAs are an abundant class of non-
coding RNAs that guide chemical modifications of rRNAs, snRNAs
and some mRNAs. In the case of many ‘orphan’ snoRNAs, the
targeted nucleotides remain unknown, however. The box H/ACA
subclass determines uridine residues that are to be converted
into pseudouridines via specific complementary binding in a well-
defined secondary structure configuration that is outside the scope
of common RNA (co-)folding algorithms.
Results: RNAsnoop implements a dynamic programming algorithm
that computes thermodynamically optimal H/ACA-RNA interactions
in an efficient scanning variant. Complemented by an support vector
machine (SVM)-based machine learning approach to distinguish true
binding sites from spurious solutions and a system to evaluate
comparative information, it presents an efficient and reliable tool for
the prediction of H/ACA snoRNA target sites. We apply RNAsnoop

to identify the snoRNAs that are responsible for several of the
remaining ‘orphan’ pseudouridine modifications in human rRNAs,
and we assign a target to one of the five orphan H/ACA snoRNAs in
Drosophila.
Availability: The C source code of RNAsnoop is freely available at
http://www.tbi.univie.ac.at/∼htafer/RNAsnoop
Contact: htafer@tbi.univie.ac.at
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Box H/ACA snoRNA facilitates the conversion of Uracil to
pseudouracil (�) in a specific sequence context (Bachellerie
et al., 2002). The specificity for a particular target site is the
consequence of the hybridization of snoRNA and target RNA,
in most cases a ribosomal RNA. The target U is positioned by
two specific interactions of the flanking target RNA sequence
with the complementary sequence of the recognition loop of the
snoRNA (Ni et al., 1997), see Figure 1. The ‘correct’ secondary

∗To whom correspondence should be addressed.

structures of snoRNAs are typically hard to predict. Thus, the
exact structure of the interior loop, and hence the sequence motifs
complementary to the binding site, are unknown. We employ here
the idea of Thermodynamic Matchers (Höchsmann et al., 2006)
to determine the energetically optimal structure of an H/ACA
snoRNA that is bound to a given putative target sequence. The
implementation of Thermodynamic Matchers (Reeder et al., 2007)
is not directly applicable, however, since the snoRNA–target
interaction corresponds to a complex pseudoknot (in the conceptual
concatenation of snoRNA and mRNA) that is beyond the scope of
existing RNA folding software.

The prediction of putative snoRNA target sites is an integral
part of two programs [snoGPS (Schattner et al., 2004) and
Fisher (Freyhult et al., 2008)] that attempt to detect H/ACA
snoRNAs in genomic DNA. Both programs search for sequence
complementarities between a list of possible target sites and
the binding region of the snoRNA candidate. In these models,
mismatches between the target and the snoRNA are not allowed.
Furthermore, neither program provides information on the energetics
of the interaction or the stability of the stems, two factors that
were recently shown to be important for correctly predicting
snoRNA–target interactions (Xiao et al., 2009).

We present here a dynamic programming algorithm named
RNAsnoop, that specifically captures the structure of the snoRNA–
target interaction and is optimized for scanning speed. The
thermodynamic considerations are combined with a machine
learning component to increase the specificity of target predictions,
which can be improved even further by including comparative
information.

2 SINGLE-SEQUENCE RNASNOOP

2.1 Specialized folding algorithm
RNAsnoop implements a specialized co-folding algorithm that
takes into account that stringent structural constraints must be
satisfied for a functional interaction of a box H/ACA snoRNA
stem–loop and its target. As input, RNAsnoop takes one of the
typical two stem–loop components of a known or predicted H/ACA
snoRNA. The closing stem, T is assumed to be known from the a
priori prediction of the snoRNA structure. The part of the snoRNA
sequence enclosed by T is allowed to interact with the target
structure. Figure 1 outlines the general principle.
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Fig. 1. Box H/ACA snoRNAs typically interact with both stem–loop
structures with regions of a target RNA flanking the Uracil residue that is to
be pseudouridylated. Computation of the interaction structure is performed
separately for the two stems–loop components of a H/ACA snoRNA. The
closing stem T at the root of each branch is assumed to be given from
the structure prediction. The region inside of T is decomposed into the
upper stem–loop structure with an energy contribution M, left and right
interaction structures with their energy contribution L and R, respectively.
Since RNAsnoop scans the target RNA in 5′–3′ direction, the snoRNA is
read in 3′–5′ direction.

The interaction structure can be decomposed into the unbranched
stem–loop ‘above’ the pseudouridylation site, and the left and right
‘arms’of the binding site itself. The total energy of these components
will be optimized by dynamic programming. In addition, the
snoRNA–target interaction is influenced by the short closing stem
of the interaction loop.

The upper stem–loop structure of the snoRNA (with sequence y)
is simply modeled as an unbranched fold. The energies of its optimal
substructures satisfy the recursion

Mp,q =min

⎧⎨
⎩

H(y[p,q])

min
k,l

Mp−k,q+l + I(y[p−k,p],y[q,q+l]), (1)

where H(y[p,q]) denotes the energy parameters (Lu et al.,
2006; Mathews et al., 1999) for a hairpin loop formed by
the subsequence y[p,q]=ypyp+1 ...yq including the closing pair
(yp,yq). Analogously, I(y[u,p],y[q,v]) is the energy of an interior
loop composed of the sequences y[u,p] and y[q,v], again including
the delimiting base pairs (yp,yq) and (yu,yv).

Inspection of known snoRNA–rRNA interactions revealed that
the interaction region can contain only single and tandem
mismatches but no bulges. Therefore, we allow only stacked base
pairs and symmetrical loops of lengths 2 and 4. Thus, the left part
satisfies the recursion

Li,j = min
k=1,2,3

Li−k,j+k +I(x[i−k,i],y[j,j+k]). (2)

The index i runs along the target RNA x, while j refers to the position
on the snoRNA y. To ensure that all interactions start inside the
recursion matrix we set Li,j =0

The r.h.s. array R contains the optimal folding energies of the
interaction structure up to positions i on the target and j on the
snoRNA consisting of the l.h.s. binding region L, the snoRNA stem–
loop M and the partial r.h.s. binding region Ri,j . It thus extends
a r.h.s. binding region or refers to its first base pair. In the latter

case, nucleotide xi−2 is the uracil that is pseudouridylated. The
corresponding recursion reads

Ri,j =min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
k,l≤2

Ri−k,j+l +I(x[i−k,i],y[j,j+l])

min
l∈[3,|y|−j]

Li−3,j+l+1 +Mj+1,j+l

if x[i−2] = ′U ′ .

(3)

For each i, the best binding energy at target position i is maxj Ri,j .
Space and time requirements for the M-matrix are limited by the

size |y| of the snoRNA stem–loop structure, which is a user-specified
constant, typically 120 nt. Formally, the space and time complexity
is O(|y|2) and O(|y|4), respectively. The space requirements for the
L and R arrays are limited to 5×|y| independent of the target |x| of
the target RNA. This is possible because the length of interior loops
in the recursions is restricted to not more than 4 and the transition
from L to R recursion only looks back to i−4. The time complexity
for L is O(|x|·|y|), while for R we need O(|x|·|y|2) operations. The
total run time is thus O(|x||y|2 +|y|4), i.e. we have a linear ‘scanning
algorithm’ for long target RNAs.

Due to the difference in accessibility between sites with
pseudouridine and uridine residues in both human and yeast (see
Fig. 2 and Supplementary Fig. S1), we extended RNAsnoop so
that accessibility information are considered in the folding step.
Accessibility profiles as computed by RNAup (Mückstein et al.,
2006) or RNAplfold (Bernhart et al., 2006; Bompfünewerer et al.,
2008) describe the energy necessary to open the secondary structure
on an interval of the target sequence. The full implementation of
RNA–RNA interactions is too expensive in terms of computational
resources for a target search program. We therefore borrow the
approach from RNAplex (Tafer and Hofacker, 2008a), which
uses an affine approximation to speed up the computation of
RNA–RNA interaction energies. A recent extension (Tafer and
Hofacker, 2008b) shows that the accuracy can be improved
substantially by incorporating precomputed accessibility profiles in
the parameterization of the interaction energies. Here, we use the
same idea to approximate the influence of the target site accessibility
on the snoRNA–rRNA interactions, while preserving the linear run
time of RNAsnoop.

2.2 Machine learning component
Xiao et al. (2009) showed that the interaction energy is necessary
but not sufficient to distinguish functional from non-functional
snoRNA–rRNA interactions. Stability of the stems enclosing the
pseudourydilation pocket as well as structural features relative to
the stems and the interaction regions are equally relevant. In order
to take those parameters into account we used a machine learning
method [support vector machine (SVM)] to analyze the output of
RNAsnoop. We developed two models depending on whether or
not RNAsnoop considers the target site accessibility. We used the
experimentally verified interactions from yeast (Schattner et al.,
2004) and human (Xiao et al., 2009). When using the human
interactions for testing we trained exclusively on the yeast dataset.
Since the training dataset did not contain experimentally confirmed
non-functional interactions, we augmented it by adding artificial
ones. For each snoRNA-stem involved in a verified interaction,
we let RNAsnoop run against yeast 28S and 18S sequence. All
hits that had an interaction energy smaller than the one of the
experimentally validated interaction and that do not target a known
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Fig. 2. Features considered in the SVM model. (Left) Structural (black bold lines) and energy features (shaded regions). TE: lower stem energy, LE: 5′
interaction energy, DE: upper stem energy, RE: 3′ interaction energy, For each nucleotide in the target, its local opening energy is represented by a gray circle,
where light gray represents low local opening energy and dark gray high local opening energy. The target total opening energy (OE) is the sum of all local
opening energies, YE: YE = LE + RE + TE + DE, XE: XE = LE + RE + DE, dYE: dYE = YE + OE, t_i_gap: number of nucleotides between the 5′ end
of the upper stem and 3′ end of the 5′ interaction on the snoRNA, U_gap: number of nucleotides between the 3′ end of the 5′ interaction and the 5′ end of
the 3′ interaction on the mRNA, i_b_gap: number of nucleotides between the end of the lower stem and the 3′ end of the 5′ interaction on the snoRNA,
i_t_gap: number of nucleotides between the 5′ end of the 5′ interaction and the 5′ end of the snoRNA stem, stem_length: length of the upper stem,
stem_asymmetry: difference in the number of nucleotides located in loops between the 5′ and 3′ side of the upper stem, gap_right: number of gaps in
the 3′ interaction on the mRNA. (Right) Box-plots showing the accessibility distribution for all known uridines (gray, 1062 datapoints) and pseudouridines
(white, 92 datapoints) sites in human 28S and 18S rRNAs. The target accessibility was computed by using RNAup on the whole length sequences of 28S and
18S rRNAs. The target size was varied between 3 and 19 nt in steps of 2 nt and was centered around the (pseudo)uridine site.

pseudouridylation site were considered non-functional. The final
training dataset contained 43 positive and 103 negative interactions.

For both models we derived a set of 29 features to pass to
the SVM, and then selected a subset following the approach
described by Chen and Lin (2006). Features that were included at
the end are described in some detail in Figure 2. We used different
feature set depending on whether accessibility is taken into account
or not.

For the case where the target accessibility was neglected, only
five features are used, four of which describe the geometry of the
interaction itself (t_i_gap, U_gap, i_t_gap and gap_right)
and the length of the intervening stem stem_length.

For the model with accessibility, 11 features are used. In addition
to features describing the geometry of the interaction (t_i_gap,
U_gap, i_b_gap, i_t_gap and gap_right) and of the upper
stem (stem_length and stem_asymmetry), we utilize the
four energy values YE, DE, XE and dYE defined in the caption of
Figure 2.

Training and test datasets can be found in Supplementary Tables
T3 and T4.

2.3 Performance
2.3.1 Accuracy We compared the prediction accuracy of
RNAsnoop, snoGPS and fisher on the human (Xiao et al.,
2009) and yeast (Schattner et al., 2004) datasets of experimentally
confirmed/rejected snoRNA–rRNA interactions. For a given
snoRNA involved in a confirmed interaction, we determined how
many target sites were predicted to bind with a better score/energy
than the experimentally reported one. Table 1 summarizes these rank
values for the confirmed interactions in yeast. We clearly see that

fisher is less sensitive, detecting only 16 of the 44 interactions
in yeast. Still, these 16 interactions were all ranked first, indicating
that fisher has a high specificity. In comparison, RNAsnoop and
snoGPS detect 43 and 41 of the 44 verified interactions in yeast,
and 11 and 10, respectively, in human. We remark that RNAsnoop
did not identify the interaction of snR82 with LSU-U2349, because
RNAsnoop predicts the adjacent position LSU-U2351 as preferred
target. On average, RNAsnoop ranks the confirmed interactions
higher in the list than snoGPS. This trend is also seen in the ROC
curve in Figure 3, where RNAsnoop shows a higher prediction
accuracy than snoGPS.

In human, RNAsnoop performs better than snoGPS. In
particular, the SVM version successfully rejects the four non-
functional snoRNA–rRNA interactions and successfully ranks 11
out of the 12 confirmed interactions first (Table 2). Still, one of the
confirmed interaction was rejected by the SVM.

Further, we looked at the false positive rate of RNAsnoop. To
this aim, we considered the putative targets of orphan snoRNA
HBI-36 (Cavaillé et al., 2000), a brain-specific snoRNA found in
all vertebrates (Gardner et al., 2009) returned by RNAsnoop. We
downloaded from BIOMART (Haider et al., 2009) the unprocessed
transcript sequences that are expressed in brain and that have
homologs in chicken. We did not limit ourselves to exons as it
was proven that at least C/D snoRNA can bind intronic regions
and subsequently influence the splicing process (Bazeley et al.,
2008). We downloaded a total of 9429 unspliced sequences,
summing a total of 0.75 Gb, roughly a quarter of total human
genome. For each sequence, we used RNAplfold to compute
the local accessibility (Bompfünewerer et al., 2008). Based on this
RNAsnoop returned a total of 1 278 134 putative targets (515 751
hits for the 5′ stem and 762 383 hits for the 3′ stem) with a SVM
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Table 1. Prediction comparison of RNAsnoop (abbreviated as RNAsn.), snoGPS and Fisher for the known snoRNA–rRNA interactions in yeast

snoRNA Target Position snoGPS fisher RNAsn. RNAsn. A snoRNA Target Position snoGPS fisher RNAsn. RNAsn. A

snR11 25S 2416 3 – 12 14 snR10 25S 2923 2 1 28 26
snR161 18S 632 6 1 8 5 snR46 25S 2865 1 1 1 1
snR161 18S 766 1 – 11 2 snR49 18S 120 3 1 1 1
snR189 18S 466 2 1 1 1 snR49 18S 211 2 – 5 5
snR189 25S 2735 1 – 1 1 snR49 18S 302 1 – 5 4
snR191 25S 2258 1 – 5 2 snR49 25S 990 4 – – 1
snR191 25S 2260 99 – 8 1 snR5 25S 1004 3 1 1 1
snR3 25S 2129 4 – 1 1 snR5 25S 1124 1 – 8 1
snR3 25S 2133 1 – 1 1 snR8 25S 960 68 – 3 5
snR3 25S 2264 2 – 3 1 snR8 25S 986 55 1 2 3
snR31 18S 999 1 1 1 1 snR80 18S 759 – – 2 2
snR32 25S 2191 1 1 1 1 snR80 25S 776 – – 2 2
snR33 25S 1042 1 1 1 1 snR81 25S 1052 57 1 2 1
snR34 25S 2826 2 – 1 1 snR82 25S 2349 1 1 – –
snR34 25S 2880 1 – 1 1 snR82 25S 2351 1 – 1 2
snR35 18S 1191 1 – 1 1 snR82 25S 1110 – – 2 4
snR36 18S 1187 12 1 7 2 snR83 18S 1290 1 – 58 7
snR37 25S 2944 1 – 2 2 snR83 18S 1415 4 – 1 1
snR42 25S 2975 1 1 4 1 snR84 25S 2266 1 – 2 2
snR43 25S 966 1 – 1 1 snR85 18S 1181 1 1 1 1
snR44 18S 106 1 – 2 2 snR86 25S 2314 13 – 3 1
snR44 25S 1056 2 1 1 2 snR9 25S 2340 33 – 18 19

RNAsn. A, accessibility version of RNAsnoop.
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Fig. 3. ROC curve for RNAsnoop and snoGPS on the yeast data set
(Schattner et al., 2004).RNAsnoopwas used without the SVM functionality.

P-value >0.5. This corresponds to one hit every 586 nt. At a
P-value of 0.844, the false positive rate drops to 0.00001 predictions
per nucleotide (Supplementary Fig. S6). While the number of
false positives diminishes uniformly with increasing P-values,
the energy dependency of the false positives is sigmoid shaped.
The false positives rate grows slowly between −40 kcal/mol and
−30 kcal/mol, then increases strongly between −30 kcal/mol and
−20 kcal/mol before reaching a plateau between −20 kcal/mol

Table 2. Prediction performance in human for snoGPS, RNAsnoop
(RNAsn.),RNAsnoopwith accessibility (RNAsn.A) and the SVM in human

snoRNA Target Position Type snoGPS RNAsn. RNAsn. A SVM

ACA19_1 28S 3709 + 1 1 1 1
ACA19_2 28S 3618 + 25 2 1 1
ACA19_1 18S 863 − 10 1 4 –
ACA19_1 18S 866 − 10 – – –
ACA24_1 18S 863 + – 1 1 1
ACA24_2 18S 612 − 86 3 6 –
ACA28_1 18S 815 + 1 4 1 1
ACA28_2 18S 866 + – 2 4 1
ACA42_1 18S 572 − 3 4 19 –
ACA42_2 18S 109 + 1 1 1 1
ACA50_1 18S 34 + 1 1 1 –
ACA50_2 18S 105 + 2 1 1 1
ACA62_1 18S 34 + 3 24 1 1
ACA62_2 18S 105 + 2 1 1 1
ACA67_1 18S 572 + 2 2 1 1
ACA67_2 18S 109 + 1 1 1 1

The numbers represent the rank of the interaction for the corresponding snoRNA stem.
In column ‘Type’, +,− represent experimentally confirmed or rejected interactions,
respectively. When using the human interactions for testing, we trained the SVM
exclusively on the yeast dataset.

and −10 kcal/mol. A false positive rate of 0.00001 predictions per
nucleotide is reached for an energy of −28 kcal/mol (Supplementary
Fig. S6).

2.3.2 Run time We compared the run time of RNAsnoop with
that of snoGPS and RNAhybrid. We modified fisher to turn it
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into a target finder; the resulting run time, however, was so high that
we decided not to evaluate it further. RNAhybrid uses a dynamic
programming algorithm to find putative miRNA–targets and has a
run time of O(|x|· |y|). Since the run time of RNAsnoop is linear
in the target size but quadratic in the snoRNA size, we varied the
length of both sequences. Since H/ACA snoRNA stems vary greatly
in length (Bally et al., 1988; Torchet et al., 2005), we incremented the
snoRNA stem size in steps of 30 nt from 60 up to 420 nt, keeping the
target RNA length fixed to 5000 nt. Conversely, the target length was
varied between 1000 and 256 000 nt with a snoRNA stem length set
to 200. We set the threshold for each program so that they returned
at most one hit. Independently of the snoRNA or target sequence
size, snoGPS and RNAsnoop have a similar run time. They are
around 15 times faster than RNAhybrid (Supplementary Figs S2
and S3).

3 A COMPARATIVE VERSION
The use of alignments in the target search can further help to find real
snoRNA–RNA interactions. On one hand, the absence of conserved
target site in closely related species may indicate that the proposed
interaction does not occur in nature. The presence of compensatory
mutations between the snoRNA binding bucket and the target site,
on the other hand, can lend further credibility to single-sequence
target predictions (Chen et al., 2007).

The alignment extension of RNAsnoop is based on the same
approach used in RNAalifold (Bernhart et al., 2008; Hofacker
et al., 2002), where a thermodynamic energy minimization folding
algorithm is coupled with a simple scoring model to assess
evolutionary conservation. As in the single sequence algorithm,
the upper stem is modeled as an unbranched fold by a slightly
modified RNAalifold algorithm. The interaction part uses the
same approach as RNAalifold, with the sole difference that only
interior loops are allowed between the snoRNA and its target.

For an efficient analysis of data, we provide and recommend the
perl script SNOOPY. It uses both the SVM as well as the homology
information to predict putative target interactions. SNOOPY takes as
input a snoRNA alignment and a target alignment. In a first step
SNOOPY uses mLocARNA to obtain sequence/structure alignments
of the snoRNAs (Will et al., 2007). If the sum of scores of
mLocARNA pairwise alignments for a sequence is <2500, then
the sequence is discarded. Duplicates and sequences belonging
to species that are present in only one of the two alignments
are also removed. SNOOPY preselects possible targets in a user-
defined reference organism by means of the single-sequence version
of RNAsnoop and one of the two SVM models. For each
reported targets, SNOOPY extracts the corresponding slice from
the alignments and then realigns the corresponding subsequences
with Clustalw (Thompson et al., 1994). Target sequences for
which the pairwise alignment score is below a threshold, or which
do not exhibit a U residue at the previously predicted site, are
removed together with the snoRNA sequences from the same
organisms. Whenever the number of retained sequences is above
a user-defined threshold, the alignment version of RNAsnoop is
applied. Finally, SNOOPY reports for each snoRNA alignment a
user-specified number of putative interactions. These interactions
can be ranked either by their SVM score or by the single sequence
interaction energy for the reference organism.

4 APPLICATIONS
In order to test the usability of RNAsnoop , we consider
the problems of finding snoRNAs associated with ‘orphan’
pseudouridylation sites in human rRNAs. Although the role of
snoRNAs in locating target uridine residues was discovered more
than a decade ago, there are still a few pseudouridylation sites
in human rRNAs (Maden and Wakeman, 1988; Ofengand and
Bakin, 1997) for which the responsible snoRNAs have not yet been
determined. We used the single sequence version of RNAsnoop to
predict the possible snoRNAs that may pseudouridylate these orphan
sites. For this we used all the known human H/ACA sequences
reported in snoRNA-LBME-db (Lestrade and Weber, 2006) and
tested them against the 11 reported orphan sites in the human LSU
and SSU. Based on the currently available snoRNA data, eight
orphan sites can be mapped to existing snoRNA stems. Interestingly,
two orphan snoRNAs (ACA38B, ACA51), and two stems, for which
no function was reported, were among the predictions. Additionally,
four stems with known targets were predicted to target four of the
orphan sites. The predicted interactions are listed in Table 3, Figure 4
and Supplementary Figure S4.

We used SNOOPY to assign putative targets to the five orphan
snoRNAs found in Drosophila (Or-aca1, Or-aca2, Or-aca3, Or-aca4
and Or-aca5). For each orphan snoRNAs reported in Flybase
(Ashburner and Drysdale, 1994), we searched for homologous
sequences in the 11 other Drosophila species by using blast
(Altschul et al., 1990). For each species, the sequence with the
highest homology with D.melanogaster was selected. The sequences
were then aligned with mLocARNA, a variant of the Sankoff
algorithm. For each snoRNA, the full-length alignment was then
divided into a 5′ and 3′ stem alignments.

The rRNA alignments were retrieved from the arb-silva
database (Pruesse et al., 2007). In order to get the best possible
alignments, we realigned them with Clustalw, Muscle (Edgar,
2004), and RNAsalsa (Stocsits et al., 2009). The quality of the
alignments was assessed by determining how well the conserved
pseudouridylation sites in D.melanogaster and Homo sapiens were
aligned in the 12 drosophilid rRNA sequences. Based on this quality
measure, RNAsalsa was found to perform best (Supplementary
Tables T1 and T2). Alignments of snRNAs were taken from Marz
et al. (2008).

Of the five orphan snoRNAs, only Oaca-4 was reported to have
a target. We predict that the first stem modifies U2499 on the
28S rRNA (Fig. 5 and Supplementary Fig. S5). This target site is
interesting since it was reported to be pseudouridylated (Giordano
et al., 1999), but no corresponding snoRNA is known. Moreover, in
human and yeast, this position which correspond to U3674 in human
and U2191 in yeast, is conserved and pseudouridylated (Lestrade
and Weber, 2006). U3674, finally, remains an orphan site in human.

Interestingly, both the target and binding buckets are completely
conserved from D.melanogaster to D.willistoni, see Figure 5. On
the other hand, 6 out of the 12 bp found in the upper stem exhibit
compensatory mutations.

The fact that no credible targets have been predicted for the
remaining four orphan snoRNAs is not unexpected. First, snoRNAs
have also been implicated in modifying ‘non-canonical targets’ such
as mRNAs (Bazeley et al., 2008; Kishore and Stamm, 2006; Uliel
et al., 2004), some cause cleavage of pre-rRNAs (Fayet-Lebaron
et al., 2009), and Taft et al. (2009) recently showed that Or-aca5 is
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Table 3. Predicted snoRNAs targeting the orphan pseudouridines in human
ribosomal RNAs

rRNA Position snoRNA Stem Function SVM-score Energy

18S 681 ACA55 2 18S-36 0.76 −34.32
18S 918 ACA13 1 18S-1248 0.81 −35.90
28S 1523 SNORA38B* 1 – 0.66 −18.08
28S 1849 – – – – –
28S 3674 – – – – –
28S 3747 ACA52 2 – 0.87 −28.94
28S 3749 – – – – –
28S 3863 U71c 2 18S-406 0.53 −19.14
28S 4266 ACA64 1 – 0.75 −32.00
28S 4323 ACA51* 2 – 0.63 −20.39
28S 4501 ACA10 1 28S-4491 0.54 −15.00

No snoRNAs were found for position 1849, 3674 and 3749 on rRNA 28S. ACA51 and
SNORA38B are orphan snoRNAs while ACA52-2 and ACA64-1 are orphan stems.

Fig. 4. Structure of the interactions between human � orphan
sites and orphan snoRNAs returned by RNAsnoop. From left to
right: SNORA38B-1:28S−1523, ACA51-2:28S−4323, where, i.e.
ACA51-2:28S−4323, means that the second stem of ACA51 binds
to position 4323 on rRNA 28S. The single nucleotide opening energy
for the target is gray coded and is represented as circles on top of the
corresponding nucleotide. Structures drawings were produced automatically
by RNAsnoop.

processed by Dicer, suggesting a function in the RNA interference
pathway.

5 DISCUSSION
We presented here RNAsnoop, a tool specifically designed
to predict complex H/ACA snoRNA–RNA interactions that are
outside the scope of conventional RNA–RNA prediction tools.
In contrast with previous tools, it uses a dynamic programming
approach coupled with a nearest-neighbor energy model to identify
putative targets. This allows RNAsnoop to capture structural and

Fig. 5. Structure of the interactions between Or-aca4 and its putative target.
(Left) Single sequence structure and (right) multiple sequences structure.
(Below) Alternative representation of the multiple sequences structure. The
consensus structure is represented in dot bracket format on top of the target
and snoRNA alignments. The angle brackets represent intermolecular base
pairs and the braces represent intramolecular base pairs. The & column
separates the alignment of the snoRNA sequences on the right side and the
corresponding slice of the target sequences alignment on the left side. For
the multiple sequences and alignment figures, the shade in the order light,
middle and dark gray indicate 1–3 different types of base pairs.

energetic features essential for correctly predicting snoRNA–target
interactions (Xiao et al., 2009). Coupled with a SVM classification,
SNOOPY achieves good performance ranking first 11 out of 12
confirmed snoRNA–mRNA interactions in human and excluding
all experimentally rejected interactions. These good results should,
however, not be overestimated as both the training and test datasets
are small and were extracted from only two species.

The run time of RNAsnoop is comparable with that of snoGPS,
and scales linearly with the length of the target sequence. Together
with the improved accuracy, this makes RNAsnoop not only
suitable for target search in rRNA and snRNA sequences or
in specific putative mRNA candidates, but also for large-scale
genome-wide surveys.
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